JPH06331639A - Measuring method for flow velocity of solid-liquid interface liquid layer - Google Patents

Measuring method for flow velocity of solid-liquid interface liquid layer

Info

Publication number
JPH06331639A
JPH06331639A JP12177893A JP12177893A JPH06331639A JP H06331639 A JPH06331639 A JP H06331639A JP 12177893 A JP12177893 A JP 12177893A JP 12177893 A JP12177893 A JP 12177893A JP H06331639 A JPH06331639 A JP H06331639A
Authority
JP
Japan
Prior art keywords
flow velocity
liquid
solid
liquid layer
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12177893A
Other languages
Japanese (ja)
Other versions
JP3276454B2 (en
Inventor
Naoto Tamai
尚登 玉井
Takayuki Ito
孝之 伊東
Hiroshi Masuhara
宏 増原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP12177893A priority Critical patent/JP3276454B2/en
Publication of JPH06331639A publication Critical patent/JPH06331639A/en
Application granted granted Critical
Publication of JP3276454B2 publication Critical patent/JP3276454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the flow velocities of a solid-liquid interface liquid layer in micrometer and submicrometer and the distribution of the flow velocities. CONSTITUTION:A measuring method for the flow velocities of a liquid layer at the interface between a solid and a liquid comprises generating a transient diffraction grating by exciting of a photosensitive material such as a photochromic compound in the liquid by means of exciting light, then stopping irradiation of the exciting light, and, with transient diffraction which is the requirement for transmission, measuring the relationship between the relaxation time of diffracted light intensity and diffraction intensity by a probing beam, using the known average flow velocity of the solid-liquid interface liquid layer as a parameter. As a result, the relationship between the decay time of the diffracted light intensity and the average flow velocity is measured and, with transient diffraction which is the requirement for total reflection, the decay time of the diffracted light intensity is measured from the relationship between the relaxation time of the diffracted light intensity which is obtained using the penetration depth of evanescent light as a parameter and the diffraction intensity by the probing beam, and the flow velocities of the solid-liquid interface liquid layer and the distribution of the flow velocities are measured from the relationship between the average flow velocity and the relaxation time of the diffracted light intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固液界面液層の流速
計測方法に関するものである。さらに詳しくは、この発
明は、新素材、医薬品、光応答材料等の開発や、新しい
物理化学プロセス等の研究開発、さらには産業技術の展
開における、マイクロメートルおよびサブマイクロメー
トルの固液界面液層の流速および流速分布を正確に計測
することを可能とする固液界面液層の流速計測方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the flow velocity of a solid-liquid interface liquid layer. More specifically, the present invention is directed to the development of new materials, pharmaceuticals, photoresponsive materials, etc., research and development of new physical and chemical processes, and further development of industrial technology. The present invention relates to a method for measuring the flow velocity of a solid-liquid interface liquid layer that enables accurate measurement of the flow velocity and the flow velocity distribution.

【0002】[0002]

【従来の技術とその課題】従来から、各種分野の研究開
発や産業技術の開発・応用においては、光化学反応を利
用して材料物質の物性やその変化、さらには物理化学プ
ロセスを評価することがしばしば行われている。そし
て、この光化学反応を固液界面について詳細に分析する
ことも行なわれてきており、この場合には、一般的に、
逐次反応を防止したり反応物を効率よく収集するため
に、試料溶液を流速を持たせてフローさせていることが
多い。
2. Description of the Related Art Conventionally, in the research and development of various fields and the development and application of industrial technology, it has been possible to evaluate the physical properties and changes of materials and their physical chemical processes by utilizing photochemical reactions. It is often done. Further, detailed analysis of this photochemical reaction at the solid-liquid interface has also been performed. In this case, in general,
The sample solution is often flowed at a flow rate in order to prevent successive reactions and collect the reactants efficiently.

