JPH06331634A - Method and device for measuring surface atom distribution - Google Patents

Method and device for measuring surface atom distribution

Info

Publication number
JPH06331634A
JPH06331634A JP5119633A JP11963393A JPH06331634A JP H06331634 A JPH06331634 A JP H06331634A JP 5119633 A JP5119633 A JP 5119633A JP 11963393 A JP11963393 A JP 11963393A JP H06331634 A JPH06331634 A JP H06331634A
Authority
JP
Japan
Prior art keywords
sample
atomic
measuring
atom
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5119633A
Other languages
Japanese (ja)
Inventor
Hidehiro Hashiguchi
栄弘 橋口
Yukimoto Tanaka
幸基 田中
Shigeru Maeda
滋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5119633A priority Critical patent/JPH06331634A/en
Publication of JPH06331634A publication Critical patent/JPH06331634A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure an element constitution and an atomic structure at an atomic level near a sample surface by alternately repeating an operation for measuring the element constitution or atomic arrangement of an atom layer using surface analysis method and an operation for peeling the atoms of the sample surface using a reaction gas. CONSTITUTION:A surface analysis method comprises either ion scattering spectroscopy for detecting a surface first atom layer, electron spectroscopy, or secondary ion mass spectrometry, or a combination of the plurality of methods. A reaction gas for use is either chlorine, fluorine or bromine, or a mixture of them, and exciting energy is imparted by ultraviolet irradiation and/or ion irradiation, in addition to heating of a sample. A measuring apparatus for use comprises a peeling chamber 9 and a measuring chamber 5 connected to each other with airtightness maintained. The sample 7 is set in a positioning device 6 and transported to the peeling chamber 9, and the reaction gas is fed from a reaction gas introducing device 10 and a reaction is excited using an excitation device 11 to peel surface atoms, and then the sample 7 is shifted to the measuring chamber 5 and analyzed using a surface analysis system 8. The above operations are repeated alternately to enable analysis in the depth of the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体材料の表面組成・原
子配列の測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for measuring the surface composition and atomic arrangement of solid materials.

【0002】[0002]

【従来の技術】表面近傍の元素組成・原子配列の解析を
行う手法の中で、最表面第一原子層あるいは極表面から
の信号を取り出す方法は、走査型トンネル電子顕微鏡
(STM)、低エネルギーイオン散乱分光法(ISS)
や低エネルギー電子回折法(LEED)などがある。し
かし、これらの方法では表面から内部への元素組成の分
布や原子配列を得ることはできない。電界イオン顕微鏡
(FIM)は電界放射現象を利用することによって原子
レベルで原子を剥離し、深さ方向分析が可能である。た
だし、この方法は、試料を針状に加工し、その先端数1
0nmの部分しか測定にかからないという測定部位選択
上の制約が大きく、通常の試料表面への適用は困難であ
る。(参考文献:日本表面科学会編「表面科学と基礎と
応用」、1991年、発行:(株)エヌ・ティー・エス
STM:p222,ISS:p246,LEED:p
540,FIM:p562) 表面から内部への原子分布を調べる手法としてはこの他
に、それ自身が深さ方向分析のできる手法である、中
エネルギーイオン散乱分光法(MEID)、角度分解光
電子分光法(XPSまたはUPS)、二次イオン質量分
析法(SIMS)、グロー放電発光分析法(GDS)、
グロー放電質量分析法(GD−MS)等、イオンスパ
ッター法と表面分析法[オージェ電子分光法(AE
S)、X線光電子分光法(XPS)など]とを併用する
方法、化学的エッチングと表面分析法とを併用する方
法、等が用いられている。
2. Description of the Related Art Among the methods for analyzing the elemental composition and atomic arrangement near the surface, the method for extracting the signal from the outermost first atomic layer or the extreme surface is a scanning tunneling electron microscope (STM), low energy. Ion scattering spectroscopy (ISS)
And low energy electron diffraction (LEED). However, these methods cannot obtain the distribution of elemental composition from the surface to the inside or the atomic arrangement. A field ion microscope (FIM) can separate atoms at an atomic level by utilizing a field emission phenomenon and perform depth direction analysis. However, in this method, the sample is processed into a needle shape and the number of tips is 1
There is a large restriction on the measurement site selection that only the 0 nm portion is required for measurement, and it is difficult to apply it to a normal sample surface. (Reference: “Surface Science and Fundamentals and Applications”, edited by The Surface Science Society of Japan, 1991, published by NTS STM: p222, ISS: p246, LEED: p.
540, FIM: p562) In addition to this, as a method for investigating the atomic distribution from the surface to the inside, there are also methods capable of performing depth direction analysis, such as medium energy ion scattering spectroscopy (MEID) and angle-resolved photoelectron spectroscopy. (XPS or UPS), secondary ion mass spectrometry (SIMS), glow discharge emission spectrometry (GDS),
Ion sputtering method and surface analysis method such as glow discharge mass spectrometry (GD-MS) [Auger electron spectroscopy (AE
S), X-ray photoelectron spectroscopy (XPS), etc.], a method using chemical etching and a surface analysis method, and the like.

【0003】[0003]

【発明が解決しようとする課題】従来の表面原子分布測
定法においては、深さ方向の分解能は数原子層が限界で
あり、単原子層単位に深さ方向分析を行うことはできな
かった。本発明は以上のような問題点を除去し、全く独
創的な方法によって表面近傍原子レベルの元素組成・原
子構造を測定する表面原子分布測定方法及びその装置を
提供することを目的としている。
In the conventional surface atom distribution measuring method, the resolution in the depth direction is limited to several atomic layers, and the depth direction analysis cannot be performed for each single atomic layer. An object of the present invention is to eliminate the above problems and provide a surface atomic distribution measuring method and apparatus for measuring the elemental composition and atomic structure at the atomic level near the surface by a completely original method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、表面分析法により試料表面の原
子一層または数原子層の元素組成あるいは原子配列を測
定する操作と、反応性ガスにより、試料表面原子を原子
層単位に剥離する操作とを交互にくり返すことにより、
元素組成または原子配列の表面近傍の深さ方向分布を測
定する。表面分析法としては、表面第一原子層が検出さ
れる方法が用いられる。イオン散乱分光法、電子分光
法、二次イオン質量分析法のいずれかまたは複数の方法
を組み合わせて用いられ、反応性ガスとして塩素、フッ
素、臭素、ヨウ素、酸素のいずれかまたは混合ガスを用
いる。表面原子が該ガス原子と強く化学結合した表面化
合物を脱離させるための励起エネルギーの付与には、試
料加熱の他に、試料面への紫外線等の光照射、イオン照
射、電子線照射を用いる。
In order to achieve the above object, in the present invention, an operation for measuring the elemental composition or atomic arrangement of one atomic layer or several atomic layers on a sample surface by a surface analysis method and a reactive gas are used. By repeating the operation of peeling the sample surface atoms in atomic layer units alternately,
The depth distribution of the elemental composition or atomic arrangement near the surface is measured. As the surface analysis method, a method in which the surface first atomic layer is detected is used. Any one of ion scattering spectroscopy, electron spectroscopy, secondary ion mass spectrometry, or a combination of a plurality of methods is used, and any one of chlorine, fluorine, bromine, iodine, and oxygen or a mixed gas is used as a reactive gas. In order to apply the excitation energy for desorbing the surface compound in which the surface atom is strongly chemically bonded to the gas atom, in addition to sample heating, light irradiation such as ultraviolet light on the sample surface, ion irradiation, and electron beam irradiation are used. .

【0005】そして、上記の表面原子分布測定を可能と
する装置には、気密性の高い容器に、表面分析装置と、
測定試料の位置調整する装置と、反応性ガスを最小必要
量導入する装置と、試料面を励起する装置とを配設す
る。この中の表面分析装置としてイオン散乱分光装置、
電子分光装置、二次イオン質量分析装置のいずれかを設
置し、試料面を励起する装置として試料加熱装置、電子
照射装置、光照射装置、イオン照射装置のいずれかを設
置する。
The device capable of measuring the surface atom distribution includes a highly airtight container, a surface analysis device, and
An apparatus for adjusting the position of the measurement sample, an apparatus for introducing the minimum required amount of the reactive gas, and an apparatus for exciting the sample surface are provided. As a surface analysis device in this, an ion scattering spectrometer,
An electron spectrometer or a secondary ion mass spectrometer is installed, and a sample heating device, an electron irradiation device, a light irradiation device, or an ion irradiation device is installed as a device for exciting the sample surface.

【0006】[0006]

