JPH06331535A - Measuring method of pulverulent-body adhesion force in fluid state - Google Patents

Measuring method of pulverulent-body adhesion force in fluid state

Info

Publication number
JPH06331535A
JPH06331535A JP12285293A JP12285293A JPH06331535A JP H06331535 A JPH06331535 A JP H06331535A JP 12285293 A JP12285293 A JP 12285293A JP 12285293 A JP12285293 A JP 12285293A JP H06331535 A JPH06331535 A JP H06331535A
Authority
JP
Japan
Prior art keywords
powder
pulverulent
adhesion force
velocity
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12285293A
Other languages
Japanese (ja)
Inventor
Yoshikimi Itani
圭仁 井谷
Hisashi Kono
尚志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12285293A priority Critical patent/JPH06331535A/en
Publication of JPH06331535A publication Critical patent/JPH06331535A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To measure a pulverulent-body adhesion force in a comparatively weak or fluid state by using a fluid layer not only at room temperature and under normal pressure but also in an industrial usage atmosphere by operating the pulverulent-body adhesion force of a pulverulent body in which a fluidization state whose minimum fluidization velocity and air-bubble start velocity are different under a measuring condition exists. CONSTITUTION:A primary regression line which has been found from a pulverulent-body differential pressure at a minimum fluidization velocity Umf, an air-bubble start velocity Umb, a pulverulent-body stationary-layer height Hlp, a pulverulent-body average particle size dp and a superficial velocity at the Umf of lower is extended, a pulverulent-body differential- pressure estimation point at the Umb is found, the difference DELTAP* between a pulverulent-body differential pressure at the Umb and a pulverulent-body differential pressure at the Umf is measured, and a pulverulent-body adhesion force deltaf is found by the following formula: sigmaf=DELTAP*/4*(Umf<0.5>+Umb<0.5>/Umb<0.5>*dp/Hlp. By the definition formula, the pulverulent-body adhesion force of a weak powder or in a fluid state can be measured not only at room temperature and under normal pressure but also in an industrial usage atmosphere. When the pulverulent- body adhesion force is used, a method of keeping the fluid state optimum, e.g. of making the distribution of a particle size optimum, can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体を取り扱う装置設
計(例えば、集塵装置、粉体輸送等)また、粉体の流動
状態を管理する産業(例えばFluidized Catalyst Crack
ing 、アクリロニトリル、オキシクロリネーション、無
水マレイン酸等の流動層反応、流動層燃焼等)に使用さ
れる粉体の付着力を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus design for handling powder (for example, a dust collector, powder transportation, etc.) and an industry for controlling the flow state of powder (for example, Fluidized Catalyst Crack).
ing, acrylonitrile, oxychlorination, fluidized bed reaction of maleic anhydride, etc., fluidized bed combustion, etc.).

【0002】[0002]

【従来の技術】本明細書の中で、粒子とは粉1つ1つの
粒を指し、粉体とは粒子の集合体を指す。相互粒子間力
等により形成された粉体にはその粉体の形状を保とうと
する力が存在し、粉体を破断する際にはある程度の応力
を必要とする。この粉体を破断する際に必要な応力を以
下粉体付着力と呼ぶ。
2. Description of the Related Art In the present specification, a particle refers to each grain and a powder refers to an aggregate of particles. The powder formed by the mutual interparticle force has a force for keeping the shape of the powder, and a certain amount of stress is required to break the powder. The stress necessary for breaking the powder is hereinafter referred to as the powder adhesive force.

【0003】粉体付着力は例えば粉体工学便覧初版 p.9
0-270 に示すごとく、粉体の基本特性の一つとして重要
である。従来より非流動状態の粉体付着力を測定する装
置は種々開発され、主な測定法として引っ張り破断法、
せん断法、圧裂破断法がある。これらの方法は、粉体付
着力測定の前準備として当該粉体を圧縮成型する必要が
ある。(粉体工学便覧初版 p.126-129参照)この場合
に、粉体は圧縮成型できなければ測定セル上にとどまる
事ができず、工業的に流動層反応、例えばFCC、アク
リロニトリル、メタアクリロニトリル製造で使用される
ような比較的小さな粉体付着力を有する粉体の測定は不
可能であった。
The powder adhesion is described in, for example, the Handbook of Powder Engineering, First Edition p.9.
As shown in 0-270, it is important as one of the basic properties of powder. Conventionally, various devices for measuring the powder adhesion force in the non-fluid state have been developed, and the main measurement method is the tensile rupture method,
There are shear method and rupture fracture method. These methods require compression molding of the powder as a preparation for the measurement of the powder adhesive force. (Refer to p.126-129 for the first edition of Powder Engineering Handbook) In this case, the powder cannot stay on the measuring cell unless it can be compression molded, and industrially fluidized bed reaction, such as FCC, acrylonitrile, and methacrylonitrile production. It has not been possible to measure powders with a relatively small powder adhesion, as used in.

【0004】また、従来の粉体付着力測定方法は、圧縮
成型したケーキ状の粉体における付着力の測定方法であ
り、工業上、例えば流動層、空気輸送等で使用されてい
る流動状態での粉体付着力の測定は今までの技術では不
可能であった。一般に、粉体付着力は粉体空隙率によっ
て変化し、粉体付着力、粉体空隙率、相互粒子間力、粒
子配位数、平均粒子径をそれぞれσf 、ε、Φ、k、d
p とした場合、下記の式(2)のRumpf の式(Rumpf, C
hem. Ing. Tech., 30, 144 (1958) 参照)で表現できる
事が知られている。
The conventional method for measuring the adhesive force of powder is a method for measuring the adhesive force of a cake-like powder which is compression-molded, and is used in a fluidized state which is industrially used, for example, in a fluidized bed or pneumatic transportation. It has been impossible to measure the powder adhesion force of the above with conventional technology. Generally, the powder adhesive force changes depending on the powder porosity, and the powder adhesive force, the powder porosity, the mutual particle force, the particle coordination number, and the average particle diameter are σ f , ε, Φ, k, and d, respectively.
If p , then the Rumpf equation (Rumpf, C
hem. Ing. Tech., 30, 144 (1958)).

