JPH0633309B2 - Novel steviol glycoside, production method thereof and sweetener using the same - Google Patents

Novel steviol glycoside, production method thereof and sweetener using the same

Info

Publication number
JPH0633309B2
JPH0633309B2 JP2152842A JP15284290A JPH0633309B2 JP H0633309 B2 JPH0633309 B2 JP H0633309B2 JP 2152842 A JP2152842 A JP 2152842A JP 15284290 A JP15284290 A JP 15284290A JP H0633309 B2 JPH0633309 B2 JP H0633309B2
Authority
JP
Japan
Prior art keywords
rebaudioside
sweetness
sweetener
glucosyl group
steviol glycoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2152842A
Other languages
Japanese (ja)
Other versions
JPH0446190A (en
Inventor
弘 石川
寿美雄 北畑
知彦 柴田
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Sugar Co Ltd
Original Assignee
Hokkaido Sugar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Sugar Co Ltd filed Critical Hokkaido Sugar Co Ltd
Priority to JP2152842A priority Critical patent/JPH0633309B2/en
Publication of JPH0446190A publication Critical patent/JPH0446190A/en
Publication of JPH0633309B2 publication Critical patent/JPH0633309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、新規なステビオール配糖体、その製造方法
及びこれを用いた甘味料に関する。
TECHNICAL FIELD The present invention relates to a novel steviol glycoside, a method for producing the same, and a sweetener using the same.

(従来の技術) 近年、人工甘味料であるサッカリン、ズルチン、チクロ
等が安全性の点から一般食品への利用が禁止、又は規制
される傾向にある。
(Prior Art) In recent years, the use of artificial sweeteners such as saccharin, zultin, and cyclamate in general foods has been banned or regulated from the viewpoint of safety.

一方では、近年砂糖の採り過ぎによる健康上の影響が問
題にされはじめたことから、それらの問題がより少ない
天然甘味料の開発が熱望されている。
On the other hand, in recent years, the health effects of excessive sugar intake have begun to be a problem, and thus there is an eager need to develop a natural sweetener having less of these problems.

これに対して、南米パラグアイ原産のキク科植物である
ステビアから得られるステビオール配糖体は、ステビオ
サイドC、D、E及びズルコサイドA、ステビオールビ
オサイドH等7種類の混合物である。
On the other hand, steviol glycosides obtained from Stevia, which is an Asteraceae plant native to Paraguay, South America, are a mixture of seven kinds such as stevioside C, D, E and dulcoside A, steviol bioside H.

現在、市販されているステビア甘味料は、これらの混合
物として販売されている。これらのステビオール配糖体
のうち、代表的なステビオサイドの構造式を(I)[第
1図(a)]に示す。
Stevia sweeteners currently on the market are sold as a mixture of these. Among these steviol glycosides, a typical structural formula of stevioside is shown in (I) [Fig. 1 (a)].

ステビオサイドは砂糖と異なり低カロリーの甘味料であ
り、しかも甘味は約145倍と高く、砂糖に替わる甘味料
として注目されている。
Unlike sugar, stevioside is a low-calorie sweetener, and its sweetness is about 145 times higher, and it is attracting attention as a sweetener that replaces sugar.

ところが、上記ステビア甘味料は、苦味、嫌味があり、
更には残味が長く尾を引くという欠点がある。これらを
改善するため、ステビオサイドの甘味度・甘味質の改良
法について、数多くの研究報告並びに特許出願がなされ
ている。具体的には、ステビオサイドにバシラス・メガ
テリウム(Bacillus megaterium)が生産するシクロデキ
ストリングルカノトランスフェラーゼ(以下、CGTaseと
記す)を用い、澱粉を糖供与体として、酵素転移を行な
うことにより、甘味質を改善する方法も提案されてい
る。このように、ステビオール配糖体の欠点を改善した
製品が生産されているが、未だ十分な成果を収めるには
至っていない。
However, the Stevia sweetener has bitterness and dislike,
Furthermore, it has a drawback that it has a long residual taste and has a tail. In order to improve these, many research reports and patent applications have been made on a method for improving the sweetness and sweetness of stevioside. Specifically, cyclodextrin glucanotransferase (hereinafter referred to as CGTase) produced by Bacillus megaterium is used for stevioside, and starch is used as a sugar donor for enzyme transfer to improve sweetness. The method of doing is also proposed. As described above, products in which the drawbacks of steviol glycosides have been improved have been produced, but they have not yet achieved satisfactory results.