【作用】反応性ガスを試料表面に吸着・反応させると、
表面原子が該ガス原子と強く化学結合した表面化合物が
生成して内部原子との結合が切れ易くなり、比較的小さ
い励起エネルギーの付与により表面化合物が脱離する。
この表面現象は、最表面原子一層で起こるので、表面原
子一層だけを剥離することができる。反応性ガスとして
は、測定する試料表面に容易に吸着・反応し試料表面原
子との化合物を作り易いガスである塩素、フッ素、臭
素、ヨウ素、酸素のいずれか、または混合ガスが用いら
れる。該反応性ガスの導入は、測定面に一層吸着させる
のに必要で、装置内部を反応性ガスで腐食させないため
にできるだけ少量でかつ短時間が好ましく、通常10-3
Pa程度の低圧で測定面に吹きつけ、数10秒以内の短
時間に排気するのが効果的である。また、表面化合物の
脱離のための励起エネルギーの付与は、表面に生成した
化合物が低温で昇華する場合には、試料加熱が用いられ
る。ただし、この場合には、測定する試料表面近傍の原
子配列が乱されない温度で加熱することが条件である。
試料加熱法として、赤外線照射が試料内部を昇温させ難
いために有効である。試料加熱の他に、紫外線等の光照
射、イオン照射、電子線照射が用いられる。紫外線照射
は試料表面原子とその直下の原子との結合を絶つような
エネルギーを選択すると、試料原子の配列を乱すことな
く表面原子の剥離が行えて有効である。イオン照射は、
試料原子のイオンスパッターが殆ど起こらない弱いイオ
ン照射条件で、表面化合物のイオン照射誘起脱離が起こ
ることを利用して行う。
[Function] When a reactive gas is adsorbed and reacted on the sample surface,
A surface compound in which the surface atom is strongly chemically bonded to the gas atom is generated to easily break the bond with the internal atom, and the surface compound is desorbed by applying a relatively small excitation energy.
Since this surface phenomenon occurs at the outermost surface atom layer, only the surface atom layer can be peeled off. As the reactive gas, one of chlorine, fluorine, bromine, iodine and oxygen, which is a gas that easily adsorbs and reacts with the sample surface to be measured and easily forms a compound with sample surface atoms, or a mixed gas is used. The introduction of the reactive gas is necessary for further adsorption on the measurement surface, and is preferably as small as possible and for a short time in order not to corrode the inside of the apparatus with the reactive gas, usually 10 −3
It is effective to blow it on the measurement surface at a low pressure of about Pa and exhaust it within a short time of several tens of seconds. Further, application of excitation energy for desorption of the surface compound is performed by heating the sample when the compound generated on the surface sublimes at a low temperature. However, in this case, the condition is that heating is performed at a temperature at which the atomic arrangement near the sample surface to be measured is not disturbed.
As a sample heating method, infrared irradiation is effective because it is difficult to raise the temperature inside the sample. In addition to sample heating, light irradiation such as ultraviolet light, ion irradiation, or electron beam irradiation is used. The ultraviolet irradiation is effective because the surface atoms can be exfoliated without disturbing the arrangement of the sample atoms by selecting the energy that breaks the bond between the sample surface atoms and the atoms immediately below. Ion irradiation is
Ion irradiation-induced desorption of the surface compound is performed under weak ion irradiation conditions where ion sputtering of sample atoms hardly occurs.

【0007】表面分析法としては、表面第一原子層が検
出される方法が用いられる。イオン散乱分光法が望まし
い。特に低エネルギーイオンを使うイオン散乱分光法で
は、およそ表面第一原子層の元素組成と、表面二原子層
の原子配列とを測定することができる。AES、XPS
の電子分光法あるいはSIMSは必ずしも表面第一層だ
けの情報でなく、表面の数原子層を検出する方法である
が、AESは微少部分析、XPSは化学状態分析、SI
MSは高感度分析が可能であるというそれぞれの特長を
活用するために用いられる。前記の表面原子層剥離と、
表面分析法による剥離後の表面の測定とを繰り返し行え
ば、元素組成や原子配列の表面近傍の深さ方向分布を原
子レベルで測定することができる。しかも、本発明で用
いる表面原子剥離は試料内部原子へダメージを殆ど与え
ることなく行えるので、試料本来の元素組成や原子配列
の測定が可能である。
As the surface analysis method, a method of detecting the surface first atomic layer is used. Ion scattering spectroscopy is preferred. In particular, ion scattering spectroscopy using low-energy ions can measure the elemental composition of the surface first atomic layer and the atomic arrangement of the surface diatomic layer. AES, XPS
Electron spectroscopy or SIMS is a method to detect several atomic layers on the surface, not necessarily information only on the first layer on the surface, but AES is minute part analysis, XPS is chemical state analysis, SI
MS is used to take advantage of each feature that enables high sensitivity analysis. With the surface atomic layer peeling,
By repeating the measurement of the surface after peeling by the surface analysis method, the elemental composition and the distribution in the depth direction near the surface of the atomic arrangement can be measured at the atomic level. Moreover, since the surface atom exfoliation used in the present invention can be performed with almost no damage to the atoms inside the sample, the original elemental composition and atomic arrangement of the sample can be measured.

【0008】本発明による表面原子を原子レベルで剥離
する機構とその剥離された面を測定する方法の概念を図
1および図2にもとづいて説明する。図1は測定の手順
を示す。まず、この最表面原子層の組成または原子配列
を表面分析法により測定する。図2(a)は測定する試
料の表面近傍の原子の配置を示した断面図である。次い
で、この表面に反応性ガスを導入して吸着させた状態が
図2(b)である。吸着のさせ方は、試料を配置した空
間を真空に排気した後、反応性ガスを低圧で導入する。
表面への吸着が良好に行われたか否かを確認するのに、
前記の表面分析法を利用するのが有効である。表面原子
と反応性ガス原子との強い結合により、表面原子と試料
内部の原子との結合力が弱まり、脱離し易くなる。
The concept of the mechanism for exfoliating surface atoms at the atomic level and the method for measuring the exfoliated surface according to the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows the measurement procedure. First, the composition or atomic arrangement of this outermost atomic layer is measured by the surface analysis method. FIG. 2A is a sectional view showing the arrangement of atoms near the surface of the sample to be measured. Next, FIG. 2B shows a state in which a reactive gas is introduced and adsorbed on this surface. As for the adsorption method, the space in which the sample is placed is evacuated to a vacuum, and then the reactive gas is introduced at a low pressure.
To confirm whether the adsorption to the surface was successful,
It is effective to use the above-mentioned surface analysis method. The strong bond between the surface atom and the reactive gas atom weakens the bonding force between the surface atom and the atom inside the sample, which facilitates desorption.

【0009】この表面に励起エネルギーを付与して試料
最表面原子と吸着原子との化合物を昇華・脱離させるこ
とによって、表面原子一層を剥離する。このように表面
一層が剥離された状態が図2(c)であり、この面の表
面原子層の元素組成または原子配列を再度測定する。以
降、表面原子層の剥離と剥離面の測定を繰り返し行うこ
とによって、元素組成あるいは原子配列の試料表面近傍
の深さ方向分布の測定を原子レベルで行うことができ
る。
Excitation energy is applied to this surface to sublimate and desorb the compound of the sample outermost surface atom and the adsorbed atom, thereby peeling off one surface atom layer. FIG. 2C shows a state in which one surface layer is peeled off in this way, and the elemental composition or atomic arrangement of the surface atomic layer on this surface is measured again. After that, by repeating the peeling of the surface atomic layer and the measurement of the peeled surface, the distribution of the elemental composition or the atomic arrangement in the depth direction near the sample surface can be measured at the atomic level.

【0010】次に本発明の測定装置の概念を、図3の模
式図により説明する。本発明の装置は通常、測定室5と
剥離室9から構成されている。両室は気密を保って繋が
っている。また、それぞれに真空排気系4が接続されて
いる。測定室5には試料位置調整装置6、表面分析装置
8が配置され、剥離室9には反応性ガス導入装置10、
剥離のための励起装置11が設置されている。測定室と
剥離室とを分離せず一つの室とする場合もある。両室を
分離するのは、反応性ガスが表面分析装置8の部品材料
を侵すのを避けるべく測定室5に反応性ガスが導入しな
いよう配慮したためである。極表面を測定すべき試料表
面が大気により汚染・変質するのを防ぐために、測定室
は真空チャンバーとしての機能を備えた気密性の高い構
造になっている。試料位置調整装置6は、これに試料を
置き試料位置の制御を行うもので、試料加熱機能を有す
る場合もある。測定室5と剥離室9が別室になっている
場合は、両室間の移動もこの試料位置調整装置6で行
う。反応性ガス導入装置10は、表面原子剥離のために
試料表面に吸着させる反応性ガスを必要量導入するもの
で、導入量を微調整する機能を備えている。剥離のため
の励起装置11は、表面に生成した化合物を脱離させる
ための励起エネルギーを導入するものである。以上の構
成の他にコントロール部13、試料導入機構12を設置
することがある。コントロール部13は、表面剥離と表
面分析との交互の操作を効率的に行うもので、できれば
自動的に行う制御機能を有した方が望ましい。試料導入
機構12は試料の導入・排出を効率的に行うためのもの
である。
Next, the concept of the measuring apparatus of the present invention will be described with reference to the schematic diagram of FIG. The device of the present invention is usually composed of a measuring chamber 5 and a peeling chamber 9. Both rooms are connected airtightly. Further, the vacuum exhaust system 4 is connected to each of them. A sample position adjusting device 6 and a surface analyzer 8 are arranged in the measuring chamber 5, and a reactive gas introducing device 10 is provided in the peeling chamber 9.
An excitation device 11 for peeling is installed. There is a case where the measurement chamber and the peeling chamber are not separated but are combined into one chamber. The reason why the two chambers are separated is to prevent the reactive gas from being introduced into the measurement chamber 5 in order to avoid the reactive gas from invading the component materials of the surface analysis device 8. The measurement chamber has a highly airtight structure having a function as a vacuum chamber in order to prevent contamination and deterioration of the surface of the sample whose polar surface is to be measured by the atmosphere. The sample position adjusting device 6 controls the sample position by placing a sample on the sample position adjusting device 6, and may have a sample heating function. When the measuring chamber 5 and the peeling chamber 9 are separate chambers, the sample position adjusting device 6 also moves between the two chambers. The reactive gas introduction device 10 introduces a required amount of the reactive gas to be adsorbed on the sample surface for surface atom separation, and has a function of finely adjusting the introduced amount. The excitation device 11 for peeling introduces excitation energy for desorbing the compound generated on the surface. In addition to the above configuration, the control unit 13 and the sample introduction mechanism 12 may be installed. The control unit 13 efficiently performs an alternating operation of surface peeling and surface analysis, and preferably has a control function of automatically performing it. The sample introduction mechanism 12 is for efficiently introducing and discharging the sample.

【0011】[0011]

【実施例】【Example】

(実施例1)本発明の測定装置の実施例として、表面分
析装置にISSを採用した例を示す。図4は実施例を側
面から見た図である。分子ターボポンプ14で引かれる
真空容器15内に置かれた測定試料7を中心にISSの
ためのイオン照射するイオン銃16と散乱イオンのエネ
ルギーを分析する飛行時間型アナライザー17が配置さ
れている。さらに反応性ガス導入装置10と表面原子剥
離のための励起エネルギーとして紫外線照射する紫外線
レーザー18も配置されている。反応性ガスとして、塩
素ガスとフッ素ガスを切替えて供給できる。
(Embodiment 1) As an embodiment of the measuring apparatus of the present invention, an example in which ISS is adopted as a surface analyzer is shown. FIG. 4 is a side view of the embodiment. An ion gun 16 for irradiating ions for ISS and a time-of-flight analyzer 17 for analyzing the energy of scattered ions are arranged around a measurement sample 7 placed in a vacuum container 15 pulled by a molecular turbo pump 14. Further, a reactive gas introducing device 10 and an ultraviolet laser 18 for irradiating ultraviolet rays as excitation energy for surface atom exfoliation are also arranged. As the reactive gas, chlorine gas and fluorine gas can be switched and supplied.

【0012】次に本発明を実際に表面近傍の元素組成の
測定に適用した例について述べる。測定装置は図4の実
施例で示した装置を用いた。試料は、電子ビーム蒸着法
により、シリコン基板上にタングステンとニッケルを各
8原子層狙いで交互に計4層成膜したものである。表面
分析法として、1keVのネオンイオンによるISSを
用いた。表面剥離法としての反応性ガスには塩素ガスを
用い、剥離のための励起エネルギーとして紫外線照射を
用いた。まず、表面をISS測定する。塩素ガスを試料
面に吹付け30秒後に排気する。次に紫外線レーザーを
照射する。この一連の操作を繰り返す。この測定により
得られた結果を図5に示す。横軸はISS測定、塩素ガ
スの吹付け、紫外線照射を一サイクルとする回数であ
り、このサイクル一回は試料原子一層を剥離しているこ
とに相当する。縦軸はISS測定スペクトルからタング
ステンとニッケルの濃度に換算した値である。即ち、図
5は表面近傍の元素組成の深さ方向分布を示しているこ
とになる。この結果の界面付近の元素の急峻な変化か
ら、ほぼ原子層の分解能で深さ分布が得られていること
が分かる。しかも、シリコン基板に至るまで深さ分解能
は殆ど悪くなっていない。
Next, an example in which the present invention is actually applied to the measurement of the elemental composition near the surface will be described. The measuring device used was the device shown in the embodiment of FIG. The sample is a film in which a total of 4 layers of tungsten and nickel are alternately deposited for 8 atomic layers on a silicon substrate by an electron beam evaporation method. As the surface analysis method, ISS using neon ions of 1 keV was used. Chlorine gas was used as a reactive gas for the surface stripping method, and ultraviolet irradiation was used as excitation energy for stripping. First, the surface is subjected to ISS measurement. Chlorine gas is sprayed on the sample surface and exhausted after 30 seconds. Next, an ultraviolet laser is irradiated. This series of operations is repeated. The results obtained by this measurement are shown in FIG. The abscissa represents the number of times that ISS measurement, chlorine gas spraying, and ultraviolet ray irradiation make up one cycle, and one cycle corresponds to peeling one atomic layer of the sample. The vertical axis is the value converted from the ISS measurement spectrum into the concentrations of tungsten and nickel. That is, FIG. 5 shows the depthwise distribution of the elemental composition near the surface. From the steep change of the elements near the interface as a result, it can be seen that the depth distribution is obtained with almost the resolution of the atomic layer. Moreover, the depth resolution does not deteriorate to the silicon substrate.

【0013】(比較例)オージェ電子分光法とイオンス
パッター法とを組み合わせた方法で、実施例1の試料と
同じ多層膜を深さ方向分析した結果を図5に示す。Ar
イオンを1keVで8秒間照射して、試料表面をスパッ
ターする操作と、オージェ電子分光測定とを交互に行っ
た。スパッター積算時間を横軸に、得られたオージェス
ペクトルから算出した各元素の濃度を縦軸にプロットし
ている。これから分かるように、この方法による深さ分
解能は、表面から1−2層目の界面でも5原子層程度、
4層目と基板との界面でほぼ6原子層となっている。こ
れはイオン照射による試料原子のアトミックミキシング
によるものであり、この様な薄層の分布分析の役には立
たないことが分かる。
(Comparative Example) FIG. 5 shows the results of depth direction analysis of the same multilayer film as the sample of Example 1 by a method combining Auger electron spectroscopy and ion sputtering. Ar
The operation of irradiating ions at 1 keV for 8 seconds to sputter the sample surface and the Auger electron spectroscopy measurement were alternately performed. The sputter integration time is plotted on the horizontal axis, and the concentration of each element calculated from the obtained Auger spectrum is plotted on the vertical axis. As can be seen from this, the depth resolution by this method is about 5 atomic layers even at the interface of the 1-2nd layer from the surface,
The interface between the fourth layer and the substrate is approximately 6 atomic layers. This is due to the atomic mixing of the sample atoms by ion irradiation, and it can be seen that such distribution analysis of thin layers is not useful.

【0014】これに引き換え、本発明法により、同じ試
料を測定した結果は十分な深さ分解能を持っており、こ
のような薄層の成膜の評価にも十分適用できることが分
かる。
On the other hand, it can be seen that the result of measuring the same sample by the method of the present invention has a sufficient depth resolution, and can be sufficiently applied to the evaluation of the film formation of such a thin layer.

【0015】(実施例2)本発明を表面近傍の原子配列
の測定に適用した例について述べる。測定した試料は分
子線エピタキシャル法で作製したニッケル薄膜である。
表面原子配列分析法としては1keVのネオンイオンを
使ったISSを用いた。ISSはイオンビームの試料面
への入射角を変えながら散乱イオン強度を測ると、イオ
ンビームのシャドウイング効果により散乱強度が変化す
るので、表面第1層と第2層との原子配列の関係を求め
ることができる。試料原子の剥離は実施例1と同じ塩素
ガスの吹付けと紫外線照射により行った。求めた結果を
試料表面垂直方向から見た図(上面図)として表示した
のが図7(a)である。塩素ガスを用いる表面剥離法に
より表面第1層を剥離した後、第2層と第3層との原子
配列を測定して上面図として表示したのが図7(b)で
ある。この結果を第1、第2、第3層合わせて表示する
と図7(c)となる。第2層と第3層との配列の可能性
として図8(a)も有り得る(この場合の第1〜第3層
の配列を図8(b)に示す)が、本測定により、この配
列ではないことが確認できた。
Example 2 An example in which the present invention is applied to the measurement of atomic arrangement near the surface will be described. The measured sample is a nickel thin film prepared by the molecular beam epitaxial method.
As the surface atomic arrangement analysis method, ISS using neon ion of 1 keV was used. In ISS, when the scattered ion intensity is measured while changing the incident angle of the ion beam on the sample surface, the scattering intensity changes due to the shadowing effect of the ion beam. Therefore, the relation of the atomic arrangement between the first layer and the second layer on the surface is determined. You can ask. The stripping of the sample atoms was performed by spraying chlorine gas and irradiating with ultraviolet rays as in Example 1. FIG. 7A shows the obtained results as a view (top view) viewed from the direction perpendicular to the sample surface. FIG. 7B shows a top view obtained by measuring the atomic arrangement of the second layer and the third layer after the surface first layer was separated by the surface separation method using chlorine gas. FIG. 7C shows the result when the first, second, and third layers are displayed together. FIG. 8A is also possible as a possibility of arranging the second layer and the third layer (the arrangement of the first to third layers in this case is shown in FIG. 8B). I confirmed that it is not.

【0016】[0016]

【発明の効果】以上説明したように、本発明は表面近傍
の元素組成および原子配列の分布測定を原子レベルの深
さ分解能で可能にするものであり、高機能性薄膜材料な
どの評価を通じて、これら材料の開発に多大の寄与をす
るものである。
Industrial Applicability As described above, the present invention enables the distribution measurement of elemental composition and atomic arrangement near the surface with depth resolution at the atomic level, and through the evaluation of highly functional thin film materials, It makes a great contribution to the development of these materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による表面近傍の原子組成を測定する手
順を示す図である。
FIG. 1 is a diagram showing a procedure for measuring an atomic composition near a surface according to the present invention.

【図2】本発明による表面原子剥離を模式的に表した図
である。(a)は測定する試料の表面近傍の元素の配置
を示した断面図である。(b)はこの表面に反応性ガス
を吸着させた状態を示す。(c)は試料表面原子一層を
剥離した後の試料原子の断面配列を示す図である。
FIG. 2 is a diagram schematically showing surface atom exfoliation according to the present invention. (A) is a sectional view showing the arrangement of elements in the vicinity of the surface of the sample to be measured. (B) shows a state in which a reactive gas is adsorbed on this surface. (C) is a figure which shows the cross-section arrangement | sequence of the sample atom after peeling one atomic layer of a sample surface.

【図3】本発明による測定装置を概念的に示す図であ
る。
FIG. 3 is a diagram conceptually showing a measuring apparatus according to the present invention.

【図4】本発明による測定装置の実施例を示す図であ
る。
FIG. 4 is a diagram showing an embodiment of a measuring device according to the present invention.

【図5】本発明により表面近傍の元素組成を深さ方向分
布を測定した結果を示す図。
FIG. 5 is a diagram showing the results of measuring the distribution in the depth direction of the elemental composition near the surface according to the present invention.

【図6】オージェ電子分光法とイオンスパッター法とを
組み合わせた方法で図5と同じ試料を測定した結果を示
す図である。
FIG. 6 is a diagram showing the results of measuring the same sample as in FIG. 5 by a method combining Auger electron spectroscopy and ion sputtering.

【図7】本発明により表面原子配列を測定した結果を示
す図である。(a)はISSにより求めた表面第1層と
第2層との原子配列を試料表面垂直方向から(上面図と
して)表示した図である。(b)は本発明法の塩素ガス
を用いる表面剥離法により表面第1層を剥離した後、第
2層と第3層との原子配列を測定して上面図として表示
した図である。(c)は求められた表面原子配列を第
1、第2、第3層合わせて表示した図である。
FIG. 7 is a diagram showing a result of measuring a surface atomic arrangement according to the present invention. (A) is a diagram showing the atomic arrangement of the surface first layer and the second layer obtained by ISS from the direction perpendicular to the sample surface (as a top view). (B) is a diagram showing the atomic arrangement of the second layer and the third layer after peeling off the first surface layer by the surface peeling method using chlorine gas of the method of the present invention and displaying it as a top view. (C) is a diagram in which the obtained surface atomic arrangement is displayed together with the first, second, and third layers.

【図8】解析結果以外に考えられた原子配列を示す図で
ある。(a)は解析結果以外に、第2層と第3層との配
列の可能性として有り得る配列を示す図である。(b)
は第1〜第3層の配列を合わせて示した図である。
FIG. 8 is a diagram showing an atomic arrangement considered other than the analysis result. (A) is a diagram showing a possible arrangement of the second layer and the third layer other than the analysis result. (B)
[Fig. 4] is a view showing the arrangement of the first to third layers together.

【符号の説明】[Explanation of symbols]

1 試料を構成するマトリックス原子(○) 2 試料不純物元素(△) 3 吸着反応性原子(●) 4 真空排気系 5 測定室 6 測定位置調整装置 7 測定試料 8 表面分析装置 9 剥離室 10 反応性ガス導入装置 11 剥離のための励起装置 12 試料導入機構 13 コントロール部 14 ターボ分子ポンプ 15 真空容器 16 イオン銃 17 TOF型アナライザー 18 紫外線レーザー 1 Matrix atoms constituting sample (○) 2 Sample impurity element (△) 3 Adsorption reactive atom (●) 4 Vacuum exhaust system 5 Measuring chamber 6 Measuring position adjusting device 7 Measuring sample 8 Surface analysis device 9 Stripping chamber 10 Reactivity Gas introduction device 11 Excitation device for peeling 12 Sample introduction mechanism 13 Control unit 14 Turbo molecular pump 15 Vacuum container 16 Ion gun 17 TOF type analyzer 18 Ultraviolet laser

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面分析法により試料表面の原子一層ま
たは数原子層の元素組成あるいは原子配列を測定する操
作と、反応性ガスを試料表面原子と反応させ結合した試
料原子を脱離させて試料表面を単原子層単位に剥離する
操作とをくり返すことにより、元素組成または原子配列
の表面近傍の深さ方向分布を測定することを特徴とする
表面原子分布測定方法。
1. A sample in which an elemental composition or atomic arrangement of an atomic layer or several atomic layers on a sample surface is measured by a surface analysis method, and a reactive gas is reacted with a sample surface atom to release a bonded sample atom A method for measuring a surface atomic distribution, characterized in that the elemental composition or atomic distribution in the vicinity of the surface in the depth direction is measured by repeating the operation of peeling the surface in units of a monoatomic layer.
【請求項2】 表面分析法としてイオン散乱分光法、電
子分光法、二次イオン質量分析法のいずれかまたは組み
合わせた方法を用い、反応性ガスとして塩素、フッ素、
臭素、ヨウ素、酸素のいずれかまたは混合ガスを用いる
ことを特徴とする請求項1項記載の表面原子分布測定方
法。
2. A surface analysis method using any one of ion scattering spectroscopy, electron spectroscopy, secondary ion mass spectrometry, or a combination thereof, and chlorine or fluorine as a reactive gas,
The surface atom distribution measuring method according to claim 1, wherein any one of bromine, iodine and oxygen or a mixed gas is used.
【請求項3】 気密性の容器に、表面分析装置と、測定
試料の位置調整する装置と、反応性ガスを導入する装置
と、試料面を励起する装置とを配設したことを特徴とす
る表面原子分布測定装置。
3. A surface analysis device, a device for adjusting the position of a measurement sample, a device for introducing a reactive gas, and a device for exciting a sample surface are provided in an airtight container. Surface atomic distribution measuring device.
【請求項4】 表面分析装置としてイオン散乱分光装
置、電子分光装置、二次イオン質量分析装置のいずれか
または組み合わせて設置し、試料面を励起する装置とし
て試料加熱装置、電子照射装置、光照射装置、イオン照
射装置のいずれかを設置したことを特徴とする請求項3
項記載の表面原子分布測定装置。
4. A surface analysis device, which is installed in combination with any one of an ion scattering spectroscope, an electron spectroscope, a secondary ion mass spectroscope, or a combination thereof, and which excites a sample surface, a sample heating device, an electron irradiation device, and a light irradiation 4. An apparatus or an ion irradiation apparatus is installed.
The surface atom distribution measuring device according to the item.
JP5119633A 1993-05-21 1993-05-21 Method and device for measuring surface atom distribution Withdrawn JPH06331634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119633A JPH06331634A (en) 1993-05-21 1993-05-21 Method and device for measuring surface atom distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119633A JPH06331634A (en) 1993-05-21 1993-05-21 Method and device for measuring surface atom distribution