【0005】[0005]

【数2】 σf =(1−ε)/π*k*Φ/dp 2 ・・・・・・・・・・・・・・・(2) ここで、平均粒子径は、粉体工学便覧初版p.24に示すレ
ーザー光回折法により分布を求め、そのメジアン径を用
いた。一般に粉体空隙率は圧縮状態が一番小さく、順に
静止状態、流動状態と大きくなっていく。
## EQU2 ## σ f = (1-ε) / π * k * Φ / d p 2 (2) where the average particle size is the powder The distribution was obtained by the laser light diffraction method shown in p.24 of the first edition of the Engineering Handbook, and the median diameter was used. Generally, the powder porosity is the smallest in the compressed state, and then increases in the stationary state and the fluidized state in that order.

【0006】粉体空隙率の高い状態、即ち流動状態にお
ける粉体付着力の推算方法の一例として、従来方法、例
えば引っ張り破断法を用いて数種類の粉体空隙率の低
い、即ち圧縮状態の粉体付着力を測定し、式(2)に従
って、流動状態における粉体付着力を推定する方法があ
る(例えばTubaki and Jimbo, Powder Technology, 37,
219-227 (1984) 参照)。しかし、上記推算法は外挿に
よる推算であるために測定データのエラーが推算値に大
きく左右する事、および未だ粒子配位数と粉体空隙率の
関係が不明確である事から、推算によるエラーが大きい
という欠点を有する。そのため、圧縮状態の粉体付着力
測定結果から流動状態の粉体付着力を推定あるいは外挿
することは現在のところできない。
[0006] As an example of a method for estimating the powder adhesion force in a state where the powder porosity is high, that is, in a fluidized state, several types of powder having a low porosity, that is, a powder in a compressed state, are used by a conventional method, for example, a tensile fracture method. There is a method of measuring the body adhesion force and estimating the powder adhesion force in a fluid state according to the equation (2) (for example, Tubaki and Jimbo, Powder Technology, 37,
219-227 (1984)). However, since the above estimation method is an extrapolation-based estimation, the error in the measured data greatly affects the estimated value, and the relationship between the particle coordination number and the powder porosity is still unclear, so It has the drawback of large errors. Therefore, it is not possible at present to estimate or extrapolate the powder adhesive force in the fluid state from the measurement result of the powder adhesive force in the compressed state.

【0007】一方、圧縮成型を必要としない粉体付着力
の測定方法としては、例えば静電気を利用した方法が報
告されている(Pontius and Snyder, Powder Technolog
y,68,159-162 (1991) 参照)。しかし、電荷を必要とす
るため、装置が複雑になる上、圧縮成型は不必要ではあ
るが、依然静置状態での測定であり、工業的に使用され
ている流動状態での測定は不可能である。
On the other hand, as a method for measuring the powder adhesion force which does not require compression molding, for example, a method using static electricity has been reported (Pontius and Snyder, Powder Technolog).
y, 68,159-162 (1991)). However, since it requires an electric charge, the device becomes complicated and compression molding is unnecessary, but it is still stationary measurement, and it is impossible to measure in a fluid state that is industrially used. Is.

【0008】従来技術の粉体付着力測定範囲を模式的に
図1に示す。図1に示すごとく、圧縮成型した粉体空隙
率の小さい状態での粉体付着力の測定方法は、上記に示
した引っ張り破断法、せん断法、圧裂破断法等がある。
また、静置状態で圧縮成型を行わない粉体空隙率の比較
的大きい状態での粉体付着力の測定方法は、同様に上記
に示した静電気法等がある。しかし、従来技術では、粉
体の流動状態、つまり粉体空隙率の大きい状態での粉体
付着力の測定方法は開発されていなかった。
FIG. 1 schematically shows the range of measurement of the powder adhesive force of the prior art. As shown in FIG. 1, the method for measuring the powder adhesion force in the state where the compression-molded powder has a small porosity includes the tensile fracture method, the shear method, and the rupture fracture method described above.
In addition, as a method for measuring the powder adhesion force in a state where the powder porosity is relatively large without performing compression molding in a stationary state, the electrostatic method and the like described above are also available. However, the prior art has not developed a method for measuring the powder adhesion force in the flow state of the powder, that is, the state where the powder porosity is large.

【0009】さらに従来技術の高温度、高圧力等の工業
的使用雰囲気における測定は装置が複雑になるという欠
点を有していた。
Further, the prior art measurement in an industrial use atmosphere such as high temperature and high pressure has a drawback that the apparatus becomes complicated.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、今ま
では不可能とされていた比較的弱い、例えば5Pa以下
の粉体付着力や、流動状態の粉体付着力を、流動層を用
いて、常温、常圧だけでなく、工業的使用雰囲気におい
て測定する事を目的とするものである。
The object of the present invention is to obtain a relatively weak powder adhesion force of 5 Pa or less, or a powder adhesion force in a fluidized state, which has been impossible to date, in the fluidized bed. The purpose is to measure not only at room temperature and atmospheric pressure but also in an industrial use atmosphere.