【0003】このような試料溶液のフローでは、その界
面における流速は非常に重要な因子であるため、固液界
面の流速を正確に把握することが、適切に効率よく光化
学反応を生じさせ、これを評価するために必要となる。
またさらに、近年になってその開発が大きく進展してい
るマイクロマシンにおいても、その界面において、たと
えば、その流体の流れとマイクロマシンの表面特性との
関係を解析する上で、固液界面の流速を正確に計測する
ことが必要不可欠である。
In such a flow of the sample solution, the flow velocity at the interface is a very important factor. Therefore, accurately grasping the flow velocity at the solid-liquid interface causes the photochemical reaction appropriately and efficiently. Will be needed to evaluate.
Furthermore, even in the case of micromachines, which have been greatly developed in recent years, the flow velocity at the solid-liquid interface can be accurately determined at the interface, for example, when analyzing the relationship between the fluid flow and the surface characteristics of the micromachine. It is indispensable to measure.

【0004】従来、固液界面液層における流速を計測す
る方法としては、平均値としての物質移動、つまり、液
層の平均流速を求める方法が原理的にも容易であること
から、広く一般的に用いられている。しかしながら、マ
イクロメートルおよびサブマイクロメートルの反応場や
固液界面液層における光化学反応を厳密に取り扱う場合
には、このような液層の平均流速はまったく意味をもた
なくなってくる。たとえば、固体基板上の高分子材料と
の界面における、0.2マイクロメートルの範囲におい
ては、高分子の会合状態や組成がバルクの特性とは異な
ることが指摘されており(Chem. Materials,3,413
(1991))、またさらに、このような高分子材料に
限らず、一般的に各種液体においても、水素結合などの
特殊な分子間力のため、液層内の液体は不均一構造とな
るため、固液界面においては特有な状況が生じているこ
とが予想される。
Conventionally, as a method for measuring the flow velocity in a solid-liquid interface liquid layer, mass transfer as an average value, that is, a method for obtaining the average flow velocity in the liquid layer is easy in principle, and therefore widely used. Is used for. However, when the reaction field of micrometer and sub-micrometer and the photochemical reaction in the solid-liquid interface liquid layer are handled strictly, the average flow velocity of such liquid layer becomes completely meaningless. For example, it has been pointed out that the polymer association state and composition are different from the bulk properties in the range of 0.2 μm at the interface with the polymer material on the solid substrate (Chem. Materials, 3 , 413
(1991)) Furthermore, not only in such a polymer material, but also in various liquids in general, due to a special intermolecular force such as hydrogen bond, the liquid in the liquid layer has a non-uniform structure. It is expected that a unique situation will occur at the solid-liquid interface.

【0005】つまり、たとえば以上のような理由によっ
て、固液界面の固体表面の近傍では、流速が平均値より
遅くなり、特にマイクロメートルおよびサブマイクロメ
ートルオーダーの領域ではそれが著しくなると考えられ
る。従って、マイクロメートルやサブマイクロメートル
領域の固液界面層の流速を計測することは、微小領域の
化学反応解析を行なう上で重要、かつ不可欠な基礎とな
るものであるが、このようなマイクロメートルやサブマ
イクロメートルオーダーの固液界面液層の液体の流速を
計測する方法はこれまで知られていないのが実情であ
る。
That is, for the reasons described above, it is considered that the flow velocity becomes slower than the average value in the vicinity of the solid surface of the solid-liquid interface, and it becomes remarkable particularly in the micrometer and sub-micrometer order regions. Therefore, measuring the flow velocity of the solid-liquid interface layer in the micrometer or sub-micrometer region is an important and indispensable basis for conducting chemical reaction analysis in the microscopic region. In fact, the method of measuring the flow velocity of the liquid in the solid-liquid interface liquid layer of the sub-micrometer order has not been known so far.