この原因については、上述の反応においてはステビオサ
イドの13位または19位のグルコシル基にグルコースが1
〜3分子それぞれ一方に転移するもの、また両方に転移
するもの等の混合物が生成するが、このうち13位のグル
コシル基にグルコースが1〜3分子転移したものは甘味
度、味質共に改良されるが、13位のグルコシル基より、
19位のグルコシル基により多くのグルコースが転移した
生成物は、甘味度、味質が低下する等の報告がある。
The reason for this is that in the above-mentioned reaction, 1-glucose was added to the glucosyl group at position 13 or 19 of stevioside.
~ 3 molecules each of which is transferred to one side, or a mixture of both transferred to both sides is produced. Among these, those in which 1 to 3 molecules of glucose are transferred to the glucosyl group at the 13-position have improved sweetness and taste. However, from the glucosyl group at the 13th position,
It has been reported that the product in which a large amount of glucose has been transferred by the glucosyl group at the 19-position has reduced sweetness and taste.

そこで、本発明者らは、先にステビオサイドの19位のCO
OHにエステル結合するグルコシル基(以下、19位のグル
コシル基と記す)をガラクトースで封鎖した後、13位の
OHにエーテル結合したグルコシル基(以下、13位のグル
コシル基と記す)にグルコースを選択的に転移させる方
法を提案した(特願昭63-247371号)。
Therefore, the present inventors found that stevioside's 19th CO
After blocking the glucosyl group esterified to OH (hereinafter referred to as the 19-position glucosyl group) with galactose, the 13-position
We proposed a method for selectively transferring glucose to a glucosyl group that is ether-bonded to OH (hereinafter referred to as the 13-position glucosyl group) (Japanese Patent Application No. 63-247371).

(発明が解決しようとする問題点) この方法においては19位のグルコシル基がガラクトース
で封鎖されたものの他に、13位のグルコシル基がガラク
トースで封鎖されたものも分画されずにかなり含まれて
おり、したがってこれにCGTaseを用い澱粉を糖供与体と
して酵素転移を行なうと、19位のグルコシル基がガラク
トースで封鎖されたものについては、所期の目的通りに
13位のグルコシル基に1〜3分子のグルコースが転移
し、甘味度・甘味質共にかなり改善されるが、13位のグ
ルコシル基がガラクトースで封鎖されたものについて
は、19位のグルコシル基に1〜3分子のグルコースが転
移し、この比率は10〜15%にも達し、十分に甘味質が改
善されない原因となっている。
(Problems to be solved by the invention) In this method, in addition to those in which the glucosyl group at the 19-position is blocked with galactose, those in which the glucosyl group at the 13-position is blocked with galactose are considerably contained without being fractionated. Therefore, when CGTase was used for this and enzyme transfer was performed using starch as a sugar donor, the glucosyl group at the 19-position was blocked with galactose as expected.
1 to 3 molecules of glucose are transferred to the glucosyl group at the 13th position, and both the degree of sweetness and the sweetness are significantly improved. However, for those in which the glucosyl group at the 13th position is blocked with galactose, 1 is added to the glucosyl group at the 19th position. ~ 3 molecules of glucose are transferred, and this ratio reaches 10 to 15%, which is a cause of insufficient improvement in sweetness.

これに対して、本発明者らは先にルブソサイド又はステ
ビオサイドの19位のグルコシル基にβ−D−フラクトフ
ラノースを結合させることにより、甘味質の改良が図ら
れることを提案した(特願平1-234675号)。
On the other hand, the present inventors previously proposed that β-D-fructofuranose is bound to the glucosyl group at the 19-position of rubusoside or stevioside to improve the sweetness quality (Japanese Patent Application No. -234675).