【0011】[0011]

【課題を解決するための手段】本発明者らは、比較的弱
い粉体付着力および流動状態における粉体付着力の工業
的使用雰囲気における測定方法に関し鋭意研究を重ねた
結果、流動層下部より空気或いは窒素等のガスを導入
し、測定条件下において最少流動化速度と気泡開始速度
が異なり、且つ最少流動化速度と気泡開始速度の間で、
気泡が発生せず、粉体の膨張が起こる状態(以下、均一
流動化状態と呼ぶ)が存在する粉体が流動化する際にお
いて、導入ガスが粉体に与えたエネルギーと、粉体が均
一流動化状態において、膨張する際に粉体の破断に使用
されたエネルギーによって粉体付着力が算出できる事を
見いだし、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted earnest researches on a method for measuring a relatively weak powder adhesive force and a powder adhesive force in a fluidized state in an industrial use atmosphere. Introducing a gas such as air or nitrogen, the minimum fluidization rate and bubble initiation rate are different under the measurement conditions, and between the minimum fluidization rate and bubble initiation rate,
There is a state in which air bubbles do not occur and the powder expands (hereinafter referred to as a uniform fluidized state). When the powder is fluidized, the energy given by the introduced gas to the powder and the powder are uniform. It was found that the powder adhesive force can be calculated by the energy used for breaking the powder when expanding in the fluidized state, and the present invention has been completed.

【0012】即ち、本発明は、測定条件下において最少
流動化速度と気泡開始速度が異なる流動化状態が存在す
る粉体の粉体付着力を測定する方法において、最少流動
化速度(Umf)、気泡開始速度(Umb)、粉体静止層高
(Hlp)、粉体平均粒子径(dp )およびUmf以下の空
塔速度における粉体差圧より求めた一次回帰線を延長
し、Umbにおける粉体差圧予測点を求め、当該Umbにお
ける粉体差圧とUmfにおける粉体差圧の差(ΔP* )を
測定し、下記の式(1)、
That is, the present invention provides a method for measuring the powder adhesion force of a powder in which there is a fluidized state in which the minimum fluidization rate and the bubble initiation rate are different under the measurement conditions, and the minimum fluidization rate (U mf ) , Bubble start velocity (U mb ), powder static bed height (H lp ), powder average particle size (d p ), and the linear regression line obtained from powder differential pressure at superficial velocity below U mf , U mb, a powder differential pressure prediction point is obtained, and a difference (ΔP * ) between the powder differential pressure at the U mb and the powder differential pressure at U mf is measured.

【0013】[0013]

【数3】 σf =ΔP* /4*(Umf 0.5 +Umb 0.5 )/Umb 0.5 *dp /Hlp・・・(1) により粉体付着力(σf )を求める事を特徴とする粉体
付着力測定方法に関わる。以下、本発明を詳細に説明す
る本発明で測定される粉体は、空気或いは窒素等の流動
ガスを挿入する事により流動する事が可能で、且つ最少
流動化速度および気泡開始速度が異なり、均一流動化状
態が存在するものであれば、粒子形状には制限されるも
のではなく、例えば流動層の反応工学初版 p.70-73に示
すごとく、流動化特性に着目した粉体の分類マップにお
けるグループAに属する粉体であればよい。例えば、粒
径として10〜150μm程度のものが当該グループA
に属する。但し、この粉体分類における粒子径範囲およ
び粒子密度範囲以外の粉体においても、グループAの特
性を有する粉体で有れば、何等問題はない。
[Formula 3] σ f = ΔP * / 4 * (U mf 0.5 + U mb 0.5 ) / U mb 0.5 * d p / H lp (1) The powder adhesion force (σ f ) is obtained by And the method of measuring the powder adhesion force. Hereinafter, the powder measured in the present invention will be described in detail the present invention, it is possible to flow by inserting a flowing gas such as air or nitrogen, and the minimum fluidization speed and bubble initiation speed are different, The particle shape is not limited as long as there is a uniform fluidization state.For example, as shown in p.70-73, the first edition of reaction engineering of fluidized beds, a classification map of powders focusing on fluidization characteristics. Any powder may be used as long as it is a powder belonging to group A in the above. For example, the group A having a particle size of about 10 to 150 μm
Belong to. However, there is no problem even if the powder has a particle size range and a particle density range in this powder classification as long as the powder has the characteristics of group A.

【0014】ここで、粉体の分類マップにおけるグルー
プAに属する粉体とは、粒子密度、流動ガス密度、平均
粒子径をそれぞれρs 、ρ、dp とし、それぞれの単位
をg/cm3 、g/cm3 、μmとした場合、下記の式
(3)を満たし、Geldart, Powder Technology, 7, 285
-292 (1973) 中のFig.3 に示される経験的に得られた線
P〜Qの右側に位置する粉体を言う。
Here, the powders belonging to group A in the powder classification map are particle density, flowing gas density, and average particle diameter as ρ s , ρ, and d p , respectively, and their units are g / cm 3. , G / cm 3 , and μm, the following formula (3) is satisfied, and Geldart, Powder Technology, 7, 285
-292 (1973) refers to the powder located on the right side of the empirically obtained lines P to Q shown in Fig.3.