【0006】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の固液界面液層の流速計測方法
の限界を克服し、マイクロメートルおよびサブマイクロ
メートルの厚みを持つ固液界面液層の流速を非破壊的に
正確に計測する固液界面液層の流速計測方法を提供する
ことを目的としている。
The present invention has been made in view of the above circumstances, overcomes the limitation of the conventional method for measuring the flow velocity of the solid-liquid interface liquid layer, and has a thickness of micrometer and sub-micrometer. It is an object of the present invention to provide a method for measuring the flow velocity of a solid-liquid interface liquid layer that accurately measures the flow velocity of the interface liquid layer nondestructively.

【0007】[0007]

【課題を解決するための手段】この発明は上記の課題を
解決するものとして、固体と液体界面における液層の流
速を計測する流速計測方法であって、液層に励起光を照
射して過渡回折格子を生成させた後に励起光の照射を停
止し、透過条件および全反射条件の過渡回折により、回
折光強度の消滅時間から固液界面液層の流速およびその
速度分布を測定することを特徴とする固液界面液層の流
速計測方法を提供する。
The present invention is to solve the above-mentioned problems by providing a flow velocity measuring method for measuring the flow velocity of a liquid layer at the interface between a solid and a liquid, which comprises irradiating the liquid layer with excitation light to obtain a transient state. After generating the diffraction grating, stop the irradiation of excitation light and measure the flow velocity of the solid-liquid interface liquid layer and its velocity distribution from the disappearance time of the diffracted light intensity by transient diffraction under the transmission and total reflection conditions. A method for measuring the flow velocity of a solid-liquid interface liquid layer is provided.

【0008】つまりこの発明では、固液界面における液
層のマイクロメートルおよびサブマイクロメートル領域
の固液界面液層における液体の流速および流速分布を非
破壊的に計測する方法であり、透過条件による過渡回折
による計測を基にして、全反射条件による過渡回折法に
より計測する。より具体的態様としては、たとえば、あ
らかじめフォトクロミック化合物等の光応答物質を液中
に存在させておき、励起光によりこれらを励起して過渡
回折格子を生成させ、その後この励起光の照射を停止
し、透過条件の過渡回折法により、液体の単位時間当り
の流量と用いたフローセルの断面積から計算で求めた液
層の平均流速をパラメータとして、プローブ光によって
観測される回折光強度の緩和時間の関係を計測し、その
結果から、回折光強度の消滅時間を求め、それから、回
折光強度の消滅時間と液層の平均流速の関係を求める。
That is, the present invention is a method for nondestructively measuring the flow velocity and flow velocity distribution of a liquid in a solid-liquid interface liquid layer in the micrometer and sub-micrometer regions of the liquid layer at the solid-liquid interface, and it is a transient due to a permeation condition. Based on the measurement by diffraction, the measurement is performed by the transient diffraction method under the condition of total reflection. As a more specific embodiment, for example, a photoresponsive substance such as a photochromic compound is allowed to exist in a liquid in advance, these are excited by excitation light to generate a transient diffraction grating, and then the irradiation of the excitation light is stopped. The relaxation time of the intensity of the diffracted light observed by the probe light is defined by the average flow velocity of the liquid layer calculated from the flow rate per unit time of the liquid and the cross-sectional area of the flow cell used by the transient diffraction method under the transmission conditions. The relationship is measured, and the extinction time of the diffracted light intensity is obtained from the result, and then the relationship between the extinction time of the diffracted light intensity and the average flow velocity of the liquid layer is obtained.

