JPH06333288A - Magnetic recorder - Google Patents

Magnetic recorder

Info

Publication number
JPH06333288A
JPH06333288A JP14136593A JP14136593A JPH06333288A JP H06333288 A JPH06333288 A JP H06333288A JP 14136593 A JP14136593 A JP 14136593A JP 14136593 A JP14136593 A JP 14136593A JP H06333288 A JPH06333288 A JP H06333288A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
modulation
light beam
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14136593A
Other languages
Japanese (ja)
Inventor
Masahiro Suzuki
雅浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14136593A priority Critical patent/JPH06333288A/en
Publication of JPH06333288A publication Critical patent/JPH06333288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve recording density with simple constitution by switching the polarity of modulation magnetic field so that a displacement amount of a magnetic recording medium at the time of switching polarity becomes a spacial linear density limit or below of a light beam irradiation means in the state of continuously irradiating a light beam. CONSTITUTION:A magnetic recording medium 2 is continuously irradiated with a light beam by a laser driving circuit 5, a laser diode 6, a collimate lens 7, a polarizing beam splitter 8 and an objective lens 9 constituting a light beam irradiation means. The polarity of the modulation magnetic field is switched by a magnetic field modulation head 13 and a magnetic field head driving circuit 17 constituting a revision magnetic field impression means so that the displacement amount (x) of the recording medium 2 corresponding to the period (t) when the modulation magnetic field falls from first magnetic flux density +< to second magnetic field flux -< and the period (t) when the modulation magnetic field rises from the second magnetic flux density -< to the first magnetic flux density becomes the spacial linear density limit or below of the optical irradiation means. Thus, a timing control circuit required for intermittently irradiating the optical beam is eliminated, and the whole constitution is simplified, and the deterioration in the S/N of reproduced signal is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段(図1〜図3) 作用(図1〜図3) 実施例 (1)実施例の構成(図1〜図3) (2)実施例の効果 (3)他の実施例 発明の効果[Table of Contents] The present invention will be described in the following order. Field of Industrial Application Conventional Technology Problem to be Solved by the Invention Means for Solving the Problem (FIGS. 1 to 3) Action (FIGS. 1 to 3) Example (1) Configuration of Example (FIG. 1 to FIG. 1) (FIG. 3) (2) Effect of the embodiment (3) Other embodiment Effect of the invention

【0002】[0002]

【産業上の利用分野】本発明は磁気記録装置に関し、例
えば熱磁気記録の手法を適用して所望のデータを記録す
る光磁気デイスク装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording apparatus, and is suitable for application to a magneto-optical disk apparatus for recording desired data by applying, for example, a thermomagnetic recording method.

【0003】[0003]

【従来の技術】従来、この種の光磁気デイスク装置にお
いては、熱磁気記録の手法を適用して所望のデータを記
録し得るようになされている。すなわちこの種の光磁気
デイスク装置においては、間欠的に光ビームを光磁気デ
イスクに照射し、これによりパルス発光記録方式を適用
して光磁気デイスクを順次局所的に加熱する。
2. Description of the Related Art Conventionally, in a magneto-optical disk device of this type, desired data can be recorded by applying a thermomagnetic recording method. That is, in this type of magneto-optical disk device, the magneto-optical disk is intermittently irradiated with a light beam, and the pulse emission recording method is applied to sequentially locally heat the magneto-optical disk.

【0004】この状態で光磁気デイスク装置において
は、この光ビームの照射位置に、光磁気デイスクを貫く
ように変調磁界を印加する。このとき光磁気デイスク装
置においては、記録するデータの論理レベルに応じて変
調磁界の極性を切り換え、これにより所望のデータを熱
磁気記録する。
In this state, in the magneto-optical disk device, a modulating magnetic field is applied to the irradiation position of this light beam so as to penetrate the magneto-optical disk. At this time, in the magneto-optical disk device, the polarity of the modulation magnetic field is switched according to the logic level of the data to be recorded, and thereby the desired data is thermomagnetically recorded.