【0015】[0015]

【数4】 (ρs−ρ)*dp≦225・・・・・・・・・・・・・・・・・・・・・(3) 本発明を図2、3を用いて説明する。ただし、これらの
図面は本発明の範囲を制限するものではない。図2にお
いて、1は流動層本体、2は差圧測定用の導圧管、3は
差圧計、4は流動ガス、5は流動層内粉体層高さを測定
するための物差し、6は測定粉体、7は流動ガス分散器
である。1の流動層は内部の測定粉体が外部より観察で
き、測定条件に耐える充分な強度を持つ物であれば良
く、例えば透明なガラス等が用いられる。塔径は流動す
べき粉体がスラッギングを起こさない程度であればよい
が、望ましくは塔壁による影響が小さくなる4インチ以
上の塔径であればよい。塔高は、流動している粉体が外
部に飛び出さない高さ以上であればよい。
Equation 4] (ρ s -ρ) * d p ≦ 225 ····················· (3) illustrating the present invention with reference to FIGS To do. However, these drawings do not limit the scope of the present invention. In FIG. 2, 1 is a fluidized bed main body, 2 is a pressure guiding tube for measuring a differential pressure, 3 is a differential pressure gauge, 4 is a flowing gas, 5 is a ruler for measuring the height of the powder bed in the fluidized bed, and 6 is a measurement. Powder, 7 is a fluidized gas disperser. The fluidized bed of No. 1 may be any one as long as the measured powder inside can be observed from the outside and has sufficient strength to withstand the measurement conditions. For example, transparent glass or the like is used. The column diameter may be such that the powder to be flowed does not cause slugging, but it is preferably a column diameter of 4 inches or more, which reduces the effect of the column wall. The tower height may be higher than the height at which the flowing powder does not jump out.

【0016】2の導圧管は、1つは当該流動層低部に、
もう1つは6の粉体層表面より上部にとりつけられる
が、上部の導圧管は、流動層内圧力を検出する為のもの
であり、上部の導圧管先端の圧力が流動層内圧力と同じ
である場合には、上部の導圧管は当該流動層に設置しな
くてもよい。4の流動ガスは、粉体が流動化できればよ
く、例えば空気或いは窒素等が用いられる。7のガス分
散器は、均一に導入ガスが当該流動層に分散でき、測定
条件に耐える充分な強度をもつものであればよい。6の
測定粉体は、最少流動化速度および気泡開始速度が測定
できる高さに相当する量があればよく、通常は粉体静止
高さと当該流動層塔径の比が1〜4程度である。
Two pressure guiding tubes, one at the lower part of the fluidized bed,
The other is attached above the surface of the powder bed of 6, but the upper pressure guiding tube is for detecting the pressure in the fluidized bed, and the pressure at the tip of the upper pressure guiding tube is the same as the pressure in the fluidized bed. In this case, the upper pressure guiding tube may not be installed in the fluidized bed. The fluid gas of No. 4 may be any fluid as long as the powder can be fluidized, and for example, air or nitrogen is used. The gas disperser of No. 7 may be any as long as it can disperse the introduced gas uniformly in the fluidized bed and has sufficient strength to withstand the measurement conditions. It is sufficient that the powder to be measured in 6 has an amount corresponding to the height at which the minimum fluidization speed and the bubble initiation speed can be measured, and the ratio of the powder static height to the fluidized bed column diameter is usually about 1 to 4. .

【0017】図3には、流動ガスの空塔速度を変化させ
た際の粉体差圧、粉体高さおよび粉体付着力の変化を模
式的に示したものである。図3に示すごとく、当該流動
ガスの空塔速度を増加させていくと、最少流動化速度以
下では粉体は流動せず、粉体差圧が空塔速度により上昇
する(以下、当該最少流動化速度以下の粉体差圧の空塔
速度による変化をスロープ1と呼ぶ)。その後、粉体の
膨張が起こり、その後の差圧は空塔速度によらず一定値
を示す(以下、当該最少流動化速度以上の粉体差圧の空
塔速度による変化をスロープ2と呼ぶ)。
FIG. 3 schematically shows changes in powder differential pressure, powder height and powder adhesion force when the superficial velocity of the flowing gas is changed. As shown in FIG. 3, when the superficial velocity of the fluidizing gas is increased, the powder does not flow below the minimum fluidization speed, and the powder differential pressure increases due to the superficial velocity (hereinafter, the minimum flow rate). The change in the powder pressure difference below the conversion rate due to the superficial velocity is called slope 1.) Thereafter, the powder expands, and the differential pressure thereafter shows a constant value irrespective of the superficial velocity (hereinafter, the change in the powder differential pressure above the minimum fluidization velocity due to the superficial velocity is called slope 2). .

【0018】最少流動化速度は、流動層の反応工学初版
p.19に示すごとく、空塔速度を変化させ、粉体差圧を測
定することによって当該スロープ1とスロープ2を求
め、それぞれのスロープを外挿して得られる交点を求め
る事により得られる。また、気泡開始速度の測定方法
は、気泡が初めて生成する最低の空塔速度が測定できれ
ばいずれの方法でもよく、例えば空塔速度を徐々に増加
させていき、初めて目視にて気泡の生成が観察される点
の測定や、コラプステスト(Abrahamsenand Geldart, P
owder Technology, 26, 47 (1980) 参照)を用い、エマ
ルジョン相高さの最高点を求める方法(Kono et al., P
owder Technology, 53, 69 (1987) 参照)等がある。
The minimum fluidization speed is the first version of reaction engineering for fluidized beds.
As shown in p.19, it can be obtained by changing the superficial velocity and measuring the powder differential pressure to obtain the slope 1 and slope 2, and extrapolating the respective slopes to obtain the intersection points. Further, the method of measuring the bubble initiation speed may be any method as long as it can measure the lowest superficial velocity at which bubbles are first produced, for example, gradually increasing the superficial velocity, and observing the formation of bubbles visually for the first time. Measured points and collapsing tests (Abrahamsenand Geldart, P
owder Technology, 26, 47 (1980)) to determine the highest point of emulsion phase height (Kono et al., P
owder Technology, 53, 69 (1987)).

【0019】また、粉体静止層高は、粉体が流動ガスに
よって流動を開始していない状態で、7のガス分散器直
上から、粉体層表面までの高さを指し、当該高さを測定
できればいずれの方法でもよく、例えば外部に取り付け
られた物差し等によって測定される。また、平均粒子径
は、粉体工学便覧初版p.24に示すレーザー光回折法によ
り分布を求め、そのメジアン径を用いた。
The height of the powder stationary layer refers to the height from directly above the gas disperser 7 to the surface of the powder layer in the state where the powder has not started to flow due to the flowing gas. Any method may be used as long as it can be measured, and for example, it is measured by a ruler attached to the outside. For the average particle diameter, the distribution was determined by the laser light diffraction method shown in p.24 of the First Edition of Powder Engineering Handbook, and the median diameter was used.

【0020】また、式(1)中のΔP* は、粉体差圧を
気泡開始速度まで、図3に示したスロープ1に沿って外
挿すると、気泡開始速度における粉体差圧値が求められ
る。当該気泡開始速度における粉体差圧値とスロープ2
の粉体差圧値との差異と定義する。以下、発明者らが式
(1)を導出した考え方を示す。
Further, ΔP * in the equation (1) is obtained by extrapolating the powder pressure difference up to the bubble start speed along the slope 1 shown in FIG. 3 to obtain the powder pressure difference value at the bubble start speed. To be Powder differential pressure value and slope 2 at the bubble start speed
It is defined as the difference from the powder differential pressure value of. Hereinafter, the idea that the inventors derived the formula (1) will be shown.

【0021】空塔速度が最少流動化速度〜気泡開始速度
間に変化した際、粉体が膨張するために使われた単位時
間あたりのエネルギー(ED )は、最小流動化速度〜気
泡開始速度間のある空塔速度(U0 )における図3に示
したスロープ1に沿った外挿値とスロープ2の粉体差圧
値の差をΔP’とした場合、式(4)で定義でき、図3
中では、e〜f〜gで囲まれた面積に相当する。
When the superficial velocity changes from the minimum fluidization velocity to the bubble initiation velocity, the energy (E D ) used for expanding the powder is the minimum fluidization velocity to the bubble initiation velocity. When the difference between the extrapolated value along the slope 1 shown in FIG. 3 and the powder differential pressure value of the slope 2 at a superficial velocity (U 0 ) between them is ΔP ′, it can be defined by the equation (4), Figure 3
It corresponds to the area surrounded by e to f to g.

【0022】[0022]

【数5】 [Equation 5]

【0023】また、同じ最少流動化速度〜気泡開始速度
間のある空塔速度(U0 )における粉体付着力(σf (U
o))は、気泡開始速度における粉体付着力、気泡開始速
度をそれぞれσf 、Umbとした場合、Ergun の式(化学
工学II機械的操作第2版p.14参照)およびRumpf の式
(Rumpf, Chem. Ing. Tech., 30, 144 (1958) 参照)を
用いて下記の式(5)で表現できる。
Further, at the same superficial velocity (U 0 ) between the minimum fluidization velocity and the bubble initiation velocity, the powder adhesion force (σ f (U
o)) is Ergun's formula (see Chemical Engineering II Mechanical Operation 2nd Edition p.14) and Rumpf's formula, where the powder adhesion force at bubble initiation velocity and the bubble initiation velocity are σ f and U mb , respectively. (See Rumpf, Chem. Ing. Tech., 30, 144 (1958)), and can be expressed by the following equation (5).

【0024】[0024]

【数6】 σf (Uo)=σf *Umb*U0 -0.5・・・・・・・・・・・・・・・・・・(5) 空塔速度が最少流動化速度〜気泡開始速度間に変化し、
粉体が膨張する際の単位時間あたりの喪失粉体付着エネ
ルギー(Eσ)は、上記式(5)を用いて式(6)で表
現でき、図3中ではa〜b〜c〜dで囲まれた面積に相
当する。
[Equation 6] σ f (Uo) = σ f * U mb * U 0 -0.5・ ・ ・ ・ ・ ・ (5) Superficial velocity is the minimum fluidization velocity ~ bubbles Change between start speeds,
Loss of powder adhesion energy (Eσ) per unit time when the powder expands can be expressed by the equation (6) using the above equation (5) and is surrounded by a to b to c to d in FIG. Equivalent to the area covered.

【0025】[0025]

【数7】 [Equation 7]

【0026】ここで、式(4)は粉体層全体のエネルギ
ーに対し、式(6)は粉体層中の1層当たりのエネルギ
ーである。よって、ED およびEσのエネルギーバラン
スは平均粒子径、粉体静止層高をそれぞれdp 、Hlp
した場合、以下の式(7)で表現できる。
Here, the formula (4) is the energy of the entire powder layer, and the formula (6) is the energy per layer in the powder layer. Therefore, the energy balance of E D and E σ can be expressed by the following equation (7) when the average particle diameter and the powder stationary layer height are d p and H lp , respectively.

【0027】[0027]

【数8】 ED =Eσ*dp /Hlp・・・・・・・・・・・・・・・・・・・・・・(7) よって、気泡開始速度における粉体付着力は以下に示す
式(1)で表現できる。
[Equation 8] E D = Eσ * d p / H lp ..... (7) Therefore, the powder adhesion force at the bubble initiation speed is It can be expressed by the following equation (1).

【0028】[0028]

【数9】 σf =ΔP* /4*(Umf 0.5 +Umb 0.5 )/Umb 0.5 *dp /Hlp・・・(1) この定義式により、今まで不可能とされていた、弱い粉
体付着力あるいは流動状態での粉体付着力を常温常圧だ
けでなく、工業的使用雰囲気で測定する事ができ、当該
粉体付着力を用いる事により、粉体を取り扱う装置の最
適設計や、粉体の流動状態を管理する産業では、流動状
態を最適に保つ方法、例えば粒径分布の最適化等を行う
事ができる。
[Formula 9] σ f = ΔP * / 4 * (U mf 0.5 + U mb 0.5 ) / U mb 0.5 * d p / H lp (1) According to this definition formula, it has been impossible until now. The weak powder adhesion or the powder adhesion in the fluid state can be measured not only at room temperature and atmospheric pressure, but also in an industrial use atmosphere. In the industry of designing and controlling the flow state of powder, it is possible to carry out a method for keeping the flow state optimum, for example, optimization of particle size distribution.

【0029】[0029]

【実施例】【Example】

【0030】[0030]

【実施例1】測定粉体として、FCC触媒を使用した。
測定に使用した流動層は塔径10.2cm、塔高1.5
5mのクオーツ製である。仕込粉体量は、粉体静止層高
さが13.8cmになるように導入した。流動ガスは空
気を用い、常温、常圧下で測定した。最少流動化速度は
上記方法により求め、その結果、0.6cm/sの値を
得、その時のΔPは1210Paであった。ΔP*は上
記方法で計算し、687Paであった。気泡開始速度は
空塔速度を徐々に増加させ、初めて気泡が観察される点
を求め、その結果、0.9cm/sを得た。粉体静止層
高さは、外部に取り付けられた物差しを用いて目視にて
測定し、その結果、13.8cmであった。平均粒子径
は、レーザー光回折法によって測定し、そのメジアン径
として65μmを平均粒子径とした。これらの値から粉
体付着力σf が0.15Paと求められた。表1に上記
測定結果の一覧を示す。
Example 1 An FCC catalyst was used as the measurement powder.
The fluidized bed used for the measurement has a tower diameter of 10.2 cm and a tower height of 1.5.
It is made of 5 m quartz. The amount of the charged powder was introduced so that the height of the powder stationary layer was 13.8 cm. Air was used as the flowing gas, and the measurement was performed at room temperature and atmospheric pressure. The minimum fluidization rate was determined by the above method, and as a result, a value of 0.6 cm / s was obtained, and ΔP at that time was 1210 Pa. ΔP * was 687 Pa calculated by the above method. The bubble initiation velocity was gradually increased by increasing the superficial velocity, and the point at which bubbles were first observed was determined. As a result, 0.9 cm / s was obtained. The height of the powder stationary layer was visually measured using a ruler attached to the outside, and as a result, it was 13.8 cm. The average particle size was measured by a laser light diffraction method, and the median size thereof was 65 μm. The powder adhesion σ f was determined to be 0.15 Pa from these values. Table 1 shows a list of the above measurement results.

【0031】[0031]

【実施例2】測定粉体として、ガラスビーズを用い、実
施例1と同じ方法を用いて測定し、その結果、粉体付着
力が0.03Paと求められた。表1に同様に測定結果
の一覧を示す。
[Example 2] Glass beads were used as the measurement powder, and the measurement was performed in the same manner as in Example 1. As a result, the powder adhesion was determined to be 0.03 Pa. Similarly, Table 1 shows a list of measurement results.

【0032】[0032]

【実施例3】測定粉体として、澱粉粉を用い、実施例1
と同じ方法を用いて測定し、その結果、粉体付着力が
0.02Paと求められた。表1に同様に測定結果の一
覧を示す。
Example 3 Starch powder was used as the measurement powder, and Example 1 was used.
Using the same method as above, the powder adhesion was determined to be 0.02 Pa. Similarly, Table 1 shows a list of measurement results.

【0033】[0033]

【実施例4】測定粉体として、FCC触媒に5重量%の
炭酸カルシウムを添加した混合粉体を用い、実施例1と
同じ方法を用いて測定し、その結果、粉体付着力が0.
32Paと求められた。表1に同様に測定結果の一覧
を、粉体かさ密度と粉体付着力の測定結果を図4に合わ
せて示す。
Example 4 As a measurement powder, a mixed powder obtained by adding 5% by weight of calcium carbonate to an FCC catalyst was used, and the measurement was carried out by the same method as in Example 1. As a result, the powder adhesion force was 0.
It was determined to be 32 Pa. Similarly, Table 1 shows a list of the measurement results, and the measurement results of the powder bulk density and the powder adhesion force are also shown in FIG.

【0034】[0034]

【実施例5】測定粉体として、カーボンブラックを用
い、実施例1と同じ方法を用いて測定し、その結果、粉
体付着力が0.08Paと求められた。表1に同様に測
定結果の一覧を、粉体かさ密度と粉体付着力の測定結果
を図4に合わせて示す。
[Example 5] Carbon black was used as the measurement powder, and the measurement was conducted in the same manner as in Example 1. As a result, the powder adhesion was determined to be 0.08 Pa. Similarly, Table 1 shows a list of the measurement results, and the measurement results of the powder bulk density and the powder adhesion force are also shown in FIG.

【0035】[0035]

【実施例6】測定粉体として、FCC触媒を使用した。
測定に使用した流動層は塔径10.2cm、塔高1.5
5mのクオーツ製である。仕込粉体量は、常温において
粉体静止層高さが15.7cmになるように導入した。
流動ガスは空気を用いた。測定装置は流動層外壁に取り
付けられた電気炉によって加温され、温度はアロメルク
ロメル熱電対を粉体層に挿入して測定し、100、20
0、300、400、500、600℃の常圧下の各点
で測定した。最少流動化速度およびΔP* は上記方法で
求めた。気泡開始速度は空塔速度を徐々に増加させ、初
めて気泡が観察される点を求めた。粉体静止層高さは、
外部に取り付けられた物差しを用いて目視にて測定し
た。平均粒子径は、常温下においてレーザー光回折法に
よって測定し、そのメジアン径として65μmを平均粒
子径とした。表2にそれぞれの温度における測定値を示
す。これらの値から粉体付着力σf は高温条件下におい
ても測定できる事がわかる。
Example 6 An FCC catalyst was used as the measurement powder.
The fluidized bed used for the measurement has a tower diameter of 10.2 cm and a tower height of 1.5.
It is made of 5 m quartz. The amount of the charged powder was introduced so that the height of the powder stationary layer was 15.7 cm at room temperature.
Air was used as the flowing gas. The measuring device is heated by an electric furnace attached to the outer wall of the fluidized bed, and the temperature is measured by inserting an aromel chromel thermocouple into the powder layer and measuring 100, 20.
It was measured at each point under atmospheric pressure of 0, 300, 400, 500, 600 ° C. The minimum fluidization rate and ΔP * were determined by the above method. The bubble initiation velocity gradually increased the superficial velocity, and the point at which bubbles were first observed was determined. The height of the powder stationary layer is
It was visually measured using a ruler attached to the outside. The average particle diameter was measured by a laser light diffraction method at room temperature, and the median diameter thereof was 65 μm. Table 2 shows the measured values at each temperature. From these values, it can be seen that the powder adhesive force σ f can be measured even under high temperature conditions.

【0036】[0036]

【参考例1】参考例として、従来技術である引っ張り破
断法による粉体付着力測定器で、市販品であるホソカワ
ミクロン社製のコヒテスターを使用し、実施例1、2、
3と同じFCC触媒、ガラスビーズ、澱粉粉を用いて測
定を試みた。しかし、用いた全ての粉体において、粉体
が圧縮成型できないため、測定ができなかった。
[Reference Example 1] As a reference example, a powder adhesion measuring device by the conventional tensile rupture method is used, and a commercially available Cohitester manufactured by Hosokawa Micron Co. is used.
The measurement was tried using the same FCC catalyst, glass beads, and starch powder as those of No. 3. However, all the powders used could not be measured because the powders could not be compression molded.

【0037】[0037]

【参考例2】測定粉体として、実施例4と同じFCC触
媒に5重量%の炭酸カルシウムを添加した混合粉体を使
用した。測定方法は引っ張り破断法による粉体付着力測
定器で、参考例1で用いたものと同一のホソカワミクロ
ン社製のコヒテスターを使用し、かさ密度を変えて4点
測定した。粉体かさ密度と粉体付着力の測定結果を図4
に示す。
[Reference Example 2] As the measurement powder, a mixed powder obtained by adding 5% by weight of calcium carbonate to the same FCC catalyst as in Example 4 was used. The measuring method was a powder adhesion measuring device by the tensile rupture method, and the same Cohitester manufactured by Hosokawa Micron Co., Ltd. as used in Reference Example 1 was used, and the bulk density was changed, and four points were measured. Figure 4 shows the measurement results of powder bulk density and powder adhesion.
Shown in.

【0038】[0038]

【参考例3】測定粉体として、実施例5と同じカーボン
ブラックを使用した。測定方法は参考例1で用いたもの
と同一のホソカワミクロン社製のコヒテスターを使用
し、かさ密度を変えて4点測定した。粉体かさ密度と粉
体付着力の測定結果を図4に示す。
Reference Example 3 As the measurement powder, the same carbon black as in Example 5 was used. The measurement method was the same as that used in Reference Example 1, using a Cohitester manufactured by Hosokawa Micron Co., Ltd., and the bulk density was changed, and four points were measured. The measurement results of the powder bulk density and the powder adhesive force are shown in FIG.

【0039】実施例4、5および参考例2、3から明ら
かなように、本発明により、従来法では測定できなかっ
た領域の測定が可能である事がわかる。
As is clear from Examples 4 and 5 and Reference Examples 2 and 3, the present invention enables the measurement of a region which could not be measured by the conventional method.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】従来技術では測定が不可能であった比較
的弱い、例えば5Pa以下の粉体付着力や流動状態にお
ける粉体付着力の常温常圧だけでなく、工業的雰囲気に
おける測定が可能になり、粉体を取り扱う産業に重要
な、粉体を取り扱う装置(例えば、集塵装置、粉体輸送
等)の最適設計や、粉体の流動状態を管理する産業(例
えばFluidized Catalyst Cracking 、アクリロニトリ
ル、オキシクロリネーション、無水マレイン酸等の流動
層反応、流動層燃焼等)では、流動状態を最適に保つ方
法、例えば粒径分布の最適化等を行うことができる。
EFFECTS OF THE INVENTION It is possible to measure not only the powder adhesion force of 5 Pa or less or the powder adhesion force in a fluid state at room temperature and atmospheric pressure, which is relatively weak, which could not be measured by the prior art, but also in an industrial atmosphere. Therefore, it is important to design powder handling equipment (eg dust collector, powder transportation, etc.), which is important for powder handling industry, and to control powder flow condition (eg Fluidized Catalyst Cracking, acrylonitrile). , Oxychlorination, fluidized bed reaction of maleic anhydride, etc., fluidized bed combustion, etc.) can be carried out by a method for maintaining an optimum fluidized state, for example, optimization of particle size distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体空隙率、粉体存在状態、及び粉体付着力測
定従来技術の概念図。
FIG. 1 is a conceptual diagram of a conventional technique for measuring powder porosity, powder existing state, and powder adhesive force.