一方、レバウディオサイドAの構造式は(II)[第1図
(b)]に示す如くであるが、このレバウディオサイド
Aの含量はステビア中に含まれるステビオール配糖体の
うち、通常栽培されているもので15%程度となってい
る。レバウディオサイドAは甘味度が245倍とステビオ
サイドの約2倍近くあり、甘味質もステビオサイドより
かなりよいことから、以前から栽培法の改良研究が行な
われ、レバウディオサイドA含量の高い品質に改良さ
れ、数年前より50%含量のものも栽培されている。
On the other hand, the structural formula of rebaudioside A is as shown in (II) [Fig. 1 (b)], and the content of rebaudioside A in steviaol glycosides contained in stevia is It is usually cultivated at around 15%. Rebaudioside A has a sweetness of 245 times, which is almost twice that of stevioside, and its sweetness is considerably better than that of stevioside. Therefore, research on improved cultivation methods has been conducted for a long time, and the quality of rebaudioside A is high. It has been improved to 50% and has been cultivated for 50 years.

しかし、このようなレバウディオサイドA高含量のもの
もα−グルコシルステビオサイドと同様に甘味度、甘味
質ともに完全なものではなく、またレバウディオサイド
A自体についてはステビオサイドより甘味質が良好であ
るため、今日に至るまでその甘味質改良に関する報告は
皆無である。
However, such a high rebaudioside A content is not perfect in sweetness and sweetness similar to α-glucosyl stevioside, and rebaudioside A itself has a better sweetness than stevioside. Therefore, up to today, there have been no reports on the improvement of sweetness.

本発明者らは、先の特願平1-234675号に鑑み、レバウデ
ィオサイドAについてもβ−D−フラクトフラノースを
作用させることにより、味質が改良されるだろうことを
予測し、これに使用する酵素等について鋭意研究を重ね
た結果、先にミクロバクテリウム・エスピー.H-1(微
工研寄託菌寄第11428号)から特殊なβ−フラクトフラ
ノシル転移酵素(以下、転移酵素と記す)が生産される
ことを確認した。また、この酵素を使用することによっ
てレバウディオサイドAにβ−D−フラクトフラノース
が転移し、味質が改良されることを見出したものであ
る。
In view of the aforementioned Japanese Patent Application No. 1-234675, the present inventors predicted that the taste quality would be improved by causing β-D-fructofuranose to act also on rebaudioside A, As a result of earnest research on the enzymes used for this, Microbacterium sp. It was confirmed that a special β-fructofuranosyl transferase (hereinafter referred to as transferase) was produced from H-1 (Deposited Microorganisms Institute No. 11428). It was also discovered that β-D-fructofuranose is transferred to rebaudioside A by using this enzyme, and the taste quality is improved.

(問題点を解決するための手段) この発明は、上記知見に基づいて完成したものであり、
この発明に係る物質は、レバウディオサイドAの19位の
グルコシル基の6位に、β−D−フラクトフラノースが
2位の位置で結合した構造のステビオール配糖体、即ち
β−フラクトフラノシルレバウディオサイドAである。
(Means for Solving Problems) The present invention has been completed based on the above findings,
The substance according to the present invention is a steviol glycoside having a structure in which β-D-fructofuranose is bonded at the 2-position to the 6-position of the glucosyl group at the 19-position of rebaudioside A, that is, β-fructofuranosyl. It is rebaudioside A.

具体的には、この発明に係る物質はレバウディオサイド
Aと糖供与体とを含有する水溶液又は懸濁液に、ミクロ
バクテリウム・エスピーH-1(微工研寄託 菌寄第11428
号)の生産する転移酵素を作用させることによって得ら
れる。その構造式は(III)[第2図]で表わされる。
この反応に用いるレバウディオサイドAは精製分離され
たレバウディオサイドAを使用するがそれに限定される
ものではない。
Specifically, the substance according to the present invention is added to an aqueous solution or suspension containing rebaudioside A and a sugar donor in Microbacterium sp.
No.) produced by acting a transferase. Its structural formula is represented by (III) [Fig. 2].
As rebaudioside A used in this reaction, rebaudioside A purified and separated is used, but it is not limited thereto.

この反応に用いる糖供与体は、蔗糖、ラフィノース、ス
タキオース等が使用される。
As the sugar donor used in this reaction, sucrose, raffinose, stachyose and the like are used.

この反応系で、レバウディオサイドAと糖供与体を含有
する水溶液又は懸濁液の濃度は、レバウディオサイドA
が1〜40%(w/w),糖供与体が約1〜50%(w/w)とし、且つ
レバウディオサイドAに対する糖供与体の比率は使用す
る糖供与体によって異なるが、0.1〜50倍の範囲とし、
好ましくは1〜5倍の範囲とする。
In this reaction system, the concentration of the aqueous solution or suspension containing rebaudioside A and the sugar donor is rebaudioside A
Is 1 to 40% (w / w), the sugar donor is about 1 to 50% (w / w), and the ratio of sugar donor to rebaudioside A varies depending on the sugar donor used, but ~ 50 times the range,
The range is preferably 1 to 5 times.

反応条件は、通常pH4〜8、温度は20〜70℃が適当であ
る。使用酵素活性量は反応時間と密接な関係があり、通
常5〜120時間、好ましくは5〜20時間で反応が終了す
る酵素活性量にすれば良いが、これらに限定されるもの
ではない。
Suitable reaction conditions are usually pH 4 to 8 and temperature of 20 to 70 ° C. The amount of enzyme activity used is closely related to the reaction time, and it is usually 5 to 120 hours, preferably 5 to 20 hours, and the amount of enzyme activity may be such that the reaction is completed, but it is not limited thereto.

(発明の効果) 前述のようにして得られた反応生成物の甘味度は、原体
のレバウディオサイドAと比較し、モル比で1.2倍とな
り、特に甘味質については、苦味が殆どなくなり、甘味
の切れも良く、まろやかさが加わり、我々が今まで開発
し、特許出願したものも含め、従来の糖転移物に比べ、
更に改善されていることを確認した。したがって、この
ようにして得られた転移生成物の反応液は、そのまま甘
味料として使用することができるが必要に応じて酵素を
失活させて濾過後、その溶液をイオン交換樹脂、例えば
H型強酸性カチオン交換樹脂及びOH型塩基性アニオン
交換樹脂を用いて脱塩し、濃縮したシラップ状の甘味料
とするか、またはこの濃縮液を乾燥して粉末状の甘味料
とすることもできる。更に、脱塩した反応溶液をカラム
クロマト法にて精製し、転移生成物を分離、採取してこ
れを甘味料とすることもできる。この際の濃縮、乾燥、
粉末化は公知の方法によれば良い。
(Effect of the invention) The sweetness of the reaction product obtained as described above is 1.2 times in terms of molar ratio as compared with rebaudioside A which is the drug substance. Almost disappeared, the sweetness is well cut, and mellowness is added. Compared to conventional sugar transfer products, including those that we have developed and applied for patents,
It was confirmed that it was further improved. Therefore, the reaction solution of the transfer product thus obtained can be used as a sweetener as it is, but if necessary, the enzyme is inactivated and filtered, and then the solution is treated with an ion exchange resin such as H-form. It can be desalted using a strongly acidic cation exchange resin and an OH-type basic anion exchange resin to give a concentrated syrup-like sweetener, or the concentrated solution can be dried to give a powdered sweetener. Furthermore, the desalted reaction solution can be purified by a column chromatography method to separate and collect a transfer product, which can be used as a sweetener. Concentration, drying at this time,
The powdering may be performed by a known method.

この発明により得られたβ−フラクトフラノシルレバウ
ディオサイドAは甘味度が高く、甘味質が非常に良好で
あることから、低カロリーの飲食物、嗜好物等いわゆる
美容食、健康食、ダイエット食の甘味付けに好適であ
る。また、うがい薬、練り歯磨き等、虫歯予防用の経口
用医薬部外品への添加にも好適であり、その他医薬品も
含めて甘味を必要とする分野に自由に使用することがで
きる。
The β-fructofuranosyl rebaudioside A obtained according to the present invention has a high degree of sweetness and a very good sweetness quality, so that low-calorie foods, drinks, so-called beauty foods, healthy foods, diets, etc. Suitable for sweetening food. It is also suitable for addition to oral quasi drugs for the prevention of dental caries such as mouthwashes, toothpastes, etc., and can be freely used in fields requiring sweetness, including other drugs.

(実施例) 以下、実施例によりこの発明を具体的に説明する。(Examples) Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 (1)酵素の調整 蔗糖0.5%、硝酸ナトリウム0.3%、第二リン酸カリウム0.
1%、硫酸マグネシウム0.05%、塩化マグネシウム0.02%を
含む寒天斜面培地にミクロバクテリウム・エスピー.H-
1(微工研寄託 菌寄第11428号)を接種し、30℃で3日
間培養後、その1白金耳を取り蔗糖1%、酵母エキス0.05
%、ポリペプトン0.5%、硝酸ナトリウム0.3%、第二リン
酸カリウム0.1%、硫酸マグネシウム0.02%、(pH7.2)の
組成からなる液体培地(60ml培地/500ml肩付きフラス
コ)に植菌し、30℃で2日間振盪培養した。これを種菌
とし、同組成からなる液体培地に分注し、30℃で2日間
振盪培養した。培養終了後、培養液を遠心分離し、上清
(粗酵素液)を得た。本液にはml当たり10単位の転移酵
素を含有していた。
Example 1 (1) Preparation of enzyme Sucrose 0.5%, sodium nitrate 0.3%, dibasic potassium phosphate 0.1%
Microbacterium sp. Was added to an agar slant medium containing 1%, magnesium sulfate 0.05%, and magnesium chloride 0.02%. H-
Inoculated with 1 (Deposited by Microtechnology Research Institute, No. 11428), cultured at 30 ° C for 3 days, and then picked up 1 platinum loop and 1% sucrose, 0.05 yeast extract
%, Polypeptone 0.5%, Sodium Nitrate 0.3%, Dibasic Potassium Phosphate 0.1%, Magnesium Sulfate 0.02%, (pH7.2) inoculated in a liquid medium (60 ml medium / 500 ml shoulder flask), 30 The cells were cultivated with shaking at 0 ° C for 2 days. This was used as an inoculum, dispensed into a liquid medium having the same composition, and cultured with shaking at 30 ° C. for 2 days. After the completion of the culture, the culture solution was centrifuged to obtain a supernatant (crude enzyme solution). This solution contained 10 units of transferase in ml.

なお、活性測定法は次の通りである。5%蔗糖溶液(50mM
リン酸緩衝液pH6.5)200μ1に適宜希釈した酵素液200
μ1を加え、40℃、10分間作用させた後、反応液を沸騰
水に入れ、酵素を熱失活させた後、ソモギーネルソン法
により生成したグルコース、フラクトースをグルコース
として求め算出する。酵素活性は、1分間に1μmolの
蔗糖を分解する酵素量を1単位とした。
The activity measuring method is as follows. 5% sucrose solution (50 mM
Phosphate buffer solution pH6.5) Enzyme solution 200 appropriately diluted to 200μ1
After adding μl and allowing it to act at 40 ° C. for 10 minutes, the reaction solution is put into boiling water to inactivate the enzyme by heat, and glucose and fructose produced by the Somoginelson method are calculated as glucose. The enzyme activity was defined as 1 unit of the amount of enzyme that decomposes 1 μmol of sucrose per minute.

(2)転移反応 97%レバウディオサイドA(試料No.1:守田化学社製)
2.8g、蔗糖20gを20mMクエン酸緩衝液(pH5.7)に溶解
し、200mlとして後(1)にて調製した転移酵素を50単
位添加し、40℃にて16時間反応させた。この時の転移率
は82%であった。その後、酵素を加熱失活させた反応液
を吸着樹脂(商品名:ダイヤイオンHP-20:三菱化成社
製)に吸着後、80%メタノールで溶出し、未反応レバデ
ィオサイドAと転移反応生成物の混合物を分取した。こ
のうち1/2量をMeOH留去、凍結乾燥して1.34gの混合物
(試料No.2)を得た。次に上記1/2量を更に分取カラム
にてクロマト分画し、MeOH留去、凍結乾燥して0.92gの
高純度の転移反応生成物(試料No.3)を得た。
(2) Transfer reaction 97% rebaudioside A (Sample No. 1: Morita Chemical Co., Ltd.)
2.8 g and 20 g of sucrose were dissolved in a 20 mM citrate buffer solution (pH 5.7) to make 200 ml, and 50 units of the transferase prepared in the following (1) was added and reacted at 40 ° C. for 16 hours. The metastasis rate at this time was 82%. After that, the reaction solution in which the enzyme was inactivated by heating was adsorbed on an adsorption resin (trade name: Diaion HP-20: manufactured by Mitsubishi Kasei Co., Ltd.) and then eluted with 80% methanol to generate a rearrangement reaction with unreacted rebaudioside A. The mixture of substances was separated. Of this, 1/2 amount was distilled off from MeOH and freeze-dried to obtain 1.34 g of a mixture (Sample No. 2). Next, the above 1/2 amount was further chromatographed on a preparative column, and MeOH was distilled off and freeze-dried to obtain 0.92 g of a highly pure rearrangement reaction product (Sample No. 3).

(3)構造解析 上述の方法で分画・単離した試料No.3をヨウ化リチウ
ム、2,6ルチジン、メタノール試薬を用いて、19位の
エステル結合を選択的に分解する方法により、β−D−
フラクトフラノースが19位のグルコシル基に転移してい
ることを確認した。次に1H、13C−NMR解析によりβ
−D−フラクトフラノースが2位の位置で1分子結合し
ていることを確認し、更にメチル化分析(完全メチル化
→酸加水分解→還元→アセチル化→ガスクロマトグラ
フ)から、そのβ−D−フラクトフラノースはグルコシ
ル基の6位に結合していることが確認された。
(3) Structural analysis Sample No. 3 fractionated / isolated by the above method was treated with lithium iodide, 2,6 lutidine and a methanol reagent to selectively decompose the ester bond at position 19 by β -D-
It was confirmed that fructofuranose was transferred to the glucosyl group at position 19. Next, β was determined by 1 H, 13 C-NMR analysis.
It was confirmed that one molecule of -D-fructofuranose was bound at the 2-position, and further its methylation analysis (complete methylation → acid hydrolysis → reduction → acetylation → gas chromatograph) revealed that β-D- It was confirmed that fructofuranose was bonded to the 6-position of the glucosyl group.

以上の結果から構造式(III)[第2図]に示すよう
に、レバウディオサイドAの19位のCOOHにエステル結合
するグルコシル基の6位にβ−D−フラクトフラノース
が2位の位置で結合したβ−フラクトフラノシルレバウ
ディオサイドAと構造決定した。
From the above results, as shown in structural formula (III) [FIG. 2], β-D-fructofuranose is located at the 2-position at the 6-position of the glucosyl group ester-bonded to COOH at the 19-position of rebaudioside A. The structure was determined to be β-fructofuranosyl rebaudioside A bound by.

このときの13C−NMRのチャートを第3図に示す。The 13 C-NMR chart at this time is shown in FIG.

試験例 実施例1にて得られた試料No.2,No.3について現在市販
されているグルコース転移ステビオサイド(東洋製糖社
製)(試料No.4)、現在市販されている合成品のうち最
高の甘味度、甘味質を有するとされているアスパルテー
ム(商品名:味の素社製)、ステビオサイド、レバウデ
ィオサイドA(試料No.1)を標準品として官能検査を行
なった。
Test Example Regarding the samples No. 2 and No. 3 obtained in Example 1, glucose transfer stevioside (manufactured by Toyo Sugar Co., Ltd.) (sample No. 4), which is currently on the market, is the highest among currently commercially available synthetic products. A sensory test was performed using aspartame (trade name: manufactured by Ajinomoto Co., Inc.), stevioside, and rebaudioside A (sample No. 1), which are said to have the degree of sweetness and the quality of sweetness, as standard products.

(1)甘味度試験 供試品の水溶液調製 既に報告されている文献値を基準として、各甘味度が概
略蔗糖換算3〜6%に入るように第1表に示す水溶液を
調製した。
(1) Sweetness Test Preparation of Aqueous Solution of Specimen Based on the literature values already reported, the aqueous solutions shown in Table 1 were prepared so that each sweetness was approximately 3 to 6% in terms of sucrose.

蔗糖水溶液 下記の6種の蔗糖水溶液を調製した。 Sucrose aqueous solution The following 6 types of sucrose aqueous solutions were prepared.

3.5,4.0,4.5,5.0,5.5,6.0(%) 試験方法 蔗糖水溶液を低濃度から順に並べ、供試水溶液と同等の
甘味を有するものを10名のパネル員に選ばせた。試験に
基づく甘味度を第2表に示す。
3.5,4.0,4.5,5.0,5.5,6.0 (%) Test method The sucrose aqueous solutions were arranged in order from the lowest concentration, and 10 panel members were selected to have the same sweetness as the test aqueous solution. The sweetness based on the test is shown in Table 2.

以上のごとく、β−フラクトフラノシルレバウディオサ
イドA(高純度品)は標準品に比べてモル比換算では約
1.2倍となった。
As described above, β-fructofuranosyl rebaudioside A (high-purity product) is about a molar ratio conversion as compared with the standard product.
It was 1.2 times.

(2)甘味質試験 (1)の甘味度試験の結果から、各供試品について5%
蔗糖水溶液と同等甘味水溶液を調製し、それらの甘味質
(苦味、残味、まろやかさ)の検査を行なった。
(2) Sweetness test 5% for each sample from the sweetness test result of (1)
A sweetness aqueous solution equivalent to the sucrose aqueous solution was prepared, and the sweetness qualities (bitterness, residual taste, mellowness) were examined.

まず、標準品3点について苦味、残味、まろやか
さの3項目を20名のパネルを用いて評点法(第3表)で
採点し、次にこの評点を参考とし、供試品(No.2,No.
3)2点について12名のパネルを用い、同様に採点し
た。その結果を第4表に示す。
First of all, for the standard 3 points, the 3 items of bitterness, residual taste and mellowness were scored by a scoring method (Table 3) using a panel of 20 people, and then the sample (No. 2, No.
3) For 2 points, a panel of 12 people was used and similarly scored. The results are shown in Table 4.

以上のごとく、β−フラクトフラノシルレバウディオサ
イドAは、苦味、残味、まろやかさ全ての項目につい
て、アスパルテームにやや劣るものの、甘味質が非常に
良好といわれているレバウディオサイドA、グルコース
転移ステビオサイドより良質なものに改善された。
As described above, β-fructofuranosyl rebaudioside A has bitterness, residual taste, and mellowness of all items, but is slightly inferior to aspartame, but rebaudioside A is said to have very good sweetness, Glucose transfer was improved to a better quality than stevioside.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)はステビオサイド及びこの発明の
原料物質であるレバイディオサイドAの構造式、第2図
は、この発明に係る物質であるβ−フラクトフラノシル
レバウディオサイドAの構造式、第3図は試料No3の13C
−NMRのチャート、測定条件は機器:JEOL JEN GX-40
0(100MHz),溶媒:Pyridin-d5,内部標準:Tetrametyls
ilan(TMS)である。
1 (a) and 1 (b) are structural formulas of stevioside and levidioside A which is a raw material of the present invention, and FIG. 2 is β-fructofuranosyl rebaudioside A which is a substance according to the present invention. Structural formula, Fig. 3 shows 13 C of sample No3
-NMR chart, measurement conditions are equipment: JEOL JEN GX-40
0 (100MHz), solvent: Pyridin-d5, internal standard: Tetrametyls
ilan (TMS).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レバウディオサイドAの19位のCOOHにエス
テル結合するβ−グルコシル基の6位に、β−D−フラ
クトフラノースが2位の位置で結合した構造のステビオ
ール配糖体。
1. A steviol glycoside having a structure in which β-D-fructofuranose is bonded at the 2-position to the 6-position of a β-glucosyl group which is ester-bonded to COOH at the 19-position of rebaudioside A.
【請求項2】レバウディオサイドAとβ−フラクトシル
糖化合物とを含有する水溶液又は懸濁液に、ミクロバク
テリウム・エスピー.H-1(微工研寄託菌寄第11428号)
の生産するβ−フラクトフラノシル転移酵素を作用させ
ることを特徴とするレバウディオサイドAの19位のCOOH
にエステル結合するβ−グルコシル基の6位に、β−D
−フラクトフラノースが2位の位置で結合した構造のス
テビオール配糖体の製造方法。
2. An aqueous solution or suspension containing rebaudioside A and a β-fructosyl sugar compound is added to Microbacterium sp. H-1 (Department of Microbiology Research Institute, No. 11428)
COOH at position 19 of rebaudioside A characterized by acting on β-fructofuranosyl transferase produced by
At the 6-position of the β-glucosyl group that is ester-bonded to β-D
-A method for producing a steviol glycoside having a structure in which fructofuranose is bound at the 2-position.
【請求項3】レバウディオサイドAとβ−フラクトシル
糖化合物とを含有する水溶液又は懸濁液にミクロバクテ
リウム・エスピー.H-1(微工研寄託菌寄第11428号)の
生産するβ−フラクトフラノシル転移酵素を作用させて
得られたレバウディオサイドAの19位のCOOHにエステル
結合するβ−グルコシル基の6位に、β−D−フラクト
フラノースが2位の位置で結合した構造のステビオール
配糖体からなる甘味料。
3. An aqueous solution or suspension containing rebaudioside A and a β-fructosyl sugar compound is added to Microbacterium sp. Of the β-glucosyl group that is ester-bonded to COOH at position 19 of rebaudioside A obtained by reacting β-fructofuranosyl transferase produced by H-1 A sweetener comprising a steviol glycoside having a structure in which β-D-fructofuranose is bound to the 6-position at the 2-position.
JP2152842A 1990-06-13 1990-06-13 Novel steviol glycoside, production method thereof and sweetener using the same Expired - Fee Related JPH0633309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152842A JPH0633309B2 (en) 1990-06-13 1990-06-13 Novel steviol glycoside, production method thereof and sweetener using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152842A JPH0633309B2 (en) 1990-06-13 1990-06-13 Novel steviol glycoside, production method thereof and sweetener using the same

Publications (2)

Publication Number Publication Date
JPH0446190A JPH0446190A (en) 1992-02-17
JPH0633309B2 true JPH0633309B2 (en) 1994-05-02

Family

ID=15549324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152842A Expired - Fee Related JPH0633309B2 (en) 1990-06-13 1990-06-13 Novel steviol glycoside, production method thereof and sweetener using the same

Country Status (1)

Country Link
JP (1) JPH0633309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111721A (en) * 2019-04-19 2021-09-13 씨제이제일제당 (주) Composition comprising transfructosylated steviol glycoside

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435587B2 (en) * 2005-11-23 2013-05-07 The Coca-Cola Company High-potency sweetener composition with long-chain primary aliphatic saturated alcohol and compositions sweetened therewith
US9101161B2 (en) * 2006-11-02 2015-08-11 The Coca-Cola Company High-potency sweetener composition with phytoestrogen and compositions sweetened therewith
TWI475963B (en) * 2008-02-25 2015-03-11 Coca Cola Co Rebaudioside a derivative products and methods for making
WO2017075034A1 (en) * 2015-10-26 2017-05-04 Purecircle Usa Inc. Steviol glycoside compositions
KR102167849B1 (en) * 2019-12-20 2020-10-21 전남대학교산학협력단 Method for producing gluicosyl stevioside using the alpha-1,6 glucosylation enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210111721A (en) * 2019-04-19 2021-09-13 씨제이제일제당 (주) Composition comprising transfructosylated steviol glycoside

Also Published As

Publication number Publication date
JPH0446190A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
KR100647405B1 (en) Cozybios phosphorylase, preparation method and use thereof
US4590160A (en) Process for production of β-glycosyl stevioside derivatives
US7838044B2 (en) Extraction, separation and modification of sweet glycosides from the Stevia rebaudiana plant
KR100545108B1 (en) β-fructofuranosidase, preparation method and use thereof
JPH0673468B2 (en) Manufacturing method of rebaudioside A
EP0841397B1 (en) Trehalose phosphorylase, its preparation and uses
JPH0633309B2 (en) Novel steviol glycoside, production method thereof and sweetener using the same
JP3967438B2 (en) Kojibiose phosphorylase, its production method and use
US5993889A (en) Trehalose phosphorylase, its preparation and use
KR100647404B1 (en) Trehalose phosphorylase, preparation method and use thereof
JP3925356B2 (en) Sweetener and method for producing the same
JPH05255372A (en) New rubusoside derivative
JPS5848155B2 (en) Sweets manufacturing method
JPH04288093A (en) Novel steviol glucoside and production thereof
JPH0118709B2 (en)
JPH0694473B2 (en) β-glucosyl rubusoside, method for producing the same, and sweetener using the same
KR20190002364A (en) Synthesis method of rubusoside-fructoside using levansucrase
JPH0577675B2 (en)
JPS6337638B2 (en)
JPH0577397B2 (en)
JP4171761B2 (en) Kojibiose phosphorylase, its production method and use
KR950002868B1 (en) Preparation of fructosyl stevioside and sweetener thereof
JPH0527392B2 (en)
JPS62155096A (en) Production of beta-1,3-glycosylsteviol glycoside
US20060183714A1 (en) 3-Alpha-glycosyl alpha, alpha-trehalose compound, process for producing the same, and use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees