JPH063323B2 - Overload protection control method for air conditioner - Google Patents

Overload protection control method for air conditioner

Info

Publication number
JPH063323B2
JPH063323B2 JP61133333A JP13333386A JPH063323B2 JP H063323 B2 JPH063323 B2 JP H063323B2 JP 61133333 A JP61133333 A JP 61133333A JP 13333386 A JP13333386 A JP 13333386A JP H063323 B2 JPH063323 B2 JP H063323B2
Authority
JP
Japan
Prior art keywords
pressure
rotation speed
compressor
air conditioner
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133333A
Other languages
Japanese (ja)
Other versions
JPS62293049A (en
Inventor
孝 杉尾
英二 中角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61133333A priority Critical patent/JPH063323B2/en
Publication of JPS62293049A publication Critical patent/JPS62293049A/en
Publication of JPH063323B2 publication Critical patent/JPH063323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、変速可能な圧縮機を有する空気調和機の過負
荷時の保護制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overload protection control method for an air conditioner having a variable speed compressor.

従来の技術 一般に空気調和機で暖房運転を行なう場合、室内、屋外
の温度が高い場合などに、冷媒の凝縮圧力が上昇して圧
縮機の使用限界を超える状態がしばしば起こる。このよ
うな過負荷状態を放置すると、圧縮機の寿命に著しい害
を与えたり、圧縮機用電動機等の温度の異常上昇を招く
ため、従来より種々の保護が発明された。
2. Description of the Related Art Generally, when a heating operation is performed in an air conditioner, the condensing pressure of the refrigerant rises and the usage limit of the compressor is often exceeded when the indoor or outdoor temperature is high. If such an overloaded state is left as it is, the life of the compressor is significantly impaired and the temperature of the electric motor for the compressor is abnormally increased. Therefore, various protections have been invented.

第4図により従来例を説明する。A conventional example will be described with reference to FIG.

能力可変な圧縮機を有する空気調和機の場合、凝縮圧力
(高圧とも言う)に対応する凝縮温度や、室内機の吹出
温度を検知する温度センサーにより、凝縮圧が圧縮機の
使用限界から定めた一定の値ここでは24atgをB点で
超えたことを検知すると、圧縮機をそれまでの通常能力
運転状態から予め設定した低能力状態に変化させ、それ
によって凝縮圧が低下して18atgまで低下すると、圧
縮機を元の運転状態に戻すという制御が一般的であっ
た。この例では冷房について述べているが暖房でも同様
である。
In the case of an air conditioner that has a compressor with variable capacity, the condensing pressure is determined from the usage limit of the compressor by a condensing temperature corresponding to the condensing pressure (also called high pressure) and a temperature sensor that detects the blowout temperature of the indoor unit. When a constant value here, which exceeds 24 atg at point B, is detected, the compressor is changed from the normal capacity operation state up to that point to a preset low capacity state, whereby the condensation pressure decreases to 18 atg. In general, the control to return the compressor to the original operating state was common. Although this example describes cooling, the same applies to heating.

発明が解決しようとする問題点 しかし、上記従来例には以下の問題点が存在する。Problems to be Solved by the Invention However, the above-mentioned conventional example has the following problems.

圧縮機の能力は、基本的には室内温度Tを温度調節器
の設定値Tの差により決定し、TとTの差が大き
い時は、大能力を要するが、このような場合、室内温度
や室外温度Tが高いと、凝縮圧が限界値(例では
24atg)を超えやすい。
The capacity of the compressor is basically determined by the difference between the room temperature T R and the set value T S of the temperature controller. When the difference between T R and T S is large, a large capacity is required. If, when the room temperature T R and the outdoor temperature T O is high, it tends to exceed (24Atg in the example) the condensation pressure limit.

ところが、限界圧(以下P11と称す)を超えて圧力機
能力が低下すると圧力は限界圧−ディファレンシャル分
(以下P12と称す)に低下して、圧縮機は本来の能力
に戻り、再び圧力がP11を超えるという、ループ動作
にはまり込み、室温Tが十分上昇して本来の圧縮機能
力が低下するまで、このループ動作から抜け出せなくな
る。このループ動作中は圧縮機騒音の音量や周波数が頻
繁に変化するため、非常にうるさく感じられる。
However, the pressure function force decreases beyond the limit pressure (hereinafter referred to as P 11) pressure limit pressure - reduced to a differential amount (hereinafter referred to as P 12), the compressor returns to the original capacity, again the pressure There that exceeds P 11, fitted in a loop operation, until the original compression force rises room temperature T R is sufficiently decreases, get stuck from the loop operation. During this loop operation, the volume and frequency of the compressor noise change frequently, so it feels very noisy.

このループ動作を防ぐためには、P11とP12の差を
大きくするか、低能力時の圧縮機能力値を高くすると良
い。しかしP11は圧縮機の仕様から決まるもので、こ
の値を上げるためには著しい技術的困難と圧縮機のコス
ト増を招く。またP12を下げると、圧縮機は低能力で
回り続けるため、能力が不足し、室温が低下したり、室
温上昇に長時間を要する結果となる。また低能力時の圧
縮機能力値を高くすると、凝縮圧力の変化は、回転数変
化に対して時間の遅れが大きいため一時的に極端な高圧
になる場合があり、この値には上限があって、ループ動
作を防ぐ程に上げることは困難である。
In order to prevent this loop operation, it is preferable to increase the difference between P 11 and P 12 or increase the compression function force value at the time of low capacity. However, P 11 is determined by the specifications of the compressor, and increasing the value causes significant technical difficulty and increases the cost of the compressor. Further, if P 12 is lowered, the compressor continues to rotate with a low capacity, so that the capacity is insufficient and the room temperature is lowered, or it takes a long time to rise the room temperature. In addition, when the compression function force value at low capacity is increased, the change in the condensing pressure may temporarily become extremely high due to the large time delay with respect to the change in the rotation speed, and there is an upper limit for this value. Therefore, it is difficult to raise the loop operation to prevent it.

本発明は、能力や保護機能の低下なしに空気調和機の過
負荷時の保護制御により起こっていた、圧縮機の能力変
化のループ動作を除去することを目的とする。
It is an object of the present invention to eliminate the loop operation of compressor capacity change that has occurred due to protection control during overload of an air conditioner without deterioration of capacity or protection function.

問題点を解決するための手段 上記問題を解決するために本発明は、圧縮機、可変速な
圧縮機用電動機、四方弁、減圧装置、利用側熱交換器、
熱源側熱交換器、利用側で空気調和機に吸入される空気
温度の設定手段とその検出手段、及び冷媒凝縮圧力ある
いは吐出圧力検出手段、P11>P12、P12>P
22……>Pn2の関係を持って予め設定した凝縮ある
いは吐出圧力値を記憶する圧力記憶手段と、Nn>……
>N(Nは圧縮機の最低運転回転数)の関係を
もって予め設定した圧縮機用電動機回転数を記憶する回
転数記憶手段とを備えた空気調和機の制御方法におい
て、前記圧力検出手段により検出された圧力が、前記圧
力記憶手段に記憶された圧力P11以上になると、圧縮
機用電動機の回転数Nu(>N)を前記回転数記憶手
段に記憶された回転数値Nとし、圧力がP12未満と
なると回転数をNとし、以後圧力がPi2未満となる
と回転数をNi+1とする動作をくり返し、圧力がP
n2未満となると、回転数を本発明の過負荷制御がかか
ってない通常の回転数Nuに戻すものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a compressor, a variable speed compressor motor, a four-way valve, a pressure reducing device, a use side heat exchanger,
Heat source side heat exchanger, means for setting temperature of air taken into the air conditioner on the use side and its detecting means, and refrigerant condensing pressure or discharge pressure detecting means, P 11 > P 12 , P 12 > P
22 ......> Pn2 and pressure storage means for storing a preset condensation or discharge pressure value, and Nn >>
A method for controlling an air conditioner, comprising: a rotation speed storage means for storing a preset compressor motor rotation speed in a relation of N 2 > N 1 (N 1 is a minimum operation rotation speed of the compressor). When the pressure detected by the detection means becomes equal to or higher than the pressure P 11 stored in the pressure storage means, the rotational speed Nu (> N 2 ) of the compressor electric motor is set to the rotational speed N stored in the rotational speed storage means. 1 , the rotation speed is set to N 2 when the pressure is less than P 12 , and the rotation speed is set to N i + 1 when the pressure is less than P i2.
When it becomes less than n2 , the rotation speed is returned to the normal rotation speed Nu which is not subjected to the overload control of the present invention.

作 用 上記構成により、本発明の空気調和機の過負荷保護制御
方法は、圧縮機回転数が凝縮圧力P11をを超えるとN
に低下するまでは従来例と同じで、P11、Nとも
従来と同等とすると保護機能は低下していない。しかし
その後圧力がP12を下回ると圧力Pに従って回転数を
Nuに戻さずに複数の中間的回転数のN〜Nnに順次
上げて、途中の回転数でバランスして圧力が安定するこ
とを図る。複数の中間的回転数があるため、単一の中間
的回転数を持つ場合に比べて途中で安定する確立が高く
なり、したがってループ運転の頻度も低下する。また、
中間の回転数で安定すると能力も、低能力のNと高能力
のNuの間でループ運転している場合と比べて、平均能
力ではほとんど低下することがない。
Operation With the above-described configuration, the overload protection control method for the air conditioner of the present invention is N when the compressor speed exceeds the condensing pressure P 11.
It is the same as in the conventional example until it is reduced to 1, and if P 11 and N 1 are equal to the conventional one , the protection function is not reduced. However, after that, when the pressure falls below P 12 , the rotational speed is not increased to Nu in accordance with the pressure P, but is sequentially increased to a plurality of intermediate rotational speeds N 2 to Nn, and the pressure is stabilized by balancing at intermediate rotational speeds. Try. Since there are a plurality of intermediate rotation speeds, there is a higher probability of stabilization in the middle than when a single intermediate rotation speed is provided, and therefore the frequency of loop operation is also reduced. Also,
When stabilized at an intermediate rotation speed, the capacity also hardly deteriorates in the average capacity as compared with the case where the loop operation is performed between the low capacity N and the high capacity Nu.

実施例 以下、本発明の一実施例による空気調和機の過負荷保護
制御方法を図面を用いて説明する。
Embodiment An overload protection control method for an air conditioner according to an embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は圧縮機、2は四方弁、3は熱源側
熱交換器、4は利用側熱交換器、5は減圧器、6は圧縮
機駆動用電動機、7は電動機6の回転数を変化させるイ
ンバータ、8は熱源側熱交換器用送風機、9は利用側熱
交換器用送風機、10は利用側熱交換器4へ流入する空
気温度を検知する室温センサ、11はこの空気温度の設
定器、12は室温センサ10と設定器11の温度比較手
段、13は凝縮圧力を検知する圧力検知手段、14は設
定凝縮圧力記憶手段、15は設定回転数記憶手段、16
は圧力検出手段13と凝縮圧力記憶手段14の圧力比較
手段、100は温度比較手段12と圧力比較手段16の
結果と設定回転数記憶手段15かに基いて回転数を判定
・演算する演算器、101は演算器100の指令により
インバータ7に回転数変化指令を与える回転数変化指令
手段を示す。
In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 4 is a use side heat exchanger, 5 is a pressure reducer, 6 is a compressor driving electric motor, and 7 is rotation of the electric motor 6. An inverter for changing the number, 8 is a fan for the heat source side heat exchanger, 9 is a fan for the use side heat exchanger, 10 is a room temperature sensor for detecting the temperature of the air flowing into the use side heat exchanger 4, and 11 is the setting of this air temperature. , 12 is a temperature comparison means for the room temperature sensor 10 and the setting device 11, 13 is a pressure detection means for detecting the condensation pressure, 14 is a set condensation pressure storage means, 15 is a set rotation speed storage means, 16
Is a pressure comparing means of the pressure detecting means 13 and the condensing pressure storing means 14, 100 is a computing unit for judging and computing the number of revolutions based on the results of the temperature comparing means 12 and the pressure comparing means 16 and the set number of revolutions storing means 15, Reference numeral 101 denotes a rotation speed change command means for giving a rotation speed change command to the inverter 7 in response to a command from the arithmetic unit 100.

次に第2図、第3図に従って動作を説明する。四方弁2
は暖房運転時に冷媒を循環させる方向に切換えられてお
り、冷媒は熱源側熱交換器3で吸熱蒸発し、利用側熱交
換器4で放熱凝縮し暖房作用を行なう。ここで吸熱量が
多い時、放熱量が少ない時、すなわち室内外温度が高い
時や利用側熱交換器用送風機9の送風量が少ないときな
どは、凝縮圧力が高くなり、著しく高い場合は圧縮機を
損傷しその寿命を短縮したり、極端な場合は破壊に至
る。
Next, the operation will be described with reference to FIGS. Four-way valve 2
Is switched to a direction in which the refrigerant is circulated during the heating operation, and the refrigerant absorbs heat by the heat source side heat exchanger 3 and evaporates by heat dissipation in the use side heat exchanger 4 to perform a heating operation. Here, when the amount of heat absorption is large, the amount of heat radiation is small, that is, when the indoor / outdoor temperature is high or the amount of air blown by the fan 9 for the heat exchanger on the use side is small, the condensing pressure becomes high, and when it is extremely high, the compressor Damage and shorten its life, or in extreme cases lead to destruction.

このような状態にならない限界凝縮圧力をPとする
と、P11<Pなる関係を持つ過負荷制御開始圧力P
11が定まる。(P−P11)は圧力検出手段の公差
等より定まる安全係数の役割を果たす値である。但し
(P−P11)を大きく取り過ぎると凝縮圧力と対応
する吹出温度、暖房能力の低下に結びつくためP11
出来るだけ高く設定されている。
Assuming that the limit condensing pressure that does not bring about such a state is P L , the overload control start pressure P having a relation of P 11 <P L
11 is set. (P L −P 11 ) is a value that plays a role of a safety factor that is determined by the tolerance of the pressure detection means. However (P L -P 11) and taking up too large a condensation pressure and the corresponding air temperature, P 11 for leading to reduction in the heating capacity is set higher as possible.

過負荷制御が開始する以前、即ち凝縮圧力P<P11
状態では、利用側空気温度と設定温度の差などにより決
められた回転数Nuで回転していた圧縮機1は、P≧P
11になると過負荷制御に入り回転数Nに低下する。
はNuからNに回転数が低下した際、凝縮圧力が
やや遅れて変化するため、その場合でもP<Pなるよ
うに、十分に低く決めた回転数である。非常に負荷が高
い場合は第2図矢印AのようにNになっても圧力Pは
下がらずP11付近で安定する通常は低下することが多
い。
Before the overload control is started, that is, in the state of the condensing pressure P <P 11 , the compressor 1 rotating at the rotation speed Nu determined by the difference between the use side air temperature and the set temperature is P ≧ P.
When it becomes 11 , the overload control is started and the rotation speed is reduced to N 1 .
N 1 is a rotational speed determined to be sufficiently low so that P <P L is maintained even in that case because the condensation pressure changes with a slight delay when the rotational speed decreases from Nu to N 1 . When the load is extremely high, the pressure P does not decrease even when it becomes N 1 as shown by an arrow A in FIG. 2, and it stabilizes in the vicinity of P 11 and usually decreases.

12<P11なる関係を持つP12を決め、凝縮圧力
P<P12となると回転数をNに上げる。以後圧力が
i2を下回るたびに回転数をNi+1に変更する。N
〜NnはNより高くNuより小さい。実際の運転下
ではNuがNn以下の場合も起こるが、この場合は本発
明とは別の制御ルーチンに移行すればよい。
P 12 <decided P 12 having a P 11 the relationship, raised and the condensing pressure P <P 12 the rotational speed N 2. Thereafter, each time the pressure falls below P i2 , the rotation speed is changed to N i + 1 . N
2 to Nn are higher than N 1 and smaller than Nu. In actual operation, Nu may be Nn or less, but in this case, the control routine may be different from the present invention.

ここで負荷がかなり高いと再び凝縮圧Pは上昇して回転
数はNに戻り以降第2図の矢印Bで示すようにN
の間でループ運転に入るが、従来のNuとNのル
ープ運転に比べ回転数差が少ないため余り問題にならな
い。
Here, when the load is considerably high, the condensing pressure P rises again and the rotation speed returns to N 1, and thereafter, as shown by the arrow B in FIG. 2 , the loop operation is started between N 1 and N 2 , but the conventional Nu Compared with the loop operation of N 1 and N 1 , there is less difference in the number of revolutions, so there is not much problem.

負荷がやや低いと第2図矢印Cで示すように回転数と圧
力はN〜Nnのどこかで安定し、さらに低いと過負荷
制御終了圧力Pn2を下回って、回転数はNuに戻り、
再び圧力が上昇してP11を越える第2図矢印Dで示す
ループ動作に入る。但し負荷が比較的低い時のみN
の圧力はPn2を下回るので、その場合は回転数がNu
でも圧力の上昇は遅く、頻繁なループ動作とはならな
い。つまり、従来もっとも頻繁なループ動作になってい
た負荷領域ではN〜Nnのどれかで安定するため、騒
音が大巾に改善されるばかりでなく、N〜Nnは一般
にNとNuの中間的回転数であるため、能力もN
Nuの間でループ動作していた場合の平均能力と比べ
て、同等の能力が得られるのである。
When the load is a little low, the rotation speed and the pressure stabilize at somewhere from N 2 to Nn as shown by the arrow C in FIG. 2, and when the load is further lower, it falls below the overload control end pressure P n2 and the rotation speed returns to Nu. ,
It enters a loop operation shown in FIG. 2 arrow D beyond the P 11 and the pressure rises again. However, the pressure at N 2 is lower than P n2 only when the load is relatively low, and in that case, the rotation speed is Nu.
However, the pressure rises slowly and does not result in frequent loop operation. That is, in the load region where the loop operation is most frequently performed in the past, it stabilizes at any one of N 2 to Nn, so that not only the noise is greatly improved, but N 2 to Nn are generally equal to those of N 1 and Nu. Since the rotational speed is an intermediate value, the capacity is equivalent to the average capacity when the loop operation is performed between N 1 and Nu.

本実施例では凝縮圧力を検知して、過負荷制御を行なっ
ているが、圧縮機の吐出圧力、熱交換器の凝縮温度、利
用側熱交換器通過後の吹出温度等は凝縮反応と対応して
変化するので、これらを検知し、それぞれに応じて適宜
設定した値をP11,P12,P22,……Pn2の代
わりとしてもよい。
In this embodiment, the condensing pressure is detected and the overload control is performed.However, the discharge pressure of the compressor, the condensing temperature of the heat exchanger, the outlet temperature after passing through the heat exchanger on the use side, etc. correspond to the condensing reaction. Therefore, it is possible to detect these values and use values set appropriately according to the values instead of P 11 , P 12 , P 22 , ... P n2 .

また、制御するのは圧縮機回転数としたが、圧縮機電流
値をこれに代わって使用してもよい。
Although the compressor rotation speed is controlled, the compressor current value may be used instead.

発明の効果 本発明は上記実施例の説明から明らかなように、過負荷
時の圧縮機の保護を従来並みに行ない、かつ、従来頻繁
に起こっていたループ動作による圧縮機回転数のハンチ
ングを大幅に減少して、圧縮機騒音の実聴感を大巾に向
上させながら、過負荷時の能力も従来と同等の平均能力
を確保できる。
EFFECTS OF THE INVENTION As is apparent from the description of the above-described embodiments, the present invention protects the compressor at the time of overload in the same manner as the conventional one, and significantly hunts the compressor rotational speed by the loop operation that frequently occurs conventionally. It is possible to secure an average capacity equivalent to that of the conventional one, while significantly improving the actual hearing of compressor noise.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す空気調和機の機器構成
図、第2図は同空気調和機の動作状況を示す説明図、第
3図は同空気調和機の制御内容を示すフローチャート、
第4図は従来例の動作を示す説明図である。 1……圧縮機、2……四方弁、3……熱源側熱交換器、
4……利用側熱交換器、5……減圧器、6……圧縮機駆
動用電動機、7……インバータ、8,9……送風機、1
0……室温センサ、11……室温設定器、12……10
・11の比較手段、13……凝縮圧検出手段、14……
凝縮圧記憶手段、15……回転数記憶手段、16……1
3・14の比較手段、100……演算器、101……回
転数変化指令手段。
FIG. 1 is a device configuration diagram of an air conditioner showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an operating condition of the air conditioner, and FIG. 3 is a flowchart showing control contents of the air conditioner. ,
FIG. 4 is an explanatory diagram showing the operation of the conventional example. 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger,
4 ... Utilization side heat exchanger, 5 ... Pressure reducer, 6 ... Compressor driving electric motor, 7 ... Inverter, 8, 9 ... Blower, 1
0 ... Room temperature sensor, 11 ... Room temperature setting device, 12 ... 10
.11 comparison means, 13 ... condensation pressure detection means, 14 ...
Condensing pressure storage means, 15 ... Rotation speed storage means, 16 ... 1
3 · 14 comparison means, 100 ... arithmetic unit, 101 ... rotation speed change command means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、変速可能な圧縮機用電動機、四方
弁、減圧装置、利用側熱交換器、熱源側熱交換器、利用
側で空気調和機に吸入される空気温度の設定手段とその
検出手段、及び冷媒凝縮圧力あるいは吐出圧力を検出す
る圧力検出手段、P11>P12、P12>P22>…
…>Pn2の関係を持って予め設定した凝縮あるいは吐
出圧力値を記憶する圧力記憶手段と、N>……>N
>N(Nは圧縮機の最低運転回数)の関係を持って
予め設定した圧縮機用電動機の回転数を記億する回転数
記憶手段とを備えた空気調和機の制御方法において、前
記圧力検出手段により検出された圧力が、前記圧力記憶
手段に記憶された圧力P11以上になると、圧縮機用電
動機の回転数をそれまで過負荷制御のかかっていない回
転数Nu(>N)から前記回転数記憶手段に記憶され
た回転数値Nとし、圧力がP12未満となると回転数
をNとし、以後圧力がPi2未満となると回転数をN
i+1とする動作を繰り返し、圧力がPn2未満となる
と、回転数を過負荷制御がかかっていない通常の回転数
Nuに戻すようにした空気調和機の過負荷保護制御方
法。
1. A compressor, a variable speed electric motor for a compressor, a four-way valve, a pressure reducing device, a heat exchanger on the use side, a heat exchanger on the heat source side, and means for setting the temperature of the air taken into the air conditioner on the use side. The detecting means and the pressure detecting means for detecting the refrigerant condensing pressure or the discharge pressure, P 11 > P 12 , P 12 > P 22 > ...
...> P n2 and a pressure storage means for storing a preset condensation or discharge pressure value, and N n >...> N 2
> N 1 (N 1 is the minimum number of times of operation of the compressor), and a rotation speed storage means for storing the rotation speed of the compressor motor preset in relation to the control method of the air conditioner, When the pressure detected by the pressure detection means becomes equal to or higher than the pressure P 11 stored in the pressure storage means, the rotation speed Nu (> N n ) of the compressor electric motor that has not been subjected to overload control until then. To the rotation speed N 1 stored in the rotation speed storage means, the rotation speed is N 2 when the pressure is lower than P 12 , and the rotation speed is N when the pressure is lower than P i2.
The overload protection control method for an air conditioner, wherein the operation of setting i + 1 is repeated and when the pressure becomes less than P n2 , the rotation speed is returned to the normal rotation speed Nu which is not overloaded.
【請求項2】凝縮あるいは吐出圧力を検出する圧力検出
手段を、利用側熱交換器あるいはその下流の吹出空気温
度を検出する温度検出手段とし、設定圧力P11、P
12、P22、……、Pn2を各々それに対応する熱交
換器あるいは吹出空気温度T11、T12、T22、…
…、Tn2とした特許請求の範囲第1項記載の空気調和
機の過負荷保護制御方法。
2. The pressure detecting means for detecting the condensation or discharge pressure is a temperature detecting means for detecting the temperature of blown air at the utilization side heat exchanger or its downstream side, and set pressures P 11 , P.
12 , P 22 , ..., P n2 respectively corresponding to heat exchangers or blown air temperatures T 11 , T 12 , T 22 ,.
, T n2 , The overload protection control method for an air conditioner according to claim 1.
【請求項3】回転数N、N、……、Nをそれに対
応する圧縮機電流値A、A、……、Aとした特許
請求の範囲第1項又は第2項記載の空気調和機の過負荷
保護制御方法。
3. A rotational speed N 1, N 2, ..., compressor current value A 1, A 2 of the N n corresponding thereto, ..., the first term claims was A n or paragraph 2 An overload protection control method for an air conditioner as described.
JP61133333A 1986-06-09 1986-06-09 Overload protection control method for air conditioner Expired - Lifetime JPH063323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133333A JPH063323B2 (en) 1986-06-09 1986-06-09 Overload protection control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133333A JPH063323B2 (en) 1986-06-09 1986-06-09 Overload protection control method for air conditioner

Publications (2)

Publication Number Publication Date
JPS62293049A JPS62293049A (en) 1987-12-19
JPH063323B2 true JPH063323B2 (en) 1994-01-12

Family

ID=15102264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133333A Expired - Lifetime JPH063323B2 (en) 1986-06-09 1986-06-09 Overload protection control method for air conditioner

Country Status (1)

Country Link
JP (1) JPH063323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266536A (en) * 2005-03-22 2006-10-05 Hoshizaki Electric Co Ltd Freezing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910161A (en) 1994-09-20 1999-06-08 Fujita; Makoto Refrigerating apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152367U (en) * 1983-03-31 1984-10-12 株式会社東芝 air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266536A (en) * 2005-03-22 2006-10-05 Hoshizaki Electric Co Ltd Freezing apparatus

Also Published As

Publication number Publication date
JPS62293049A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
EP2414749B1 (en) Systems and methods involving heating and cooling system control
JP3209801B2 (en) Air conditioner
JP2000055485A (en) Air conditioner
JP3187167B2 (en) Air conditioner
JPH063323B2 (en) Overload protection control method for air conditioner
KR20090081869A (en) Method for controlling overload of indoor unit
JP2924445B2 (en) Drive unit of compressor for air conditioner
JPH0678847B2 (en) Overload protection control method for air conditioner
JP3134635B2 (en) Frequency control type air conditioner protection control device
JP2951058B2 (en) Control method of air conditioner
KR100192896B1 (en) Total current control method of airconditioner
JP3346692B2 (en) Outdoor unit of air conditioner
JPH09250798A (en) Air conditioner
JP3149768B2 (en) Air conditioner
KR0177691B1 (en) Compresser operating control method
JPH07310959A (en) Air conditioner
JP4224915B2 (en) Air conditioner
JPS62293048A (en) Overload protecting control method of air conditioner
JP2597011B2 (en) Air conditioner
JPH0222600Y2 (en)
JPH0398493A (en) Control device for air conditioner
JPH06235554A (en) Controlling method for air conditioner
JP3333552B2 (en) Air conditioner
JPS61250439A (en) Operation control method for variable capacity type air conditioner
JPH0460360A (en) Apparatus for air conditioning