【図2】粉体付着力の測定装置図。FIG. 2 is a diagram of a measuring device for powder adhesion.

【図3】粉体差圧と粉体差圧の差との関係図。FIG. 3 is a relationship diagram between a powder pressure difference and a powder pressure difference.

【図4】粉体かさ密度と粉体付着力との関係図。FIG. 4 is a graph showing the relationship between powder bulk density and powder adhesion.

【符号の説明】[Explanation of symbols]

1:流動層本体 2:導圧管 3:差圧計 4:流動ガス 5:物差し 6:測定粉体 7:分散器 1: Fluidized bed main body 2: Pressure guiding tube 3: Differential pressure gauge 4: Flowing gas 5: Ruler 6: Measuring powder 7: Disperser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定条件下において最少流動化速度と気泡
開始速度が異なる、流動化状態が存在する粉体の粉体付
着力を測定する方法において、最少流動化速度
(Umf)、気泡開始速度(Umb)、粉体静止層高
(Hlp)、平均粒子径(dp )およびUmf以下の空塔速
度における粉体差圧より求めた一次回帰線を延長し、U
mbにおける粉体差圧予測点を求め、当該Umbにおける粉
体差圧とUmfにおける粉体差圧の差(ΔP* )を測定
し、下記の式(1)、 【数1】 σf =ΔP* /4*(Umf 0.5 +Umb 0.5 )/Umb 0.5 *dp /Hlp・・・(1) により粉体付着力(σf )を求める事を特徴とする粉体
付着力測定方法。
1. A method for measuring the powder adhesion force of a powder having a fluidized state in which the minimum fluidization rate and the bubble initiation rate are different under the measurement conditions, wherein the minimum fluidization rate (U mf ), bubble initiation Velocity (U mb ), powder static bed height (H lp ), average particle diameter (d p ), and the linear regression line obtained from the powder differential pressure at superficial velocity below U mf ,
seeking powder differential pressure predicted point in mb, the measured difference in powder differential pressure ([Delta] P *) the powder differential pressure and U mf in U mb, the following equation (1), Equation 1] sigma f = ΔP * / 4 * (U mf 0.5 + U mb 0.5 ) / U mb 0.5 * d p / H lp (1) The powder adhesive force (σ f ) is obtained by the formula (1). Measuring method.
JP12285293A 1993-05-25 1993-05-25 Measuring method of pulverulent-body adhesion force in fluid state Withdrawn JPH06331535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12285293A JPH06331535A (en) 1993-05-25 1993-05-25 Measuring method of pulverulent-body adhesion force in fluid state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12285293A JPH06331535A (en) 1993-05-25 1993-05-25 Measuring method of pulverulent-body adhesion force in fluid state

Publications (1)

Publication Number Publication Date
JPH06331535A true JPH06331535A (en) 1994-12-02

Family

ID=14846239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12285293A Withdrawn JPH06331535A (en) 1993-05-25 1993-05-25 Measuring method of pulverulent-body adhesion force in fluid state

Country Status (1)

Country Link
JP (1) JPH06331535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305311C (en) * 2001-06-29 2007-03-14 株式会社Ntt都科摩 Image encoder, image decoder, image encoding method, and image decoding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305311C (en) * 2001-06-29 2007-03-14 株式会社Ntt都科摩 Image encoder, image decoder, image encoding method, and image decoding method

Similar Documents

Publication Publication Date Title
Miller et al. Fluidization Studies of Solid Particles.
Li et al. The dynamics of fast fluidization
Lee et al. Phase holdups in three‐phase fluidized beds
Turki et al. Behavior and fluidization of the cohesive powders: Agglomerates sizes approach
Chirone et al. The effect of temperature on the minimum fluidization conditions of industrial cohesive particles
Breault et al. High-velocity fluidized-bed hydrodynamic modeling. 1. Fundamental studies of pressure drop
US9002521B2 (en) System for optimizing and controlling particle size distribution and for scale-up of nanoparticle production in an aerosol flame reactor
GSSRK Void formation and breaking in a packed bed
JPH06331535A (en) Measuring method of pulverulent-body adhesion force in fluid state
Das et al. Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed
Cocco et al. 50 years of Geldart classification
US6212794B1 (en) Gaseous fluidization aids
Dounit et al. Modelling and experimental validation of a fluidized-bed reactor freeboard region: Application to natural gas combustion
Jeong et al. Estimation of agglomerate size of multi-walled carbon nanotubes in fluidized beds
Chen et al. Model of solid gas reaction phenomena in the fluidized bed freeboard
Altwicker et al. Hydrodynamic aspects of spouted beds at elevated temperatures
Zhou et al. Development of gas-solid fluidization: particulate and aggregative
Brunazzi et al. An impedance probe for the measurements of flow characteristics and mixing properties in stirred slurry reactors
Tamarin Mass transfer between the gas and solid particles in a fluidized bed
Wu et al. A new empirical equation for minimum spouting/spout‐fluidization velocity in draft tube spout‐fluid beds at elevated temperature
JP5519096B2 (en) Powder mass measuring apparatus and polyolefin production method using the same
Ravi Sankar Slip velocities in pneumatic transport
Mohanta Hydrodynamics stydy of conventionl (cylindrical) fluidized bed at ambient temperature.
Tanaka et al. Particle clusters formed in dispersed gas–solid flows: Simulation and experiment
Hur et al. Bed structure of CNT agglomerates in gas–solid fluidized beds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801