Publications (1)

Publication Number Publication Date
JPH06331634A true JPH06331634A (en) 1994-12-02

Family

ID=14766281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119633A Withdrawn JPH06331634A (en) 1993-05-21 1993-05-21 Method and device for measuring surface atom distribution

Country Status (1)

Country Link
JP (1) JPH06331634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260807A (en) * 2005-03-15 2006-09-28 Fujitsu Ltd Element measuring instrument and element measuring method
CN110487834A (en) * 2019-07-24 2019-11-22 北京科技大学 It is a kind of for measuring the sample frame and its application method of Surface Segregation volatile quantity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260807A (en) * 2005-03-15 2006-09-28 Fujitsu Ltd Element measuring instrument and element measuring method
CN110487834A (en) * 2019-07-24 2019-11-22 北京科技大学 It is a kind of for measuring the sample frame and its application method of Surface Segregation volatile quantity
CN110487834B (en) * 2019-07-24 2024-05-07 北京科技大学 Sample rack for measuring surface partial polymerization volatilization amount and use method thereof

Similar Documents

Publication Publication Date Title
Oehrlein Reactive‐Ion Etching
US6667475B1 (en) Method and apparatus for cleaning an analytical instrument while operating the analytical instrument
Holloway et al. Electron spectroscopy of condensed multilayers: Line shape changes due to beam damage and excitation mode
Ishikawa et al. Transitional change to amorphous fluorinated carbon film deposition under energetic irradiation of mass-analyzed carbon monofluoride ions on silicon dioxide surfaces
WO2005040778A1 (en) Electronic spectral analyzing method and analyzer
Lichtman et al. Electron probe surface mass spectrometry study of CO on molybdenum
Heiland et al. 6. Ion Scattering and Secondary-Ion Mass Spectrometry
Baun Ion scattering spectrometry: A versatile technique for a variety of materials
Mase et al. Ion desorption induced by core-electron transitions studied with electron–ion coincidence spectroscopy
Guo et al. Charging phenomena and charge compensation in AES on metal oxides and silica
JPH06331634A (en) Method and device for measuring surface atom distribution
Moens et al. Dependence of interface widths on ion bombardment conditions in secondary ion mass spectrometric analysis of a nickel/chromium multilayer structure
CA2038518C (en) Glow discharge atomic emission spectroscopy and apparatus thereof
Hoflund et al. The interaction of O2 and CO with polycrystalline Zr
Souda et al. Capture and loss of valence electrons during low energy H+ and H− scattering from LaB6 (100), Cs/Si (100), graphite and LiCl
Bailey et al. Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy
Canney et al. Electron momentum spectroscopy studies on the oxidation of aluminium
Markowski et al. Electron-stimulated desorption from LiF on Si (100)
Baker Surface analysis by electron spectroscopy
Senanayake et al. UO2 (111) single crystal: comparison of stoichiometric and defective surfaces by XPS
Bhattacharyya et al. Investigation of relative sputtering yields during ionoluminescence of Si
Tanaka et al. Electron-Ion Coincidence Spectroscopy as a New Tool for Surface Analysis–an Application to the Ice Surface
Voborný et al. Deposition and in-situ characterization of ultra-thin films
Beerling et al. Direct observation of the etching of damaged surface layers from natural diamond by low‐energy oxygen ion bombardment
Morgan et al. Conversion of methane to higher hydrocarbons by the interaction between electrons and ions at a surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801