【0005】このとき光磁気デイスク装置においては、
光磁気デイスクを貫くように変調磁界を印加したことに
より、この光ビームに照射位置に垂直磁化された領域
(すなわちピツトでなる)を形成し得、これにより変調
磁界の極性を切り換えて、2値のデータを順次記録し得
るようになされている。
At this time, in the magneto-optical disk device,
By applying a modulation magnetic field so as to penetrate the magneto-optical disk, a vertically magnetized region (that is, consisting of pits) can be formed at the irradiation position in this light beam, and by this switching the polarity of the modulation magnetic field The data can be sequentially recorded.

【0006】[0006]

【発明が解決しようとする課題】ところでこの種の光磁
気デイスク装置は、周囲温度、光磁気デイスクの周速度
に応じて熱磁気記録の条件が変化する特徴があり、この
ため光ビームの照射期間、さらには変調磁界の極性を切
り換えるタイミングを細かく制御する必要がある。この
ため従来の光磁気デイスク装置は、遅延回路に相当する
タイミング制御回路を設け、このタイミング制御回路を
制御して光ビームの照射期間、光ビームに対して変調磁
界の極性を切り換えるタイミングを制御するようになさ
れていた。従つて従来の光磁気デイスク装置において
は、その分構成が煩雑になる問題があつた。
By the way, the magneto-optical disk device of this type is characterized in that the conditions of thermo-magnetic recording are changed depending on the ambient temperature and the peripheral speed of the magneto-optical disk. Moreover, it is necessary to finely control the timing of switching the polarity of the modulation magnetic field. Therefore, the conventional magneto-optical disk device is provided with a timing control circuit corresponding to a delay circuit, and controls the timing control circuit to control the irradiation period of the light beam and the timing of switching the polarity of the modulation magnetic field with respect to the light beam. It was done like this. Therefore, in the conventional magneto-optical disk device, there is a problem that the structure becomes complicated accordingly.

【0007】さらにこの照射期間の制御、変調磁界のタ
イミング制御は、光磁気デイスクの記録密度を高くすれ
ば、その分高速かつ高い精度が求められることにより、
従来の光磁気デイスク装置においては、簡易に記録密度
を向上し得ない問題があつた。
Further, the control of the irradiation period and the timing control of the modulation magnetic field require high speed and high accuracy as the recording density of the magneto-optical disk is increased,
The conventional magneto-optical disk device has a problem that the recording density cannot be easily improved.

【0008】因みに実際上、このタイミング制御回路に
おいては、20〜50〔nsec〕の周期で変調磁界の極性を切
り換える場合、0.2 〔nsec〕程度の分解能で遅延時間を
切り換える必要があり、タイミング制御回路だけでも構
成が煩雑な特徴がある。
In practice, in this timing control circuit, when the polarity of the modulating magnetic field is switched at a cycle of 20 to 50 [nsec], it is necessary to switch the delay time with a resolution of about 0.2 [nsec]. There is a feature that the configuration is complicated even by itself.

【0009】本発明は以上の点を考慮してなされたもの
で、簡易な構成で従来に比して簡易に記録密度を向上し
得る磁気記録装置を提案しようとするものである。
The present invention has been made in consideration of the above points, and an object of the present invention is to propose a magnetic recording apparatus which has a simple structure and can easily improve the recording density as compared with the conventional one.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、磁気記録媒体2に光ビームを照射
して所望の記録データD2を熱磁気記録する磁気記録装
置1において、光ビームを磁気記録媒体2に照射する光
ビーム照射手段5、6、7、8、9と、光ビームの照射
位置に、記録データD2に応じて極性が切り換わる変調
磁界φを印加する変調磁界印加手段13、17とを備
え、光ビーム照射手段5、6、7、8、9は、光ビーム
を連続的に照射し、変調磁界φは、再生信号RFのSN
比が飽和する第1の磁束密度+ψ以上の第1の磁界と、
第1の磁界と逆極性で、再生信号のSN比が飽和する第
2の磁束密度−ψ以下の第2の磁界との間で極性を切り
換えて形成され、変調磁界印加手段13、17は、変調
磁界が第1の磁束密度+ψから第2の磁束密度−ψに立
ち下がる期間t及び変調磁界が第2の磁束密度−ψから
第1の磁束密度+ψに立ち上がる期間tに対応する磁気
記録媒体2の変位量xが、光ビーム照射手段5、6、
7、8、9の空間線密度限界以下になるように、変調磁
界φの極性を切り換える。
In order to solve such a problem, according to the present invention, in a magnetic recording apparatus 1 for irradiating a magnetic beam on a magnetic recording medium 2 to thermomagnetically record desired recording data D2, Light beam irradiation means 5, 6, 7, 8, 9 for irradiating the magnetic recording medium 2 and modulation magnetic field application means 13 for applying a modulation magnetic field φ whose polarity is switched according to the recording data D2 to the irradiation position of the light beam. , 17, the light beam irradiation means 5, 6, 7, 8, 9 continuously irradiate the light beam, and the modulation magnetic field φ changes the SN of the reproduction signal RF.
A first magnetic field having a ratio of saturation equal to or higher than a first magnetic flux density + ψ,
The modulation magnetic field applying means 13 and 17 are formed by switching the polarity between a second magnetic field having a polarity opposite to that of the first magnetic field and having a SN ratio of the reproduced signal saturated and having a second magnetic flux density of −ψ or less. A magnetic recording medium corresponding to a period t during which the modulating magnetic field falls from the first magnetic flux density + ψ to the second magnetic flux density −ψ and a period t during which the modulating magnetic field rises from the second magnetic flux density −ψ to the first magnetic flux density + ψ. The displacement amount x of 2 is the light beam irradiation means 5, 6,
The polarity of the modulation magnetic field φ is switched so that the spatial linear density limit of 7, 8 or 9 is not more than the limit.

【0011】[0011]

【作用】光ビームを連続的に照射し、変調磁界ψが第1
の磁束密度+ψから第2の磁束密度−ψに立ち下がる期
間t及び変調磁界が第2の磁束密度−ψから第1の磁束
密度+ψに立ち上がる期間tに対応する磁気記録媒体2
の変位量xが、光ビーム照射手段5、6、7、8、9の
空間線密度限界以下になるように、変調磁界φの極性を
切り換えれば、SN比の劣化を有効に回避して再生信号
RFを得ることができる。
[Operation] The light beam is continuously emitted, and the modulation magnetic field ψ is changed to the first
Of the magnetic recording medium 2 corresponding to the period t from which the magnetic flux density + ψ falls to the second magnetic flux density −ψ and the period t where the modulation magnetic field rises from the second magnetic flux density −ψ to the first magnetic flux density + ψ.
By changing the polarity of the modulation magnetic field φ so that the displacement amount x of the light beam irradiation means 5, 6, 7, 8, 9 is equal to or less than the spatial linear density limit, deterioration of the SN ratio can be effectively avoided. The reproduction signal RF can be obtained.

【0012】[0012]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】(1)実施例の構成 図1において、1は全体として光磁気デイスク装置を示
し、光磁気デイスク2に所望のデータを熱磁気記録す
る。
(1) Configuration of the Embodiment In FIG. 1, reference numeral 1 denotes a magneto-optical disk device as a whole, which thermomagnetically records desired data on the magneto-optical disk 2.

【0014】すなわち光磁気デイスク2は、ハブ3でス
ピンドルモータ4の回転軸に固定され、これによりスピ
ンドルモータ4を駆動して角速度一定の条件で回転する
ようになされている。この状態で光磁気デイスク装置1
は、レーザー駆動回路5でレーザーダイオード6を駆動
することにより、記録時、このレーザーダイオード6か
ら連続的に光ビームを射出するのに対し、再生時、光量
を低減して光ビームを連続的に射出する。
That is, the magneto-optical disk 2 is fixed to the rotary shaft of the spindle motor 4 by the hub 3, and the spindle motor 4 is driven by the hub 3 to rotate at a constant angular velocity. In this state, the magneto-optical disk device 1
The laser drive circuit 5 drives the laser diode 6 to continuously emit a light beam from the laser diode 6 at the time of recording, while at the time of reproduction, the light amount is reduced to continuously emit the light beam. To eject.

【0015】光磁気デイスク装置1は、この光ビームを
コリメータレンズ7で平行光線に変換した後、偏向ビー
ムスプリツタ8を透過させて対物レンズ9に導き、この
対物レンズ9で光磁気デイスク2に光ビームを集光す
る。さらに光磁気デイスク装置1は、光磁気デイスク2
から得られる反射光を対物レンズ9で受光して偏向ビー
ムスプリツタ8に導き、この偏向ビームスプリツタ8の
反射光を集光レンズ10でフオトダイオード11に集光
する。
The magneto-optical disk device 1 converts this light beam into parallel rays by the collimator lens 7, transmits the deflected beam splitter 8 and guides it to the objective lens 9, and the objective lens 9 directs it to the magneto-optical disk 2. Focus the light beam. Further, the magneto-optical disk device 1 includes a magneto-optical disk 2
The reflected light obtained from the above is received by the objective lens 9 and guided to the deflected beam splitter 8, and the reflected light of the deflected beam splitter 8 is condensed by the condenser lens 10 on the photodiode 11.

【0016】これにより光磁気デイスク装置1は、この
反射光に基づいて、再生時、カー効果を利用して再生信
号RFを検出すると共に、記録再生時、フオーカスエラ
ー信号及びトラツキングエラー信号を検出し得るように
なされ、このフオーカスエラー信号及びトラツキングエ
ラー信号を基準にして対物レンズ9を上下左右に可動し
てフオーカス制御及びトラツキング制御し得るようにな
されている。
As a result, the magneto-optical disk device 1 detects the reproduction signal RF by utilizing the Kerr effect at the time of reproduction on the basis of this reflected light, and at the same time, at the time of recording / reproduction, the focus error signal and the tracking error signal. The objective lens 9 can be moved vertically and horizontally based on the focus error signal and the tracking error signal to perform focus control and tracking control.

【0017】さらに光磁気デイスク装置1は、記録時、
磁界変調ヘツド13を駆動してこの光ビームの照射位置
に変調磁界を印加し得るようになされ、これにより熱磁
気記録の手法を適用して所望のデータを記録し得るよう
になされている。すなわち光磁気デイスク装置1は、ホ
ストコンピユータから出力される制御コマンドに応動し
て、マイクロコンピユータ構成の記録制御回路14で全
体の動作を制御し、これにより記録時、変調回路15、
磁界ヘツド駆動回路17を動作状態に立ち上げる。
Further, the magneto-optical disk device 1 is
The magnetic field modulation head 13 is driven so that a modulation magnetic field can be applied to the irradiation position of this light beam, whereby the technique of thermomagnetic recording can be applied to record desired data. That is, the magneto-optical disk device 1 responds to a control command output from the host computer, and controls the entire operation by the recording control circuit 14 of the micro computer configuration, whereby the modulation circuit 15, at the time of recording,
The magnetic field head drive circuit 17 is activated.

【0018】変調回路15は、データクロツクDCKと
共に、このデータクロツクDCKに同期した記録データ
D1を2値のシリアルデータの形式でホストコンピユー
タから入力し、この記録データをコーデイングして記録
データD2に変換する。クロツク発生回路18は、水晶
振動子Xを駆動して生成される基準信号を分周して所定
のクロツクCKを生成するようになされ、光磁気デイス
ク装置1においては、このクロツクCKを基準にして動
作するようになされている。
The modulation circuit 15 inputs, together with the data clock DCK, the recording data D1 synchronized with the data clock DCK from the host computer in the form of binary serial data, and codes the recording data to record the recording data. Convert to D2. The clock generation circuit 18 is configured to divide a reference signal generated by driving the crystal unit X to generate a predetermined clock CK. In the magneto-optical disk device 1, the clock CK is used as a reference. It is designed to work.

【0019】これにより磁界ヘツド駆動回路17は、記
録データD2の論理レベルに対応して磁界変調ヘツド1
3を駆動し、これにより変調回路15の出力信号に応じ
て極性が変化する変調磁界を形成する。これにより光磁
気デイスク装置1においては、連続的に光ビームを照射
した状態で変調磁界の極性を切り換え、これにより光磁
気デイスク2に記録データD2を熱磁気記録する。
As a result, the magnetic field head drive circuit 17 causes the magnetic field modulation head 1 to correspond to the logical level of the recording data D2.
3 is driven, thereby forming a modulation magnetic field whose polarity changes according to the output signal of the modulation circuit 15. As a result, in the magneto-optical disk device 1, the polarity of the modulation magnetic field is switched in the state where the light beam is continuously irradiated, and thereby the recording data D2 is thermomagnetically recorded on the magneto-optical disk 2.

【0020】かくして光磁気デイスク装置1において
は、連続的に光ビームを照射したことにより、間欠的に
光ビームを照射する場合に必要なタイミング制御回路を
省略し得、その分全体構成を簡略化することができる。
Thus, in the magneto-optical disk device 1, since the light beam is continuously irradiated, the timing control circuit necessary for intermittently irradiating the light beam can be omitted, and the entire structure is simplified accordingly. can do.

【0021】ところでこのようにして連続的に光ビーム
を照射して所望のデータを熱磁気記録する場合、再生信
号のSNが劣化する恐れがある。すなわち図3に示すよ
うに、熱磁気記録においてSN比の劣化を未然に防止し
てビツトエラーレートの劣化を防止するためには、再生
時、再生信号のSN比が飽和する磁束密度+ψ以上に変
調磁界φを立ち上げ、さらに磁束密度−ψ以下に変調磁
界φを立ち下げる必要がある(図2(A))。
By the way, when the desired data is thermomagnetically recorded by continuously irradiating the light beam in this manner, the SN of the reproduction signal may be deteriorated. That is, as shown in FIG. 3, in order to prevent deterioration of the SN ratio in thermomagnetic recording and prevent deterioration of the bit error rate, at the time of reproduction, the magnetic flux density at which the SN ratio of the reproduced signal saturates + ψ or more. It is necessary to raise the modulation magnetic field φ and further lower the modulation magnetic field φ to the magnetic flux density −ψ or less (FIG. 2 (A)).

【0022】これに対してインダクタンス素子でなる磁
界変調ヘツド13を駆動して変調磁界の極性を切り換え
る場合、変調磁界φを急激に切り換えることが困難な特
徴がある。この場合、変調磁界φが磁束密度+ψ及び−
ψの間に保持される期間Tが長くなると、光磁気デイス
ク2においては、この期間Tに対応する未飽和領域αが
形成され(図2(B))、光磁気デイスク装置1におい
ては、この未飽和領域αで再生信号のSN比が劣化し、
結局再生信号RF全体のSN比が劣化する。
On the other hand, when the magnetic field modulation head 13 composed of an inductance element is driven to switch the polarity of the modulation magnetic field, it is difficult to rapidly switch the modulation magnetic field φ. In this case, the modulation magnetic field φ has a magnetic flux density of + ψ and −
When the period T held during ψ becomes longer, an unsaturated region α corresponding to this period T is formed in the magneto-optical disk 2 (FIG. 2 (B)), and in the magneto-optical disk device 1, this unsaturated region α is formed. The SN ratio of the reproduced signal deteriorates in the unsaturated region α,
Eventually, the SN ratio of the entire reproduction signal RF deteriorates.

【0023】ところがこの期間Tを短くし、この期間T
に対応する光磁気デイスク2の変位量(すなわち光ビー
ム照射位置の周速度で規定される期間Tの変位量でな
る)xを光学系の空間線密度限界以下に保持すると、光
ビームを間欠的に照射した場合とほぼ同様の再生結果を
得ることができる(図2(C))。すなわちこの種の光
磁気デイスク装置1においては、光学系の分解能から光
ビームを1.4 〔μm〕程度にしか収束し得ず、このため
再生系においては、0.5 〔μm〕以下の間隔で極性が変
化する垂直磁化領域については、その極性の切り換わり
を検出し得ない特徴がある。
However, this period T is shortened and this period T
If the displacement x of the magneto-optical disk 2 (that is, the displacement of the period T defined by the peripheral velocity of the light beam irradiation position) x corresponding to the above is kept below the spatial linear density limit of the optical system, the light beam is intermittently It is possible to obtain almost the same reproduction result as in the case of irradiating (FIG. 2 (C)). That is, in this type of magneto-optical disk device 1, the light beam can be converged only to about 1.4 [μm] due to the resolution of the optical system, and therefore the polarity changes at intervals of 0.5 [μm] or less in the reproducing system. With respect to the perpendicularly magnetized region, the switching of the polarities cannot be detected.

【0024】これによりこの期間Tに対応する光磁気デ
イスク2の変位量xを光学系の空間線密度限界以下の
値、すなわち0.5 〔μm〕に保持すれば、再生信号RF
のSN比の劣化を有効に回避し得ることができる。従つ
て光磁気デイスク装置1においては、その分記録密度を
向上して所望の記録データを記録することができる。
As a result, if the displacement amount x of the magneto-optical disk 2 corresponding to this period T is kept below the spatial linear density limit of the optical system, that is, 0.5 [μm], the reproduction signal RF
It is possible to effectively avoid the deterioration of the SN ratio. Therefore, in the magneto-optical disk device 1, desired recording data can be recorded by increasing the recording density accordingly.

【0025】因みに実験結果によれば、図3に未飽和領
域αに対応する光磁気デイスクの変位量xを横軸に取つ
て示すように、従来のように間欠的に光ビームを照射し
た場合PTに比して、連続的に光ビームを照射した場合
CTにおいては、この変位量xが0.5 〔μm〕以下にな
ると、再生信号の信号レベルに差のないことを確認し得
た。
Incidentally, according to the experimental results, when the displacement amount x of the magneto-optical disk corresponding to the unsaturated region α is plotted on the horizontal axis in FIG. 3, when the light beam is intermittently irradiated as in the conventional case. It can be confirmed that there is no difference in the signal level of the reproduction signal when the displacement amount x becomes 0.5 [μm] or less in CT when the light beam is continuously irradiated as compared with PT.

【0026】このためこの実施例において、磁界変調ヘ
ツド13は、フライング型の磁気ヘツドで形成され、こ
れにより光磁気デイスク2に近接して配置して、少ない
磁力で必要な変調磁界を印加し得るようになされてい
る。さらに磁界変調ヘツド13は、インダクタンスが小
さな値(この実施例においては0.5 〔μH〕)に選定さ
れ、これにより記録データD2の論理レベルの変化に追
従して短時間で変調磁界の極性を切り換え得るようにな
されている。
For this reason, in this embodiment, the magnetic field modulation head 13 is formed of a flying type magnetic head, which allows the magnetic field modulation head 13 to be arranged close to the magneto-optical disk 2 and to apply a necessary modulation magnetic field with a small magnetic force. It is done like this. Further, the magnetic field modulation head 13 is selected to have a small inductance (0.5 [μH] in this embodiment), whereby the polarity of the modulation magnetic field can be switched in a short time by following the change in the logic level of the recording data D2. It is done like this.

【0027】これに対して再生系においては、フオトダ
イオード11から出力される再生信号RFを増幅回路1
9で増幅した後、信号処理回路20に入力する。信号処
理回路20は、再生信号RFを基準にして内蔵のアナロ
グデイジタル変換回路でこの再生信号RFをデイジタル
値に変換した後、所定の基準値との間で比較結果を得る
ことにより、順次入力される再生信号RFを復調する。
On the other hand, in the reproduction system, the reproduction signal RF output from the photodiode 11 is amplified by the amplifier circuit 1.
After being amplified by 9, the signal is input to the signal processing circuit 20. The signal processing circuit 20 converts the reproduction signal RF into a digital value by a built-in analog digital conversion circuit with the reproduction signal RF as a reference, and then obtains a comparison result with a predetermined reference value to sequentially input the signals. The reproduced signal RF is reproduced.

【0028】これにより光磁気デイスク装置1は、記録
データを復調し、復調回路21は、変調回路15とは逆
にこの復調した記録データを元のフオーマツトに変換す
る。これにより光磁気デイスク装置1は、ホストコンピ
ユータの要求に応動してこの復調した再生データD3を
再生クロツクDCK1と共にホストコンピユータに出力
する。
As a result, the magneto-optical disk device 1 demodulates the recording data, and the demodulation circuit 21 converts the demodulated recording data into the original format, contrary to the modulation circuit 15. As a result, the magneto-optical disc device 1 outputs the demodulated reproduction data D3 to the host computer together with the reproduction clock DCK1 in response to the request from the host computer.

【0029】(2)実施例の効果 以上の構成によれば、光ビームを連続的に照射した状態
で、光磁気デイスク上の未飽和領域の長さが空間線密度
限界でなる0.5 〔μm〕以下の短い距離になるように変
調磁界の極性を切り換え、この変調磁界で記録データを
熱磁気記録することにより、タイミング制御回路を省略
してもSN比の劣化を有効に回避し得、これにより簡易
な構成で従来に比して簡易に記録密度を向上することが
できる。
(2) Effects of the Embodiments According to the above structure, the length of the unsaturated region on the magneto-optical disk becomes the spatial linear density limit of 0.5 [μm] in the state where the light beam is continuously irradiated. By switching the polarity of the modulation magnetic field so that the distance becomes the following short distance and thermomagnetically recording the recording data with this modulation magnetic field, it is possible to effectively avoid the deterioration of the SN ratio even if the timing control circuit is omitted. With a simple structure, the recording density can be improved more easily than in the past.

【0030】(3)他の実施例 なお上述の実施例においては、角速度一定の条件で光磁
気デイスクを駆動する場合について述べたが、本発明は
これに限らず、線速度一定の条件で光磁気デイスクを駆
動する場合にも適用することができる。
(3) Other Embodiments In the above-described embodiments, the case where the magneto-optical disk is driven under the condition of constant angular velocity has been described, but the present invention is not limited to this, and the optical condition under constant linear velocity is used. It can also be applied when driving a magnetic disk.

【0031】さらに上述の実施例においては、本発明を
光磁気デイスク装置に適用した場合について述べたが、
本発明はこれに限らず、熱磁気記録の手法を適用して種
々の磁気記録媒体に所望のデータを記録する場合に広く
適用することができる。
Further, in the above-mentioned embodiments, the case where the present invention is applied to the magneto-optical disk device has been described.
The present invention is not limited to this, and can be widely applied to a case where desired data is recorded on various magnetic recording media by applying a thermomagnetic recording method.

【0032】[0032]

【発明の効果】上述のように本発明によれば、光ビーム
を連続的に照射した状態で、極性切り換えの際の磁気記
録媒体の変位量が光ビーム照射手段の空間線密度限界以
下になるように、変調磁界の極性を切り換えることによ
り、光ビーム照射のタイミング等を補正しなくても、S
N比の劣化を有効に回避して再生信号を得ることがで
き、これにより簡易な構成で記録密度を向上することが
できる光磁気デイスク装置を得ることができる。
As described above, according to the present invention, the displacement amount of the magnetic recording medium at the time of polarity switching becomes less than the spatial linear density limit of the light beam irradiation means in the state where the light beam is continuously irradiated. As described above, by switching the polarity of the modulation magnetic field, the S
It is possible to obtain a reproduction signal while effectively avoiding the deterioration of the N ratio, and thereby obtain a magneto-optical disk device that can improve the recording density with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による光磁気デイスク装置を
示すブロツク図である。
FIG. 1 is a block diagram showing a magneto-optical disk device according to an embodiment of the present invention.

【図2】その動作の説明に供する信号波形図である。FIG. 2 is a signal waveform diagram for explaining the operation.

【図3】その実験結果を示す特性曲線図である。FIG. 3 is a characteristic curve diagram showing the experimental results.

【符号の説明】[Explanation of symbols]

1……光磁気デイスク装置、2……光磁気デイスク、6
……レーザーダイオード、13……磁界変調ヘツド、1
5……変調回路、17……磁界ヘツド駆動回路、20…
…信号処理回路、21……復調回路。
1 ... Magneto-optical disk device, 2 ... Magneto-optical disk, 6
...... Laser diode, 13 ...... Magnetic field modulation head, 1
5 ... Modulation circuit, 17 ... Magnetic field head drive circuit, 20 ...
... signal processing circuit, 21 ... demodulation circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁気記録媒体に光ビームを照射して所望の
記録データを熱磁気記録する磁気記録装置において、 上記光ビームを上記磁気記録媒体に照射する光ビーム照
射手段と、 上記光ビームの照射位置に、上記記録データに応じて極
性が切り換わる変調磁界を印加する変調磁界印加手段と
を具え、 光ビーム照射手段は、 上記光ビームを連続的に照射し、 上記変調磁界は、 再生信号のSN比が飽和する第1の磁束密度以上の第1
の磁界と、上記第1の磁界と逆極性で、上記再生信号の
SN比が飽和する第2の磁束密度以下の第2の磁界との
間で極性を切り換えて形成され、 上記変調磁界印加手段は、 上記変調磁界が上記第1の磁束密度から上記第2の磁束
密度に立ち下がる期間及び上記変調磁界が上記第2の磁
束密度から上記第1の磁束密度に立ち上がる期間に対応
する上記磁気記録媒体の変位量が、上記光ビーム照射手
段の空間線密度限界以下になるように、上記変調磁界の
極性を切り換えることを特徴とする磁気記録装置。
1. A magnetic recording apparatus for irradiating a magnetic beam onto a magnetic recording medium to thermo-magnetically record desired recording data, and a light beam irradiating means for irradiating the magnetic beam onto the magnetic recording medium; Modulation light field applying means for applying a modulation magnetic field whose polarity is switched according to the recorded data to the irradiation position, and the light beam irradiation means continuously irradiates the light beam, and the modulation magnetic field is a reproduction signal. The first magnetic flux density equal to or higher than the first magnetic flux density at which the SN ratio of
And a second magnetic field having a polarity opposite to that of the first magnetic field and having a second magnetic flux density equal to or less than the second magnetic flux density at which the SN ratio of the reproduction signal is saturated, and the modulation magnetic field applying unit is formed. Is the magnetic recording corresponding to a period during which the modulating magnetic field falls from the first magnetic flux density to the second magnetic flux density and a period during which the modulating magnetic field rises from the second magnetic flux density to the first magnetic flux density. A magnetic recording apparatus, wherein the polarity of the modulating magnetic field is switched so that the displacement amount of the medium becomes equal to or less than the spatial linear density limit of the light beam irradiating means.
JP14136593A 1993-05-19 1993-05-19 Magnetic recorder Pending JPH06333288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14136593A JPH06333288A (en) 1993-05-19 1993-05-19 Magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14136593A JPH06333288A (en) 1993-05-19 1993-05-19 Magnetic recorder

Publications (1)

Publication Number Publication Date
JPH06333288A true JPH06333288A (en) 1994-12-02

Family

ID=15290295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14136593A Pending JPH06333288A (en) 1993-05-19 1993-05-19 Magnetic recorder

Country Status (1)

Country Link
JP (1) JPH06333288A (en)

Similar Documents

Publication Publication Date Title
US4472748A (en) Method of processing information signal with respect to opto-magnetic record medium
EP0454038B1 (en) Method of controlling a recording laser beam
JPH056590A (en) Magneto-optical recorder
KR860000636A (en) Magneto-optical information recorder
US5208792A (en) Recording and reproducing apparatus using opto-magneto media
JP2701403B2 (en) Magneto-optical disk device
KR0136709B1 (en) Magneto optical recording apparatus
US4558441A (en) Data recording and reproducing apparatus and method
JPH01223640A (en) Optical recording and reproducing device
KR100225443B1 (en) Optical disc recording and reproducing apparatus
JP2821122B2 (en) Magneto-optical disk device and magneto-optical recording method
JPH01211259A (en) Magneto-optical recording method
JP3412163B2 (en) Magneto-optical disk drive
JPH06333288A (en) Magnetic recorder
JP2855918B2 (en) Optical information recording method and device
JPH10124953A (en) Recording and reproducing method for recording medium
JPH0233750A (en) Magneto-optical signal recording system
JPH0757325A (en) Recorder for reloadable optical disk
JPH06333287A (en) Magnetic recorder and magnetic reproducing device
JPH04372724A (en) Optical disk reproducer
JP2002245643A (en) Optical disk driving device and method, and optical disk device
JPH1055580A (en) Magneto-optical recording method and device
JP2000276734A (en) Method and device for detecting recording laser power, recording laser power control method, and recording device and recording and reproducing device
JP2000149346A (en) Signal recording method and magneto-optical disk device using the method
JPH02267756A (en) Magneto-optical recording and reproducing system