【0009】つぎに、全反射条件の過渡回折格子分光法
を用いて、エバネッセント波のしみこみ深さをパラメー
タとして、回折光強度の緩和時間を求め、この結果か
ら、回折光強度の消滅時間を求める。このときバルク状
態では平均流速で液体が流れているが、界面近傍はこの
値より小さくなっている。つまり、透過条件で求めた回
折光強度の緩和時間と液層の平均流速の関係から、全反
射条件で計測した回折光強度の緩和時間に対応する流速
を推定することが可能となり、結果として、マイクロメ
ートルおよびサブマイクロメートル固液界面液層の液層
の流速および流速分布が求められることになる。
Next, the transient diffraction grating spectroscopy under the condition of total reflection is used to obtain the relaxation time of the diffracted light intensity with the penetration depth of the evanescent wave as a parameter. From this result, the extinction time of the diffracted light intensity is obtained. . At this time, the liquid is flowing at the average flow velocity in the bulk state, but it is smaller than this value in the vicinity of the interface. That is, it is possible to estimate the flow velocity corresponding to the relaxation time of the diffracted light intensity measured under the total reflection condition from the relationship between the relaxation time of the diffracted light intensity obtained under the transmission condition and the average flow velocity of the liquid layer. The flow velocity and flow velocity distribution of the liquid layers of the micrometer and sub-micrometer solid-liquid interface liquid layers will be obtained.

【0010】なお、この発明においては、プローブ光に
はHe−Neレーザーが望ましく、励起光には300n
m〜380nm付近の紫外のピコ秒やナノ秒パルスレー
ザーが望ましい。
In the present invention, a He-Ne laser is preferable for the probe light and 300 n for the excitation light.
An ultraviolet picosecond or nanosecond pulsed laser in the vicinity of m to 380 nm is desirable.

【0011】[0011]

【作用】この発明の固液界面の流速計測方法の原理を以
下に説明する。一般的にパルスレーザーをあらかじめフ
ォトクロミック化合物等の光応答物質を存在させた試料
溶液に照射すると、光応答反応が起こり、これにより、
反応系の濃度変化が生じるので、それに伴った屈折率変
化が誘起される。
The principle of the method for measuring the flow velocity at the solid-liquid interface according to the present invention will be described below. Generally, when a pulsed laser is applied to a sample solution in which a photoresponsive substance such as a photochromic compound is present in advance, a photoresponsive reaction occurs, whereby
Since a change in the concentration of the reaction system occurs, a corresponding change in the refractive index is induced.

【0012】このため、この発明においては、たとえば
図1に例示することができるように、2つの励起光をあ
る角度θで試料の同じ領域に時間的に同時に照射するこ
とにより、レーザー光の干渉縞に沿って分子が励起され
るので、濃度変化に由来する屈折率変化の過渡回折格子
が生成し、その生成および消滅過程をサブピコ秒白色光
やHe−Neレーザ光などのプローブ光で検出すること
ができる。
Therefore, in the present invention, as illustrated in FIG. 1, for example, by irradiating the same region of the sample with two excitation lights at a certain angle θ at the same time, the interference of the laser light is generated. Since the molecules are excited along the stripes, a transient diffraction grating with a change in the refractive index due to the change in concentration is generated, and the generation and disappearance processes are detected with probe light such as sub-picosecond white light or He-Ne laser light. be able to.

【0013】この生成した過渡回折格子は、種々の原因
で緩和してゆくことがわかっているが、ミリ秒オーダー
の時間スケールで減衰する遅い緩和成分については物質
拡散方程式が支配している。この物質の拡散による過渡
回折格子の減衰過程は、
It is known that the generated transient diffraction grating relaxes due to various causes, but the slow diffusion component that decays on the time scale of millisecond order is governed by the mass diffusion equation. The attenuation process of the transient diffraction grating due to the diffusion of this material is

【0014】[0014]

【数1】 [Equation 1]

【0015】で表わされる。ここでN(x,t)は位置
xと時間tを関数としたフォトクロミック反応等によっ
て生成した生成物の濃度であり、Aは回折格子のピッ
チ、τはその生成物の寿命である。τD はその生成物の
拡散による緩和時間を表わし、そのτD は質量拡散係数
をDmassとすれば、
It is represented by Here, N (x, t) is the concentration of the product generated by the photochromic reaction or the like with the position x and the time t as a function, A is the pitch of the diffraction grating, and τ is the life of the product. τ D represents the relaxation time due to diffusion of the product, and τ D is the mass diffusion coefficient D mass ,

【0016】[0016]

【数2】 [Equation 2]

【0017】で与えられる。(1)式から回折格子の振
幅の減衰τ′g
Is given by From equation (1), the attenuation τ ′ g of the diffraction grating amplitude is

【0018】[0018]

【数3】 [Equation 3]

【0019】で与えられる。観測する回折効率(η)は
N(x,t)2 に比例するので、観測する回折光強度の
消滅時間をτg とすれば、
Is given by Since the observed diffraction efficiency (η) is proportional to N (x, t) 2 , if the disappearance time of the observed diffracted light intensity is τ g ,

【0020】[0020]

【数4】 [Equation 4]

【0021】が得られる。たとえば、スピロオキサジン
をフォトクロミック化合物として用いた場合、生成物の
寿命τは秒のオーダーであり、回折格子のピッチAがマ
イクロメートルまたはサブマイクロメートルの場合、τ
D は一般的に数100マイクロ秒から数ミリ秒オーダー
なのでτD /τ=0としてよく、(3)式の両辺にτD
をかけた結果、τD =τ′g となり、したがって、式
(4)は、
Is obtained. For example, when spirooxazine is used as a photochromic compound, the product lifetime τ is on the order of seconds, and when the grating pitch A is micrometer or submicrometer, τ
D is generally well as tau D / tau = 0 because several milliseconds order of several 100 microseconds, tau D to both sides of the equation (3)
As a result, τ D = τ ′ g , and therefore equation (4) becomes

【0022】[0022]

【数5】 [Equation 5]

【0023】と近似できる。一方、試料をフローさせる
場合は、生成した過渡回折格子が強制的に消滅させられ
ることになるので、式(2)を式(5)に代入して、フ
ローによる緩和項をf(v)を考慮するとτg
Can be approximated by On the other hand, when the sample is caused to flow, the generated transient diffraction grating is forcibly extinguished, so equation (2) is substituted into equation (5) and the relaxation term due to flow is set to f (v). Considering τ g

【0024】[0024]

【数6】 [Equation 6]

【0025】のように近似できる。次に式(6)のf
(v)とvの関係を求めると、実験的にτg (v)とv
の関係は、
It can be approximated as follows. Next, f in equation (6)
When the relationship between (v) and v is obtained, τ g (v) and v
The relationship of

【0026】[0026]

【数7】 [Equation 7]

【0027】の通りとなる。ここで、a,bは実験結果
から得られる定数であり、τg (0)はv=0のときの
τg である。式(6)を変形すると
It becomes as follows. Here, a and b are constants obtained from the experimental results, and τ g (0) is τ g when v = 0. Transforming equation (6),

【0028】[0028]

【数8】 [Equation 8]

【0029】となり、この式(8)は、式(7)を考慮
にいれると、
This equation (8) takes into consideration the equation (7),

【0030】[0030]

【数9】 [Equation 9]

【0031】となり、結局、Then, after all,

【0032】[0032]

【数10】 [Equation 10]

【0033】となる。従って、この式(10)より、フ
ローによる緩和項f(v)と流速vの関係が求めること
ができ、結果として、式(6)より回折光強度の緩和時
間τg(v)とvの関係を求めることができる。次に過
渡回折格子の生成を全反射条件で行なう。全反射条件下
では、過渡回折格子の生成する領域が界面から数100
nm以下になり、この領域の過渡回折光の回折強度の消
滅時間τg を計測することにより、式(6)から逆算す
れば、固液界面液層における流速vを求めることができ
る。
It becomes Therefore, the relation between the relaxation term f (v) due to the flow and the flow velocity v can be obtained from the equation (10), and as a result, the relaxation time τ g (v) and v of the diffracted light intensity can be obtained from the equation (6). You can ask for a relationship. Next, the transient diffraction grating is generated under the condition of total reflection. Under the condition of total internal reflection, the region generated by the transient diffraction grating is several hundreds from the interface.
By measuring the extinction time τ g of the diffraction intensity of the transient diffracted light in this region to be equal to or less than nm, the flow velocity v in the solid-liquid interface liquid layer can be obtained by performing back calculation from the equation (6).

【0034】以下、実施例を示し、この発明の固液界面
液層の流速計測方法についてさらに詳しく説明する。
Hereinafter, the method of measuring the flow velocity of the solid-liquid interface liquid layer according to the present invention will be described in more detail with reference to examples.

【0035】[0035]

【実施例】1−ブタノールにフォトクロミック化合物で
あるスピロオキサジンを約10-3M溶解させた溶液を、
サファイヤプリズムを含む全反射セルを用いてフローさ
せ、透過条件の過渡回折法により、フォトクロミック反
応における回折光強度を計測した。その回折光強度の液
層の平均流速に対する依存性は図2に示す通りとなっ
た。
EXAMPLE A solution prepared by dissolving about 10 −3 M of spirooxazine, which is a photochromic compound, in 1-butanol was prepared.
The diffracted light intensity in the photochromic reaction was measured by the transient diffraction method under the transmission condition by using a total reflection cell including a sapphire prism. The dependence of the intensity of the diffracted light on the average flow velocity of the liquid layer is as shown in FIG.

【0036】この図2から、液層の平均流速が速くなる
につれて観測した回折光強度の消滅時間τg が速くなっ
ていくことがわかる。そして、この発明の方法において
は、この回折光強度の消滅時間τg を計測することによ
り、固液界面液層における流速vを求めることを目的と
しているので、図2を参考にして、回折光強度の消滅時
間τg に対し液層の平均流速vをプロットしてみる。こ
れを示したものが図3である。
It can be seen from FIG. 2 that the disappearance time τ g of the diffracted light intensity observed increases as the average flow velocity of the liquid layer increases. The method of the present invention aims to obtain the flow velocity v in the solid-liquid interface liquid layer by measuring the extinction time τ g of the diffracted light intensity. Therefore, referring to FIG. The average flow velocity v of the liquid layer is plotted against the extinction time τ g of the intensity. This is shown in FIG.

【0037】この図3に例示したように、1/τg の対
数に対して液層の平均流速は、前述の通りよい直線関係
が得られ、その液層の平均流速vは実験的に前記式
(7)の通りとなった。ここでvは液層の平均流速であ
り、この実施例の場合、a=9×10-2m/s、τ
g (0)=690μsであった。
As illustrated in FIG. 3, a good linear relationship is obtained between the average flow velocity of the liquid layer and the logarithm of 1 / τ g as described above, and the average flow velocity v of the liquid layer is experimentally determined as described above. The result is as shown in Expression (7). Here, v is the average flow velocity of the liquid layer, and in this embodiment, a = 9 × 10 −2 m / s, τ
It was g (0) = 690 μs.

【0038】さらに、全反射条件の過渡回折法により、
回折光強度を計測し、その回折光強度の時間依存性は図
4に示す通りであった。この図から、明らかに、マイク
ロメートルおよびサブマイクロメートルの固液界面液層
において回折光強度の消滅時間が遅くなっていることが
わかる。このことは、固液界面液層で流速が遅くなって
いることを示している。
Further, by the transient diffraction method under the condition of total reflection,
The diffracted light intensity was measured, and the time dependence of the diffracted light intensity was as shown in FIG. From this figure, it is apparent that the disappearance time of the diffracted light intensity is delayed in the solid-liquid interface liquid layers of micrometer and sub-micrometer. This indicates that the flow velocity is slow in the solid-liquid interface liquid layer.

【0039】励起光としてのエバネッセント光のしみこ
み深さdpは、蛍光強度の入射角依存性から臨界角θc
を実験的に求めたのち、
The penetration depth dp of the evanescent light as the excitation light is the critical angle θc from the incident angle dependence of the fluorescence intensity.
After experimentally obtaining

【0040】[0040]

【数11】 [Equation 11]

【0041】を用いて計算した。この式(11)におい
て、λ0 は励起光の波長、n1 はサファイヤの屈折率、
θiは励起光の試料への入射角である。全反射の臨界θ
cはサファイヤ/1−ブタノール界面の場合、実験的に
52.1°と求まった。つまり、励起光としてのエバネ
ッセント光のしみこみ深さdpをパラメータとすること
により、その位置の回折光強度の消滅時間τg を計測す
ることができ、このτg を前記透過条件の過渡回折法で
既知となっている式(6)に代入することにより、深さ
dpにおける流速を求めることができる。もちろん、d
pを変化させることによって、流速分布を計測すること
も可能である。
Was calculated using In this equation (11), λ 0 is the wavelength of the excitation light, n 1 is the refractive index of sapphire,
θi is the incident angle of the excitation light on the sample. Total reflection critical θ
In the case of the sapphire / 1-butanol interface, c was experimentally determined to be 52.1 °. That is, the extinction time τ g of the diffracted light intensity at that position can be measured by using the penetration depth dp of the evanescent light as the excitation light as a parameter, and this τ g can be measured by the transient diffraction method under the above transmission conditions. By substituting into the known formula (6), the flow velocity at the depth dp can be obtained. Of course, d
It is also possible to measure the flow velocity distribution by changing p.

【0042】固液界面液層の厚みdpと前記計算から求
まった流速の関係を表1に示した。
Table 1 shows the relationship between the thickness dp of the solid-liquid interface liquid layer and the flow velocity obtained from the above calculation.

【0043】[0043]

【表1】 [Table 1]

【0044】この表1に示す通り、液層の平均流速は
0.12m/secであるが、界面近傍から200nm
以下の領域ではほとんど流れがないように計算される。
As shown in Table 1, the average flow velocity of the liquid layer is 0.12 m / sec, but 200 nm from the vicinity of the interface.
It is calculated that there is almost no flow in the following areas.

【0045】[0045]

【発明の効果】以上詳しく説明した通り、この発明によ
って、マイクロメートルおよびサブマイクロメートルの
固液界面液層の流速および流速分布を正確に計測するこ
とが可能となる。
As described in detail above, according to the present invention, it is possible to accurately measure the flow velocity and the flow velocity distribution of the solid-liquid interface liquid layer of micrometer and sub-micrometer.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の固液界面液層の流速計測法の原理を
示した概要図である。
FIG. 1 is a schematic diagram showing the principle of a flow velocity measuring method for a solid-liquid interface liquid layer of the present invention.

【図2】透過型回折法を用いた回折光強度の緩和時間と
回折強度の関係を示した相関図である。
FIG. 2 is a correlation diagram showing the relationship between the relaxation time of diffracted light intensity and the diffraction intensity using the transmission diffraction method.

【図3】図2の回折光強度の緩和時間と液層の平均流速
の関係を示した関係図である。
3 is a relationship diagram showing the relationship between the relaxation time of the diffracted light intensity of FIG. 2 and the average flow velocity of the liquid layer.

【図4】全反射型回折法を用いた回折光強度の緩和時間
と回折強度の関係を示した関係図である。
FIG. 4 is a relationship diagram showing a relationship between relaxation time of diffracted light intensity and diffraction intensity using a total reflection diffraction method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 孝之 京都府京都市右京区西院三蔵町32番地2 ジョイテル西院604号 (72)発明者 増原 宏 大阪府東大阪市南鴻池町2−4−16 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takayuki Ito, 32, Saizo Sanzocho, Ukyo-ku, Kyoto City, Kyoto Prefecture No. 604 Joytel Saiin (72) Inventor, Hiroshi Masuhara 2-4-16, Minamikonoike-cho, Higashi-Osaka, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体と液体界面における液層の流速を計
測する流速計測方法であって、液層に励起光を照射して
過渡回折格子を生成させた後に励起光の照射を停止し、
透過条件および全反射条件の過渡回折により、回折光強
度の消滅時間から固液界面液層の流速およびその速度分
布を測定することを特徴とする固液界面液層の流速計測
方法。
1. A flow velocity measuring method for measuring the flow velocity of a liquid layer at an interface between a solid and a liquid, wherein the liquid layer is irradiated with excitation light to generate a transient diffraction grating, and then the irradiation of excitation light is stopped.
A method for measuring the flow velocity of a solid-liquid interface liquid layer, which comprises measuring the flow velocity of the solid-liquid interface liquid layer and its velocity distribution from the disappearance time of the diffracted light intensity by transient diffraction under transmission conditions and total reflection conditions.
JP12177893A 1993-05-24 1993-05-24 Flow velocity measurement method for liquid layer at solid-liquid interface Expired - Fee Related JP3276454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12177893A JP3276454B2 (en) 1993-05-24 1993-05-24 Flow velocity measurement method for liquid layer at solid-liquid interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12177893A JP3276454B2 (en) 1993-05-24 1993-05-24 Flow velocity measurement method for liquid layer at solid-liquid interface

Publications (2)

Publication Number Publication Date
JPH06331639A true JPH06331639A (en) 1994-12-02
JP3276454B2 JP3276454B2 (en) 2002-04-22

Family

ID=14819659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12177893A Expired - Fee Related JP3276454B2 (en) 1993-05-24 1993-05-24 Flow velocity measurement method for liquid layer at solid-liquid interface

Country Status (1)

Country Link
JP (1) JP3276454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526224A (en) * 2016-11-15 2017-03-22 东北大学 Solid-liquid two-phase flow velocity measurement device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526224A (en) * 2016-11-15 2017-03-22 东北大学 Solid-liquid two-phase flow velocity measurement device and method

Also Published As

Publication number Publication date
JP3276454B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
EP0226604B1 (en) Optical sensor for selectively determining the presence of substances and the variation of the refraction index in the measured substances
Wang et al. A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas
AU689604B2 (en) Process for detecting evanescently excited luminescence
Tseng et al. Molecular mobility in polymer thin films
US6300638B1 (en) Modular probe for total internal reflection fluorescence spectroscopy
Cahn et al. Concise encyclopedia of materials characterization
JP3396241B2 (en) Transient grating spectroscopy
EP0824684B1 (en) Method for the parallel detection of a plurality of analytes using evanescently excited luminescence
Lavers et al. Planar optical waveguides for sensing applications
US8796012B2 (en) Grating-based evanescent field molecular sensor using a thin silicon waveguide layer
US7110181B2 (en) Method for generating electromagnetic field distributions
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
Zulli et al. Lateral diffusion of an adsorbate at a chromatographic C18/water interface
CA2270665A1 (en) Use of biosensors to diagnose plant diseases
JPH06331639A (en) Measuring method for flow velocity of solid-liquid interface liquid layer
Hodgson et al. Application of pulsed laser photoacoustic sensors in monitoring oil contamination in water
Katayama et al. Detection of photoinduced electronic, thermal, and acoustic dynamics of gold film using a transient reflecting grating method under three types of surface plasmon resonance conditions
EP2016398A1 (en) A chemical sensing device
US20070014017A1 (en) Method for generating electromagnetic field distributions
Quandt et al. One-color molecular photodissociation and detection of hydrogen atoms
Everest et al. Evanescent-wave cavity ring-down ellipsometry
JP2004085528A (en) Method and apparatus for detecting protein association by change in diffusion constant
JP4315083B2 (en) Optical measuring apparatus and optical measuring method
Lavrik et al. Sensing and actuating functionality of hybrid MEMS combining enhanced chemi-mechanical transduction with surface-enhanced Raman spectroscopy
Quang et al. A Simple Simulation of Surface Plasmon Resonance in The Kretschmann Configuration Using Google Sheets

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees