JPH06331051A - Fixed flow valve with water temperature correction - Google Patents
Fixed flow valve with water temperature correctionInfo
- Publication number
- JPH06331051A JPH06331051A JP11496593A JP11496593A JPH06331051A JP H06331051 A JPH06331051 A JP H06331051A JP 11496593 A JP11496593 A JP 11496593A JP 11496593 A JP11496593 A JP 11496593A JP H06331051 A JPH06331051 A JP H06331051A
- Authority
- JP
- Japan
- Prior art keywords
- spring
- water temperature
- valve
- fluid
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Temperature-Responsive Valves (AREA)
- Safety Valves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、湯沸器等の供給水側に
取り付けられ、その供給圧力の変動に拘らず、一定流量
で装置へ供給することができると共に、供給水の温度変
化に伴って給水量を調節する水温補正機能付きの定流量
弁に関し、特に、水温の感熱応動素子として形状記憶合
金製のコイル状ばねを使用してなるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on a water supply side of a water heater or the like, and can supply the apparatus at a constant flow rate regardless of fluctuations in the supply pressure thereof, and can also change the temperature of the supply water. Accordingly, the present invention relates to a constant flow valve with a water temperature correction function for adjusting the amount of supplied water, and in particular, a coil spring made of a shape memory alloy is used as a thermoresponsive element for water temperature.
【0002】[0002]
【従来の技術】一般に、住宅に供給される水道水の供給
圧力は、0.3〜7.0kg/cm2とバラツキがある。この
要因としては、山や谷等の地域差、水道配設管の能力不
足、供給量に対する需要量等が考えられる。そして、例
えば、給湯用温水器には、水道水の供給圧力にバラツキ
があっても支障がないように定流量弁が備え付けられて
いる。 2. Description of the Related Art Generally, the supply pressure of tap water supplied to a house varies from 0.3 to 7.0 kg / cm 2 . Possible causes of this are regional differences such as mountains and valleys, insufficient capacity of water supply pipes, and demand for supply. Further, for example, the hot water supply water heater is provided with a constant flow valve so that there is no problem even if the supply pressure of the tap water varies.
【0003】その定流量弁の一般的な構造例として、実
公平4−10450号公報の第4図に示されるものがあ
る。その定流量弁において、その公報の図面中の符号を
併記すれば、液体入口3から筒状弁体8の中間部と弁箱
2との間の一次液圧室12内に供給された液体は、基端
部室1と筒状弁体8内の二次液圧室13内を通り、オリ
フィス6を経て液体出口4へ順次流通する。An example of a general structure of the constant flow valve is shown in FIG. 4 of Japanese Utility Model Publication No. 4-10450. In the constant flow valve, the liquid supplied from the liquid inlet 3 into the primary hydraulic chamber 12 between the intermediate portion of the tubular valve body 8 and the valve box 2 is indicated by the reference numerals in the drawings of the publication. Then, it passes through the proximal end chamber 1 and the secondary hydraulic chamber 13 in the tubular valve body 8, and then sequentially flows to the liquid outlet 4 via the orifice 6.
【0004】このような定流量弁は、図9の圧力流量特
性線図に実線で示されるように、その弁の前後における
差圧が1.0〜1.5kg/cm2に達しないと設定流量(図
示では20l/min)が満足されないことが実験結果から
判明している。即ち、これでは、前述した水道水の供給
圧力がそのバラツキ下限の0.3kg/cm2の地域では、給
湯用温水器の健全な使用ができないことになり、利用者
は不満を覚えることになる。Such a constant flow valve is set when the differential pressure before and after the valve does not reach 1.0 to 1.5 kg / cm 2 , as shown by the solid line in the pressure flow characteristic diagram of FIG. From the experimental results, it is known that the flow rate (20 l / min in the figure) is not satisfied. That is, in this case, in the area where the supply pressure of the tap water is 0.3 kg / cm 2 which is the lower limit of the variation, the hot water heater cannot be used soundly, and the user is dissatisfied. .
【0005】従来は、そのような低圧側での圧力損失を
改善するための手段として、弁口径を大きくしたり、ま
たは、特公昭62−35574号公報に示されるよう
に、弁を二つ設けることによって、弁部の通過孔面積を
拡大して通過抵抗値を下げて対処していた。Conventionally, as a means for improving such pressure loss on the low pressure side, the valve diameter is increased or two valves are provided as shown in Japanese Patent Publication No. 62-35574. As a result, the area of the passage hole of the valve portion is enlarged and the passage resistance value is reduced to deal with the problem.
【0006】また、従来、水温の感熱応動素子として形
状記憶合金(SMA;Shape MemoryAlloy、以下単にS
MAという)製のコイル状ばねを用いた水温補正付き定
流量弁として、特開昭63−303281号公報により
公知のものがある。その特徴とする構成は、その公報の
図面中の符号を併記すれば、次の通りである。即ち、こ
の水温補正付き定流量弁は、固定弁体V1に対し可動弁
体V2をSMA製コイル状ばね1で離反する方向に付勢
して重合配設してなるもので、複雑な流路構造による構
成のものである。Further, conventionally, a shape memory alloy (SMA; Shape Memory Alloy, hereinafter simply referred to as S) has been used as a water temperature thermosensitive element.
As a constant flow valve with water temperature correction using a coiled spring manufactured by MA), there is known a constant flow valve disclosed in JP-A-63-303281. The characteristic configuration is as follows, when the reference numerals in the drawings of the publication are also described. That is, in this constant flow valve with water temperature correction, the movable valve body V2 is biased by the SMA coil spring 1 against the fixed valve body V1 so as to be superposed, and a complicated flow path is provided. It has a structure.
【0007】[0007]
【発明が解決しようとする課題】しかし、前記実公平4
−10450号公報の第4図に開示の定流量弁におい
て、弁口径を大きくする手法では、弁筐体そのものが大
型となり、コスト高となってしまう。また、前記特公昭
62−35574号公報に開示のように、弁を二つ設け
る手法では、弁構造が複雑になって、コスト高となり、
その割には改善の向上効果が少ない等の問題があった。[Problems to be Solved by the Invention]
In the constant flow valve disclosed in FIG. 4 of Japanese Unexamined Patent Publication No. 10450, the method of increasing the valve diameter causes the valve housing itself to be large in size and costly. Further, as disclosed in Japanese Patent Publication No. 62-35574, the method of providing two valves complicates the valve structure and increases the cost.
However, there was a problem that the improvement effect was small.
【0008】なお、前記実公平4−10450号公報の
第4図や前記特公昭62−35574号公報に示される
ような従来の定流量弁では、そもそもの構成部品が多
く、しかも、その部品形状が複雑であって、部品製作の
加工工数並びに組立工数が多くなり、コスト高となり、
安価な定流量弁の供給ができなかった。このため、本来
的に多くの利用分野が見込める割には市場の拡大がまま
にならないところがあった。In the conventional constant flow valve as shown in FIG. 4 of Japanese Utility Model Publication No. 4-10450 and Japanese Patent Publication No. 62-35574, there are many components in the first place, and the shape of the components is large. Is complicated, the man-hours for assembling parts and the man-hours for assembling are large, and the cost is high.
We could not supply an inexpensive constant flow valve. For this reason, there were places where the market could not continue to grow even though many fields of application could be expected.
【0009】また、前記特開昭63−303281号公
報に開示のSMA製コイル状ばねを用いた水温補正付き
定流量弁においては、前述の通り、その構造が複雑であ
るため、流体の通過抵抗が大きくて、圧力損失値が高
く、また、高コスト品となっていた。Further, in the constant flow valve with a water temperature correction using the SMA coil spring disclosed in the above-mentioned Japanese Patent Laid-Open No. 63-303281, as described above, the structure thereof is complicated, and therefore the fluid passage resistance is increased. Was large, the pressure loss value was high, and it was a high-cost product.
【0010】ところで、湯沸器等の熱交換能力は有限的
であること、また、湯沸器等の給湯能力を保持させなけ
ればならないこともあって、給湯器における給湯湯温の
安定条件は、給水側における流体圧力の安定供給と、供
給水である流体温度の安定供給とが必要である。定流量
弁においては、前者の流体圧力の安定供給はガバナ機能
によってなし得、また、後者の流体温度の安定供給は水
温補正機能によって担当するものとなっている。By the way, the heat exchange capacity of the water heater is limited, and the hot water supply capacity of the water heater must be maintained. The stable supply of the fluid pressure on the water supply side and the stable supply of the fluid temperature of the supply water are required. In the constant flow valve, the former stable supply of fluid pressure can be achieved by the governor function, and the latter stable supply of fluid temperature is handled by the water temperature correction function.
【0011】ここで、一般的な水道の供給水の水温は、
冬期で約5℃前後、夏期で約25℃前後となり、その温
度差が20℃になる。このため、湯沸器における温度設
定ダイヤルを、例えば、冬期に合わせると、夏期におい
て過熱過剰となり、また、夏期に合わせると、冬期にお
いて過熱不足となり、このように大きく変動する。従っ
て、水温補正付き定流量弁における従来技術の多くは、
その制御の基点を冬期に設定し、夏期において過熱過剰
となる能力分を供給水の流量増加で対処して、給湯湯温
が年間を通じて一定となるようにして、供給能力の安定
を計る方法が取られている。Here, the water temperature of the supply water of a general tap water is
About 5 ° C in winter and about 25 ° C in summer, the temperature difference is 20 ° C. For this reason, if the temperature setting dial in the water heater is adjusted to winter, for example, it will become overheated in summer, and if it is adjusted to summer, it will be insufficiently overheated in winter, resulting in large fluctuations. Therefore, most of the conventional techniques in the constant flow valve with water temperature correction are
The control point is set in the winter, and the capacity that becomes overheated in the summer is dealt with by increasing the flow rate of the supplied water so that the hot water temperature becomes constant throughout the year, and the supply capacity is stabilized. Has been taken.
【0012】本発明は、これと同じ考え方に立つもの
で、その目的は、本来の調圧機能と水温補正機能を発揮
するばかりでなく、前述した圧力損失値を低くでき、例
えば、水道水の供給圧力が0.3kg/cm2以下の低圧地域
における給湯用温水器等の健全な使用を可能とし、ま
た、構造を簡略化することにより、部品点数を少なく
し、部品形状も簡素化して、加工工数並びに組立工数を
大幅に改善して、低コストによる安価な水温補正付き定
流量弁を提供することにある。The present invention is based on the same idea, and its purpose is not only to exhibit the original pressure regulating function and water temperature correcting function, but also to reduce the above-mentioned pressure loss value. It enables sound use of hot water heaters in low-pressure areas where the supply pressure is 0.3 kg / cm 2 or less, and the simplified structure reduces the number of parts and simplifies the shape of parts. It is to provide a constant flow valve with water temperature correction at a low cost at a low cost by significantly improving the processing man-hours and the assembly man-hours.
【0013】[0013]
【課題を解決するための手段】以上の課題を解決すべく
本発明は、流体の給水路に設置され、流体の圧力変動に
応じて流体の通過孔面積を可変とする弁体を備え、さら
に、この弁体の通過孔面積を供給水温の変化に対応する
感熱応動素子であるSMA材で補正して、前記供給水温
に対応した所定流量が得られるようにした水温補正機能
付きの定流量弁であって、前記弁体を前記流体の圧力変
動に応じて伸縮動作するコイル状ばねにより形成して、
このコイル状ばねの各巻線間の隙間を、前記流体の圧力
変動に応じて可変となる前記通過孔面積に対応させると
共に、前記コイル状ばねの各巻線間の隙間による前記通
過孔面積と、前記コイル状ばねを境にした前記流体の差
圧の平方根との積がほぼ一定になるように、前記コイル
状ばねのばね荷重特性を非線形に設定してなり、且つ前
記コイル状ばねを前記供給水温の変化に対応する前記S
MA材で形成してなる構成としている。In order to solve the above problems, the present invention is provided with a valve body which is installed in a water supply passage for a fluid and which makes a passage area of the fluid variable in accordance with a pressure variation of the fluid. A constant flow valve with a water temperature correcting function, which corrects the area of the passage hole of the valve body with an SMA material which is a heat sensitive element corresponding to a change in the supplied water temperature so that a predetermined flow rate corresponding to the supplied water temperature can be obtained. The valve element is formed of a coiled spring that expands and contracts in response to pressure fluctuations of the fluid,
The gap between the windings of the coiled spring is made to correspond to the passage hole area that is variable according to the pressure fluctuation of the fluid, and the passage hole area is defined by the gap between the windings of the coiled spring, and The spring load characteristic of the coil spring is set to be non-linear so that the product of the square root of the pressure difference of the fluid with the coil spring as a boundary is substantially constant, and the coil spring is connected to the supply water temperature. S corresponding to the change of
It is made of MA material.
【0014】[0014]
【作用】弁体をなすコイル状ばねは、流体の圧力変動に
応じて伸縮動作し、その各巻線間の隙間による通過孔面
積が、流体の圧力変動に応じて可変となる。しかも、こ
の弁体をなすコイル状ばねのばね荷重特性は、その各巻
線間の隙間による通過孔面積と、これを境にした流体の
差圧の平方根との積がほぼ一定になる非線形特性なの
で、例えば、水道水の供給圧力が0.3kg/cm2以下の低
圧地域において、流体の通過抵抗の発生が少なく、圧力
損失が非常に少ないものとなる。The coil-shaped spring forming the valve element expands and contracts according to the pressure fluctuation of the fluid, and the area of the passage hole due to the gap between the respective windings becomes variable according to the pressure fluctuation of the fluid. Moreover, the spring load characteristic of the coiled spring that forms the valve element is a non-linear characteristic in which the product of the area of the passage hole due to the gap between the windings and the square root of the differential pressure of the fluid across this is almost constant. For example, in a low-pressure area where the supply pressure of tap water is 0.3 kg / cm 2 or less, generation of fluid passage resistance is small and pressure loss is very small.
【0015】そして、弁体としてのSMA製コイル状ば
ねにより、水温が変化するとばね荷重も比例して変化
し、各巻線間の隙間による通過孔面積も比例的に増減す
るので、水温の高低により給水量も比例的に増減する。When the water temperature changes, the spring load changes proportionally with the SMA coiled spring as the valve element, and the area of the passage hole due to the gap between the windings also increases / decreases proportionally. The amount of water supply also increases / decreases proportionally.
【0016】[0016]
【実施例】以下に、本発明に係る水温補正付き定流量弁
の実施例を図1乃至図9に基づいて説明する。図1は本
発明に係る水温補正付き定流量弁の第1実施例を示すも
ので、使用開始前の状態を示した縦断側面図であり、図
2は図1の矢印A−A線に沿って弁筐体等を断面で示し
た受圧面積を説明する破断平面図、図3は流量コントロ
ールの安定状態を示した縦断側面図、図4は図3のB部
の拡大図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a constant flow valve with water temperature correction according to the present invention will be described below with reference to FIGS. FIG. 1 shows a first embodiment of a constant flow valve with water temperature correction according to the present invention, and is a vertical sectional side view showing a state before the start of use, and FIG. 2 is taken along the line AA in FIG. FIG. 4 is a cutaway plan view for explaining a pressure receiving area in which the valve housing and the like are shown in cross section, FIG. 3 is a vertical cross-sectional side view showing a stable state of flow rate control, and FIG.
【0017】先ず、図1乃至図4は本発明の第1実施例
を示すもので、この第1実施例に係る水温補正付き定流
量弁10の使用開始前の状態を示した図1において、1
1は弁筐体、12は流路、13は入口、15は出口、2
1は弁支持板、23は通孔、25は軸受筒体、31はば
ね受板、33はガイド軸、35は止輪、41は弁体をな
すSMA製コイル状ばねである。弁筐体11は、その筒
状体内を流路12として、一端に入口13を、他端に出
口15を有するもので、入口13側の外周に設けたテー
パーねじ14と出口15側の外周に設けたテーパーねじ
16により、例えば、図示せぬ給湯用温水器の給水管路
に接続される。First, FIGS. 1 to 4 show a first embodiment of the present invention. In FIG. 1 showing a state before the start of use of a constant flow valve 10 with a water temperature correction according to the first embodiment, 1
1 is a valve housing, 12 is a flow path, 13 is an inlet, 15 is an outlet, 2
Reference numeral 1 is a valve support plate, 23 is a through hole, 25 is a bearing cylinder, 31 is a spring receiving plate, 33 is a guide shaft, 35 is a snap ring, and 41 is a SMA coil spring that forms a valve body. The valve housing 11 has an inlet 13 at one end and an outlet 15 at the other end, with the tubular body serving as a flow path 12, and has a taper screw 14 provided on the outer circumference on the inlet 13 side and an outer circumference on the outlet 15 side. By the provided taper screw 16, for example, the taper screw 16 is connected to a water supply pipe line of a hot water supply water heater (not shown).
【0018】この弁筐体11の中間部17内の出口15
側には、流路12を直角に分断するように弁支持板21
が形成されている。この弁支持板21には、その円周方
向に複数の通孔23,23,…が形成されると共に、中
央に出口15側へ延びる軸受筒体25が形成されてい
る。この軸受筒体25内の軸受孔26は、弁支持板21
の上面に開口している。そして、上端に円板状のばね受
板31を備えるガイド軸33が、軸受孔26内に摺動自
在および回動自在に組み付けられると共に、そのばね受
板31下面と、弁支持板21上面の弁筐体中間部17と
の段部22との間には、弁体をなす円錐形状のSMA製
コイル状ばね41が介設されている。The outlet 15 in the intermediate portion 17 of the valve housing 11
On the side, the valve support plate 21 is formed so as to divide the flow path 12 at a right angle.
Are formed. A plurality of through holes 23, 23, ... Are formed in the valve support plate 21 in the circumferential direction thereof, and a bearing tubular body 25 extending to the outlet 15 side is formed in the center. The bearing hole 26 in the bearing cylinder 25 is formed by the valve support plate 21.
Has an opening on the upper surface of. A guide shaft 33 having a disk-shaped spring receiving plate 31 at the upper end is slidably and rotatably assembled in the bearing hole 26, and the lower surface of the spring receiving plate 31 and the upper surface of the valve supporting plate 21 are provided. Between the valve housing intermediate portion 17 and the step portion 22, a conical SMA coil-shaped spring 41 forming a valve body is provided.
【0019】即ち、この弁体をなす円錐形状のSMA製
コイル状ばね41は、その小径部側をばね受板31下面
に当接し、大径部側を弁支持板21上面の段部22に当
接して、しかも、若干圧縮された状態となっており、軸
受筒体25から出口15側へ突出するガイド軸33の端
部に形成した環状溝部34に止輪35が嵌着されてい
る。こうして、弁筐体11内には、その流路12を塞ぐ
ようにしてばね受板31と弁体をなす円錐形状のSMA
製コイル状ばね41が組み付けられている。そして、流
路12内に入口13から流入する水道水の圧力、即ち、
一次側圧力P1は、ばね受板31のガイド軸33断面
と、弁体をなす円錐形状のSMA製コイル状ばね41の
各巻線43,43,…の上面(ばね素線展開長さの上面
に相当する)に万遍なく作用する。That is, in the conical SMA coil-shaped spring 41 forming the valve body, the small diameter side is in contact with the lower surface of the spring receiving plate 31, and the large diameter side is in the step portion 22 on the upper surface of the valve supporting plate 21. The abutment ring 35 is fitted in the annular groove portion 34 formed at the end of the guide shaft 33 protruding from the bearing tubular body 25 toward the outlet 15 side in abutment and slightly compressed state. Thus, in the valve casing 11, a conical SMA that forms a valve body with the spring receiving plate 31 so as to close the flow passage 12 is formed.
A coil-shaped spring 41 is attached. The pressure of tap water flowing from the inlet 13 into the flow path 12, that is,
The primary-side pressure P1 is the cross section of the guide shaft 33 of the spring receiving plate 31 and the upper surface of each winding 43, 43, ... Of the conical SMA coil-shaped spring 41 forming the valve body (on the upper surface of the spring wire development length). (Corresponding) acts uniformly.
【0020】定流量弁10としての弁開閉コントロール
のための受圧面積Aは、図2に示される粒状模様の範囲
が最大で、SMA製コイル状ばね41は、図3および図
4に示されるように、その動作形態は、その巻線43が
大径側から接触を開始して、変位量が進むにつれて順次
小径側に移行されることから、図7に割合で示されたよ
うに、後述する通過孔面積Sにほぼ比例する形で減少す
る。定流量弁10は、水圧の変化を上記のような受圧面
積Aで感知して応動するようになっている。ここで、弁
体をなす円錐形状のSMA製コイル状ばね41は、図3
および図4に示されるように、各巻線43,43,…が
各々の大径側の内側に順次接触するよう小径側に向かっ
て螺旋状に形成されているため、その最大変位時には一
枚の円板形状になる。The pressure receiving area A for controlling the valve opening and closing of the constant flow valve 10 is the maximum in the range of the granular pattern shown in FIG. 2, and the SMA coil spring 41 is as shown in FIGS. 3 and 4. In addition, since the operation form of the winding 43 starts contacting from the large diameter side and is gradually shifted to the smaller diameter side as the displacement amount increases, it will be described later as shown in proportion in FIG. It decreases in a manner almost proportional to the passage hole area S. The constant flow valve 10 senses a change in water pressure by the pressure receiving area A as described above and responds to it. Here, the conical SMA coil-shaped spring 41 forming the valve body is shown in FIG.
As shown in FIG. 4, since the windings 43, 43, ... Are spirally formed toward the small diameter side so as to sequentially contact the inside of the large diameter side, one coil is wound at the maximum displacement. It becomes a disc shape.
【0021】図3および図4は流量コントロールの安定
状態を示した縦断側面図であり、図示のように、SMA
製コイル状ばね41の小径側の巻線43,43,43,
43,…は互いに接触しておらず、その間に隙間45,
45,45,45,…を保っている。この隙間45,4
5,45,45,…の周長総計が、この安定時の流体を
制御する通過孔面積Sとなる。また、各巻線43,4
3,…の接触部において、その接触面からの流体の漏洩
は、定流量弁としての機能が確保できる程度であること
が要求される。さらに、弁支持板21は、上述のような
変位時における弁体をなす円錐形状のSMA製コイル状
ばね41のバックアップ機能を有する。この弁体をなす
円錐形状のSMA製コイル状ばね41を境にして流体圧
力は、一次側圧力P1から二次側圧力P2へ変化する。3 and 4 are longitudinal side views showing a stable state of the flow rate control. As shown in FIG.
Windings 43, 43, 43 on the small diameter side of the coil-shaped spring 41 made of
43, ... Are not in contact with each other, and a gap 45,
45, 45, 45, ... This gap 45, 4
The total circumference of 5, 45, 45, ... Is the passage hole area S that controls the fluid at this stable time. Also, each winding 43, 4
In the contact portions of 3, ..., the leakage of fluid from the contact surfaces is required to be such that the function as a constant flow valve can be secured. Further, the valve support plate 21 has a backup function of the conical SMA coil spring 41 that forms the valve body during the displacement as described above. The fluid pressure changes from the primary pressure P1 to the secondary pressure P2 with the conical SMA coil-shaped spring 41 forming the valve body as a boundary.
【0022】ところで、流体の流量Qは、一般に、下記
の式によって表される。The flow rate Q of the fluid is generally expressed by the following equation.
【0023】 Q=αSV =αS√(2g(P1−P2)/r) =αS√(2g△P/r) ・・・(1) ここで、αは係数、Sは流体の通過孔面積、gは重力の
加速度、P1は一次側圧力、P2は二次側圧力、rは流
体の比重、Vは流体速度、△P=P1−P2である。Q = αSV = αS√ (2g (P1−P2) / r) = αS√ (2gΔP / r) (1) where α is a coefficient, S is the area of the passage hole of the fluid, g is the acceleration of gravity, P1 is the primary pressure, P2 is the secondary pressure, r is the specific gravity of the fluid, V is the fluid velocity, and ΔP = P1-P2.
【0024】α,g,rは係数並びに定数であることか
ら、(1)式を整理して、定流量を制御するための条件
を探ると、 Q∝S√△P ・・・(2) このように、流量Qが一定なる条件は、通過孔面積S
と、弁体をなすコイル状ばね41を境にした差圧の平方
根(√△P)の積が一定になることである。Since α, g, and r are coefficients and constants, when formula (1) is rearranged and the conditions for controlling the constant flow rate are searched, Q∝S√ΔP (2) Thus, the condition that the flow rate Q is constant is that the passage hole area S
And the product of the square root (√ΔP) of the differential pressure with the coiled spring 41 forming the valve body as a boundary is constant.
【0025】連続的に変化する△Pの1ポイントにおけ
る△Pと弁体をなすコイル状ばね41とのバランスは下
記の式によって表される。The balance between ΔP at one point of continuously changing ΔP and the coil-shaped spring 41 forming the valve body is expressed by the following equation.
【0026】 △PA=KL=F ・・・(3) △P=F/A Q∝S√(F/A) ・・・(4) 式中、Kはばね41のばね定数、Aは受圧面積、Lはば
ね41の変位量、Fはばね41の変位による発生力を表
す。ΔPA = KL = F (3) ΔP = F / A Q∝S√ (F / A) (4) where K is the spring constant of the spring 41, and A is the pressure received. The area, L represents the amount of displacement of the spring 41, and F represents the force generated by the displacement of the spring 41.
【0027】図7は弁体をなす円錐形状のコイル状ばね
41の変位量Lに対する通過孔面積Sの変化状況を表し
た特性線図であり、図示のように、密着側に向かうにし
たがって減少する右下がりの非線形特性となっている。
従って、前記(2)式を満足させるためには、コイル状
ばね41の変位荷重特性を「右上がり」となるようにす
ることによって、上述した通過孔面積Sの「右下がり」
特性を補正するようにすれば良いことが判る。FIG. 7 is a characteristic diagram showing the changing state of the passage hole area S with respect to the displacement amount L of the conical coil-shaped spring 41 forming the valve body. It has a downward-sloping non-linear characteristic.
Therefore, in order to satisfy the above expression (2), the displacement load characteristic of the coiled spring 41 is set to "upward to the right" so that the "downward right" of the passage hole area S described above is achieved.
It can be seen that the characteristics should be corrected.
【0028】図8は弁体をなす円錐形状のコイル状ばね
41の変位量Lに対するばね荷重Fの変化状況を表した
特性線図であり、図示のように、密着側に向かうにした
がって増加する右上がりの非線形特性となっている。即
ち、この「右上がり」特性は、本実施例のように、円錐
形状のコイル状ばね41にすることによって得ることが
できる。FIG. 8 is a characteristic diagram showing the changing state of the spring load F with respect to the displacement amount L of the conical coil spring 41 forming the valve body, and as shown in the figure, increases as it goes toward the close contact side. It has a non-linear characteristic that rises to the right. That is, this “upward rightward” characteristic can be obtained by using the conical coiled spring 41 as in the present embodiment.
【0029】しかしながら、実際面においては、受圧面
積Aも通過孔面積Sと同様に「右下がり」となっている
ことから、ばね41の変位特性を決定するに当たって
は、(3)(4)式の関係を確保しながら、通過孔面積
Sを考慮して、実験によって確認して決定されるもので
ある。However, on the actual surface, the pressure receiving area A is "downward to the right" like the passage hole area S. Therefore, in determining the displacement characteristic of the spring 41, the equations (3) and (4) are used. It is determined by confirming through an experiment in consideration of the passage hole area S while ensuring the relationship of.
【0030】以上のばね特性(通過孔面積Sの右下がり
特性と、ばね荷重Fの右上がり特性)は円錐形状のコイ
ル状ばね41をもって成し得たものであるが、図5に示
したような一般的な円筒形状のSMA製コイル状ばね5
1によっても可能である。このような弁体をなす円筒形
状のSMA製コイル状ばね51の場合は、各巻線53,
53,…のピッチを、その円筒形状の一端側で小さく、
徐々に大きくして他端側で最大になるような不等間ピッ
チによる構成とする。なお、この場合の受圧面積Aは、
その円筒形状のSMA製コイル状ばね51のコイル中心
径によって決まり、円錐形状のものとは異なる。図中、
55は巻線53,53間の隙間である。また、前記第1
実施例の弁体をなす円錐形状のSMA製コイル状ばね4
1の場合においても、各巻線43,43,…毎にピッチ
を変えることにより、ばね特性の非線形カーブの度合を
自由に調整することによって、さらなる特性補正の効果
を挙げて、前記(2)式に近付けることが可能である。The above-mentioned spring characteristics (the downward-sloping characteristic of the passage hole area S and the upward-sloping characteristic of the spring load F) can be realized by the conical coil spring 41, but as shown in FIG. General cylindrical coil spring 5 made of SMA
1 is also possible. In the case of the cylindrical SMA coil-shaped spring 51 forming such a valve body, each winding 53,
The pitch of 53, ... Is small on one end side of the cylindrical shape,
The pitch is unequal and the pitch is gradually increased to the maximum on the other end side. The pressure receiving area A in this case is
It is determined by the coil center diameter of the cylindrical SMA coil spring 51, and differs from the conical one. In the figure,
55 is a gap between the windings 53, 53. Also, the first
Cone-shaped SMA coil spring 4 which forms the valve body of the embodiment
Even in the case of 1, by freely adjusting the degree of the non-linear curve of the spring characteristics by changing the pitch for each of the windings 43, 43, .. It is possible to approach.
【0031】次に、前記第1実施例の弁体をなす円錐形
状のSMA製コイル状ばね41を備えた定流量弁10に
ついての動作説明をする。Next, the operation of the constant flow valve 10 provided with the conical SMA coil spring 41 forming the valve body of the first embodiment will be described.
【0032】図1、図3および図4において、図示せぬ
給湯用温水器の使用が開始されて、入口13に流体の流
れがあると、ばね受板31と弁体をなす円錐形状のSM
A製コイル状ばね41の上面によって構成される受圧面
積Aに、その水道水の供給圧力が作用する。これにより
SMA製コイル状ばね41が押されて、図1の状態から
図3に示される状態に変化する。In FIGS. 1, 3 and 4, when the use of a hot water heater (not shown) starts and a fluid flows at the inlet 13, a conical SM that forms a valve body with the spring receiving plate 31.
The tap water supply pressure acts on the pressure receiving area A formed by the upper surface of the A coil spring 41. As a result, the SMA coil spring 41 is pushed to change the state shown in FIG. 1 to the state shown in FIG.
【0033】即ち、SMA製コイル状ばね41は、その
円錐形状の大径側から密着を開始して、この密着は小径
側まで進み、一端は全閉に近い状態になるが、SMA製
コイル状ばね41自体の変位による発生力Fの反力を受
けて、弁開側に押し戻される。そして、また、受圧面積
Aの作用力によって弁閉側に押し戻されるような動作が
繰り返されて、設定流量値で安定する。実際には、この
動作の繰り返しは瞬時にして完了する。That is, the SMA coil-shaped spring 41 starts the close contact from the large diameter side of the conical shape, the close contact progresses to the small diameter side, and one end is close to the fully closed state. Upon receiving the reaction force of the generated force F due to the displacement of the spring 41 itself, the spring 41 is pushed back toward the valve opening side. Then, the operation of pushing back to the valve closing side by the acting force of the pressure receiving area A is repeated, and the flow rate becomes stable at the set flow rate value. In reality, the repetition of this operation is completed instantly.
【0034】図3および図5はその安定状態を示したも
のである。また、その安定時は、図8の特性線図におい
ては、その中間位置にあたる。このような安定状態の時
に、前述した(2)式が成立し、実際の流体は前記
(1)式にしたがってコントロールされて使用される。
ここで、既述した通り、水道水の供給圧力は、実際に
は、0.3〜7.0kg/cm2とバラツキがあり、その問題
となる低圧側(0.3kg/cm2)における定流量弁10の
状態を考察すると、前記受圧面積Aに作用する圧力が小
さいことは、弁体をなす円錐形状のSMA製コイル状ば
ね41の変位量が少ないことになり、この状態は、丁
度、図1の状態に近いものであることが予測される。3 and 5 show the stable state. Further, when it is stable, it corresponds to the intermediate position in the characteristic diagram of FIG. In such a stable state, the above equation (2) is established, and the actual fluid is controlled and used according to the above equation (1).
Here, as already described, the supply pressure of the tap water, in fact, there is 0.3~7.0kg / cm 2 and variations, constant in the low-pressure side (0.3kg / cm 2) which is a problem Considering the state of the flow valve 10, the fact that the pressure acting on the pressure receiving area A is small means that the amount of displacement of the conical SMA coil spring 41 forming the valve body is small, and this state is It is expected that the state is close to the state of FIG.
【0035】この図1から明らかなように、SMA製コ
イル状ばね41の巻線隙間45,45,45,45,4
5,…が、各巻線43,43,43,43,43,…に
跨って充分に有り、従って、弁部の通過孔面積Sは、そ
の各巻線隙間45,45,45,45,45,…とその
周長の積であることから、前記実公平4−10450号
公報の第4図に開示の定流量弁とは比較にならないほど
多いものとなる。この状況は図7に示される特性の左側
に相当する。このような低圧側での状態が、図9の特性
線図に点線で示される特性の左側に相当する。よって、
流体の通過抵抗の発生が少なく、圧力損失が非常に少な
いものとなる。As is apparent from FIG. 1, the winding gaps 45, 45, 45, 45, 4 of the SMA coil spring 41 are formed.
.. are sufficiently distributed over the respective windings 43, 43, 43, 43, 43, .. Therefore, the passage hole area S of the valve portion is such that the winding clearances 45, 45, 45, 45, 45, .. and its perimeter, the number is so large that it cannot be compared with the constant flow valve disclosed in FIG. 4 of Japanese Utility Model Publication No. 4-10450. This situation corresponds to the left side of the characteristic shown in FIG. Such a state on the low voltage side corresponds to the left side of the characteristic indicated by the dotted line in the characteristic diagram of FIG. Therefore,
The passage resistance of the fluid is small and the pressure loss is very small.
【0036】ところで、感熱応動素子であるSMA材
は、温度の変化を受けると材料の横弾性係数(G)が変
化する特性があって、この特性は一定温度領域において
リニアーになることが知られている。従って、この横弾
性係数と比例関係にあるばね荷重も前記温度領域におい
てリニアー特性となる(前記特開昭63−303281
号公報の第3図参照)ことから広く利用されている。前
記温度領域は製造工程における熱処理温度の選択によっ
て容易に決められるものである。By the way, the SMA material, which is a thermosensitive element, has a characteristic that the lateral elastic modulus (G) of the material changes when the temperature changes, and it is known that this characteristic becomes linear in a constant temperature region. ing. Therefore, the spring load proportional to the lateral elastic coefficient also has a linear characteristic in the temperature range (see JP-A-63-303281).
(See FIG. 3 of the publication), it is widely used. The temperature range is easily determined by selecting the heat treatment temperature in the manufacturing process.
【0037】本発明の実施例では、SMA製コイル状ば
ね41は、伸び側で熱処理されていて、この形状が記憶
されている。従って、そのSMA製コイル状ばね41
は、低温側で一旦圧縮する変形を行い、その後において
は加温すると、記憶された元の伸び側の形状を回復する
性質を有している。In the embodiment of the present invention, the SMA coil spring 41 is heat-treated on the extension side, and this shape is memorized. Therefore, the SMA coil spring 41
Has the property of undergoing a compressive deformation on the low temperature side and then recovering the stored original shape on the extension side when heated.
【0038】ここで、水温補正機能の制御の基点が冬期
にあることは既に述べたが、この基点をどこに置くか
は、弁体をコイル状ばね41で対応した本発明にとって
は特に重要なものである。それは、コイル状ばね41は
SMA材であることから、前記通過孔面積Sと、コイル
状ばね41を境にした流体の差圧の平方根(√△P)と
の積がほぼ一定になるように、コイル状ばね41のばね
荷重特性を非線形に設定する温度をどこにするかが問題
になるからである。Here, it has already been described that the base point of the control of the water temperature correction function is in the winter season. However, where to set this base point is particularly important for the present invention in which the valve body corresponds to the coil spring 41. Is. Since the coil-shaped spring 41 is made of SMA material, the product of the passage hole area S and the square root (√ΔP) of the differential pressure of the fluid with the coil-shaped spring 41 as a boundary is substantially constant. The reason is that the temperature at which the spring load characteristic of the coil spring 41 is set non-linearly becomes a problem.
【0039】図8は弁筐体11との組付関係においてS
MA製コイル状ばね41のばね荷重特性を示したもので
あり、実線で示した曲線は、前述の冬期に基点を置いた
場合で、その所定の一定温度(T℃)における特性を示
したものである。従って、湯沸器等の給湯能力は前記実
線で示したばね荷重特性を持った定流量弁10で最低の
保証ができるものとなっている。また、一点鎖線で示し
た曲線は、前記T℃より若干高い水温(T1℃)の時の
特性を示し、二点鎖線で示した曲線は、更に高い水温
(T2℃)の時の特性を示したものである。FIG. 8 shows S in the assembling relationship with the valve housing 11.
The spring load characteristic of the MA coil spring 41 is shown, and the curve shown by the solid line shows the characteristic at a predetermined constant temperature (T ° C) when the base point is set in the winter season. Is. Therefore, the hot water supply capacity of the water heater or the like can be guaranteed at a minimum with the constant flow valve 10 having the spring load characteristic shown by the solid line. The curve indicated by the one-dot chain line shows the characteristic at a water temperature (T1 ° C) slightly higher than T ° C, and the curve indicated by the two-dot chain line shows the characteristic at a higher water temperature (T2 ° C). It is a thing.
【0040】次に、湯沸器等の供給水の水温が、使用途
中において、T1からT2に変化し、弁体をなすSMA製
コイル状ばね41の働きによって、給湯湯量が増減をす
る補償機能について考察する。なお、ここでは、前記
(2)式、(3)式、(4)式を用いる。また、各式中
において、Qは基点T℃における制御流量、Sは流体の
通過孔面積、△P=P1−P2(差圧)、Aは受圧面
積、KはSMA製コイル状ばね41の基点T℃のばね定
数、LはSMA製コイル状ばね41の変位量、FはSM
A製コイル状ばね41の基点T℃におけるばね荷重であ
る。Next, the water temperature of the water supplied to the water heater changes from T1 to T2 during use, and the amount of hot water supplied increases or decreases due to the action of the SMA coil spring 41 that forms the valve body. Consider In addition, here, the equations (2), (3), and (4) are used. In each equation, Q is a control flow rate at a base point T ° C., S is a fluid passage hole area, ΔP = P1−P2 (differential pressure), A is a pressure receiving area, and K is a base point of an SMA coil spring 41. Spring constant of T ° C., L is displacement of SMA coil spring 41, F is SM
It is a spring load at the base point T ° C. of the coil spring 41 made of A.
【0041】本発明では、前述の通り、弁体をSMA製
コイル状ばね41で対応している関係上、前記(2)
式、(3)式、(4)式において、供給水の水温が変化
すると、前記F、S、K、そして、Qが変化する等、全
てが関係することから、ある条件に絞って説明する。In the present invention, as described above, since the valve body is supported by the SMA coil spring 41, the above (2)
In the expressions, (3), and (4), when the water temperature of the supply water changes, the above-mentioned F, S, K, and Q change, and so on. .
【0042】図8において、ばね荷重特性線図の横軸側
に示した図は、弁筐体11の弁支持板21部に設けられ
た弁体をなすSMA製コイル状ばね41とばね受板31
を示しており、さらに、理解を容易にするため、前記L
とばね高さHの関係、並びに、SMA製コイル状ばね4
1の自由長とセット長の関係を示している。ここでは、
SMA製コイル状ばね41が動作してばね高さHでバラ
ンスをし、このHが一定で変化しないものとし、水温が
T、T1、T2と上昇するとしたとき、同図に示されるよ
うに、ばね荷重もF、F1、F2と変化する。なお、以下
では、T1℃における制御流量をQ1で表し、T2℃にお
ける制御流量をQ2で表す。In FIG. 8, the diagram shown on the horizontal axis side of the spring load characteristic diagram is the SMA coil spring 41 and the spring receiving plate which form the valve element provided on the valve support plate 21 of the valve housing 11. 31
In order to facilitate understanding, the L
And spring height H, and SMA coil spring 4
The relationship between the free length of 1 and the set length is shown. here,
When the SMA coiled spring 41 operates to balance at the spring height H, and this H is constant and does not change, and the water temperature rises to T, T1, T2, as shown in the same figure, The spring load also changes to F, F1 and F2. In the following, the control flow rate at T1 ° C. is represented by Q1 and the control flow rate at T2 ° C. is represented by Q2.
【0043】従って、T1℃において、前記(2)式
は、Q1∝S√△P1となり、前記(4)式から、△P1
=F1/Aであるから、 Q1∝S√(F1/A) この式中、SとAは前記Hが変化しない条件のため、T
1においても変化しないことから、式を整理すると、 Q1∝S√F1 ・・・(5) また、T2℃においても、以上と同様にして、 Q2∝S√△P2 △P2=F2/A Q2∝S√(F2/A) Q2∝S√F2 ・・・(6) SMA製コイル状ばね41のばね荷重拡大率は、α=F
2/F1であるから、 F2=αF1 ・・・(7) この(7)式を前記(6)式に代入して流量を抽出する
と、 Q2∝S√(αF1) 前記(5)式と比較すると、 Q2∝Q1√α ・・・(8) となる。Therefore, at T1 ° C., the equation (2) becomes Q1∝S√ΔP1, and from the equation (4), ΔP1
= F1 / A, so Q1∝S√ (F1 / A) In this formula, S and A are the conditions under which H does not change, so T
Since it does not change even in 1, the formula is summarized as follows: Q1∝S√F1 (5) Also, at T2 ° C, in the same manner as above, Q2∝S√ΔP2 ΔP2 = F2 / A Q2 ∝S√ (F2 / A) Q2∝S√F2 ・ ・ ・ (6) The spring load expansion ratio of the SMA coil spring 41 is α = F
Since it is 2 / F1, F2 = αF1 (7) By substituting this equation (7) into the equation (6) and extracting the flow rate, Q2∝S√ (αF1) is compared with the equation (5). Then, Q2∝Q1√α (8)
【0044】従って、供給水温がT1からT2に変化した
場合の給湯湯量の増加は、T1時の√α倍になることが
わかる。図9はこれらQ、Q1、Q2の時間的経過を示し
たものである。また、逆に、T2からT1に水温が下がっ
た場合のばね荷重減少率は、α=F2/F1であることか
ら、Q1はQ2の√(1/α)に減少したものとなる。Therefore, it can be seen that the increase in the amount of hot water supplied when the supply water temperature changes from T1 to T2 is √α times that at T1. FIG. 9 shows the time course of these Q, Q1 and Q2. On the contrary, when the water temperature is lowered from T2 to T1, the spring load reduction rate is α = F2 / F1. Therefore, Q1 is reduced to √ (1 / α) of Q2.
【0045】次に、図6に示した本発明の第2実施例に
ついて説明する。この第2実施例に係る水温補正付き定
流量弁60は、給水管路61内に挿入して直接組み付け
るタイプのものである。Next, the second embodiment of the present invention shown in FIG. 6 will be described. The constant flow valve 60 with water temperature correction according to the second embodiment is of a type that is inserted into the water supply pipe line 61 and directly assembled.
【0046】即ち、給水管路61内を直角に分断するよ
うに弁支持板71を組み込んでいる。この弁支持板71
は、前記第1実施例と同様に、複数の通孔73,73,
…、軸受筒体75、軸受孔76を有すると共に、給水管
路61内に安定させる支持筒77を一体に設けてなる。
この支持筒77は、給水管路61内の上流側に向かう段
部62に当接して、外周面の環状溝78内にOリング等
のシール部材79を組み付けて、給水管路61内と気密
的な関係にある。That is, the valve support plate 71 is incorporated so as to divide the inside of the water supply pipe 61 at a right angle. This valve support plate 71
Is a plurality of through holes 73, 73, 73, as in the first embodiment.
The bearing cylinder 75 and the bearing hole 76 are provided, and the supporting cylinder 77 for stabilizing the water supply pipe 61 is integrally provided.
This support cylinder 77 is in contact with the upstream side step portion 62 in the water supply pipe 61, and a seal member 79 such as an O-ring is assembled in the annular groove 78 on the outer peripheral surface so as to be airtight with the water supply pipe 61. Relationship.
【0047】そして、前記第1実施例と同様に、ばね受
板81を備えるガイド軸83を、軸受孔76内に摺動自
在および回動自在に組み付けると共に、そのばね受板8
1下面と、弁支持板71上面の支持筒77との段部72
との間に、弁体をなす円錐形状のSMA製コイル状ばね
91を介設している。なお、軸受筒体75から下流側へ
突出するガイド軸83端部の環状溝部84に止輪85が
嵌着されており、93は巻線、95はその間の隙間であ
る。こうして、給水管路61内に、その流路を塞ぐよう
にしてばね受板81と弁体をなす円錐形状のSMA製コ
イル状ばね91を備える弁支持板71を直接組み付けて
いる。Then, similarly to the first embodiment, the guide shaft 83 having the spring receiving plate 81 is slidably and rotatably assembled in the bearing hole 76, and the spring receiving plate 8 is provided.
1 stepped portion 72 between the lower surface and the support cylinder 77 on the upper surface of the valve support plate 71
A conical SMA coil-shaped spring 91 forming a valve body is interposed between the two. A retaining ring 85 is fitted in an annular groove portion 84 at the end of the guide shaft 83 protruding from the bearing tubular body 75 to the downstream side, 93 is a winding wire, and 95 is a gap therebetween. In this way, the valve support plate 71 including the spring receiving plate 81 and the conical SMA coil-shaped spring 91 forming the valve body is directly assembled in the water supply pipe 61 so as to close the flow passage.
【0048】この第2実施例に係る水温補正付き定流量
弁60によっても、前記第1実施例と同様の機能が得ら
れるものであり、また、前記第1実施例と比較して、弁
筐体を省略できることから、コストをさらに低減できる
という利点も得られる。The constant-flow valve 60 with water temperature correction according to the second embodiment also has the same function as that of the first embodiment, and compared with the first embodiment, the valve casing. Since the body can be omitted, there is an advantage that the cost can be further reduced.
【0049】なお、以上の実施例においては、給湯用温
水器の給水管路に設置する水温補正付き定流量弁とし
て、給湯湯温の安定化を図ったが、本発明に係る水温補
正付き定流量弁の用途は、これに限定されるものではな
く、高温熱処理炉並びにエアーコンプレッサー等の冷却
水給水管路に設置して運転の安定化と節水化を図った
り、さらには、便器等の水洗洗浄装置(ボールタップ
等)の給水管路に設置して節水化を図る等、幅の広い利
用が可能である。In the above embodiment, the constant temperature valve with water temperature correction installed in the water supply conduit of the hot water heater has been intended to stabilize the hot water temperature, but the constant temperature control with water temperature correction according to the present invention is intended. The use of the flow valve is not limited to this, and it is installed in the cooling water supply pipe line of the high temperature heat treatment furnace and the air compressor to stabilize the operation and save water, and further, to flush the toilet bowl and the like. It can be widely used by installing it in the water supply pipe of a cleaning device (ball tap, etc.) to save water.
【0050】また、本発明に係る水温補正付き定流量弁
は、適用する機器並びに装置等の供給側に設置する他、
製品としての安価な供給が可能となれば、機器並びに装
置等の出口側に設置して使用することもできる。例え
ば、一つの例として、一般家庭において、大型の給湯用
温水器を設置して炊事場、お風呂、シャワー等の一般給
湯の他に、各部屋に熱交換器を配置して給湯する暖房装
置を利用することが多くなっている。In addition, the constant flow valve with water temperature correction according to the present invention is installed on the supply side of applicable equipment and devices,
If the product can be supplied inexpensively, it can be installed and used on the outlet side of equipment and devices. For example, as one example, in a general household, in addition to general hot water supply such as a kitchen, bath, shower, etc. by installing a large-scale hot water heater, a heating device that arranges a heat exchanger in each room to supply hot water. Are often used.
【0051】このように、一台の給湯用温水器を使って
多数の箇所へ給湯する場合に問題になることは、各機器
並びに装置の設置の状態、即ち、給湯用温水器からの距
離、高さ、継手数等が相違することによる流体抵抗の差
から、各々への給湯流量に差が出てしまうことがある。
そこで、各給湯分配管の入口に本発明に係る水温補正付
き定流量弁を設けて、流量の安定化を図るようにすれ
ば、上述のような問題も改善できる。As described above, a problem when hot water is supplied to a large number of places using one hot water heater is the state of installation of each device and apparatus, that is, the distance from the hot water heater, Due to the difference in fluid resistance due to the difference in height, the number of joints, etc., there may be a difference in the hot water supply flow rate to each.
Therefore, if the constant flow valve with water temperature correction according to the present invention is provided at the inlet of each hot water supply pipe to stabilize the flow rate, the above-mentioned problem can be solved.
【0052】また、本発明に係る水温補正付き定流量弁
の具体的な配置の仕方や流量制御すべき流体の種類等も
任意であり、その他、具体的な細部構造等についても適
宜に変更可能であることは勿論である。Further, the specific arrangement of the constant flow valve with water temperature correction according to the present invention, the kind of fluid for which the flow rate is to be controlled, etc. are arbitrary, and other specific detailed structures and the like can be appropriately changed. Of course,
【0053】[0053]
【発明の効果】以上のように、本発明に係る水温補正付
き定流量弁によれば、例えば、水道水の供給圧力の低圧
側における圧力損失を0.2kg/cm2以下と少なくできる
ことから、水道水の供給圧力が0.3kg/cm2の低圧地域
であっても、例えば、給湯用温水器の場合に、設定流量
(実施例では20l/min)を充分に供給することができ
る。従って、給湯用温水器の健全な使用ができるばかり
でなく、充分な湯の使用ができることから、利用者に満
足を与えることができる。As described above, according to the constant flow valve with water temperature correction according to the present invention, for example, the pressure loss on the low pressure side of the supply pressure of tap water can be reduced to 0.2 kg / cm 2 or less, Even in a low-pressure area where the supply pressure of tap water is 0.3 kg / cm 2 , for example, in the case of a hot water heater, the set flow rate (20 l / min in the embodiment) can be sufficiently supplied. Therefore, not only can the water heater for hot water be used soundly, but also sufficient water can be used, so that the user can be satisfied.
【0054】そして、本発明は、弁体をなすコイル状ば
ねを感熱応動素子であるSMA材で対応した簡単な構造
によって、供給水の水温変化に応じて給水量を補正する
ことができると共に、ガバナ(調圧)機能も有すること
から、湯沸器等の給湯湯温を時節に関係なく常に安定さ
せることができる。Further, according to the present invention, the water supply amount can be corrected according to the change in the water temperature of the supplied water by a simple structure in which the coiled spring forming the valve body is made of the SMA material which is the heat sensitive element. Since it also has a governor (pressure regulating) function, it is possible to constantly stabilize the hot water temperature of the hot water supply such as a water heater regardless of time.
【0055】また、本発明に係る水温補正付き定流量弁
は、弁体としてコイル状ばねに定流量コントロール機能
を与えたことにより、弁の構造を簡略化できると共に、
部品も簡略化できたことから、量産化が可能となり、工
数の大幅な低減が可能である。従って、性能の良い水温
補正付き定流量弁を安価に広く提供することができる。The constant flow valve with water temperature correction according to the present invention can simplify the structure of the valve by providing the coiled spring as a valve body with a constant flow control function.
Since the parts can also be simplified, mass production is possible and man-hours can be greatly reduced. Therefore, it is possible to inexpensively and widely provide a constant flow valve with a good water temperature correction.
【図1】本発明に係る水温補正付き定流量弁の第1実施
例を示すもので、使用開始前の状態を示した縦断側面図
である。FIG. 1 is a vertical cross-sectional side view showing a first embodiment of a constant flow valve with water temperature correction according to the present invention, showing a state before the start of use.
【図2】図1の矢印A−A線に沿って弁筐体等を断面で
示した受圧面積を説明する破断平面図である。FIG. 2 is a cutaway plan view for explaining a pressure receiving area in which a valve housing and the like are shown in a cross section along line AA in FIG.
【図3】流量コントロールの安定状態を示した縦断側面
図である。FIG. 3 is a vertical sectional side view showing a stable state of flow rate control.
【図4】図3のB部の拡大図である。FIG. 4 is an enlarged view of part B in FIG.
【図5】弁体をなすSMA製コイル状ばねの変更例を示
す破断側面図である。FIG. 5 is a cutaway side view showing a modified example of an SMA coiled spring that forms a valve body.
【図6】本発明に係る水温補正付き定流量弁の第2実施
例を示すもので、使用開始前の状態を示した縦断側面図
である。FIG. 6 is a vertical sectional side view showing a second embodiment of the constant flow valve with water temperature correction according to the present invention, showing a state before the start of use.
【図7】本発明に係る水温補正付き定流量弁による弁体
の通過孔面積(受圧面積)特性線図である。FIG. 7 is a characteristic diagram of a passage hole area (pressure receiving area) of a valve body by the constant flow valve with water temperature correction according to the present invention.
【図8】本発明に係る水温補正付き定流量弁による弁体
のばね荷重特性線図にSMA製コイル状ばね部分を合成
して水温変動に対する機能を説明する図である。FIG. 8 is a diagram illustrating a function against water temperature fluctuation by combining a coil-shaped spring portion made of SMA with a spring load characteristic diagram of a valve body by a constant flow valve with water temperature correction according to the present invention.
【図9】本発明に係る水温補正付き定流量弁と従来の定
流量弁との圧力損失を比較する圧力流量特性線図であ
る。FIG. 9 is a pressure / flow rate characteristic diagram for comparing pressure loss between a constant flow valve with water temperature correction according to the present invention and a conventional constant flow valve.
10,60 本発明に係る水温補正付き定流量弁 11 弁筐体 12 流路 13 入口 15 出口 21,71 弁支持板 22,72 段部 23,73 通孔 25,75 軸受筒体 31,81 ばね受板 33,83 ガイド軸 35,85 止輪 41,51,91 弁体をなすSMA製コイル状ばね 43,53,93 巻線 45,55,95 隙間 61 給水管路 62 段部 77 支持筒 79 シール部材 10, 60 Constant flow valve with water temperature correction according to the present invention 11 Valve housing 12 Flow path 13 Inlet 15 Outlet 21,71 Valve support plate 22,72 Step portion 23,73 Through hole 25,75 Bearing tubular body 31,81 Spring Retaining plate 33,83 Guide shaft 35,85 Retaining ring 41,51,91 SMA coil spring 43,53,93 which forms a valve body Winding 45,55,95 Gap 61 Water supply conduit 62 Step portion 77 Support cylinder 79 Seal member
Claims (1)
動に応じて流体の通過孔面積を可変とする弁体を備え、
さらに、この弁体の通過孔面積を供給水温の変化に対応
する感熱応動素子である形状記憶合金材で補正して、前
記供給水温に対応した所定流量が得られるようにした定
流量弁であって、 前記弁体を前記流体の圧力変動に応じて伸縮動作するコ
イル状ばねにより形成して、 このコイル状ばねの各巻線間の隙間を、前記流体の圧力
変動に応じて可変となる前記通過孔面積に対応させると
共に、 前記コイル状ばねの各巻線間の隙間による前記通過孔面
積と、前記コイル状ばねを境にした前記流体の差圧の平
方根との積がほぼ一定になるように、前記コイル状ばね
のばね荷重特性を非線形に設定してなり、 且つ前記コイル状ばねを前記供給水温の変化に対応する
前記形状記憶合金材で形成してなることを特徴とする水
温補正付き定流量弁。1. A valve body, which is installed in a water supply channel for a fluid, and has a passage hole area for the fluid that is variable according to a pressure fluctuation of the fluid,
Further, it is a constant flow valve in which the area of the passage hole of the valve body is corrected by a shape memory alloy material which is a heat sensitive element corresponding to the change of the supply water temperature so that a predetermined flow rate corresponding to the supply water temperature can be obtained. The valve body is formed of a coil-shaped spring that expands and contracts according to the pressure fluctuation of the fluid, and the gap between the windings of the coil-shaped spring is variable according to the pressure fluctuation of the fluid. Corresponding to the hole area, the product of the passage hole area due to the gap between the windings of the coiled spring and the square root of the differential pressure of the fluid with the coiled spring as a boundary is substantially constant, A constant flow rate with water temperature correction, characterized in that the spring load characteristic of the coiled spring is set non-linearly, and the coiled spring is formed of the shape memory alloy material corresponding to the change of the supplied water temperature. valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11496593A JP2591578B2 (en) | 1993-05-17 | 1993-05-17 | Constant flow valve with water temperature compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11496593A JP2591578B2 (en) | 1993-05-17 | 1993-05-17 | Constant flow valve with water temperature compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06331051A true JPH06331051A (en) | 1994-11-29 |
JP2591578B2 JP2591578B2 (en) | 1997-03-19 |
Family
ID=14651021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11496593A Expired - Fee Related JP2591578B2 (en) | 1993-05-17 | 1993-05-17 | Constant flow valve with water temperature compensation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2591578B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007239864A (en) * | 2006-03-08 | 2007-09-20 | Fuji Seiko Kk | Constant flow rate valve |
-
1993
- 1993-05-17 JP JP11496593A patent/JP2591578B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007239864A (en) * | 2006-03-08 | 2007-09-20 | Fuji Seiko Kk | Constant flow rate valve |
Also Published As
Publication number | Publication date |
---|---|
JP2591578B2 (en) | 1997-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869232A (en) | Oil and gas water heater | |
US4549525A (en) | Oil and gas water heater | |
US4085921A (en) | Multiple-mode fluid-flow control valve arrangement | |
RU2735734C1 (en) | Self-tuning adjustment device for flow control valve, temperature control system and distribution device therewith, as well as corresponding methods | |
US4298943A (en) | Heating system | |
KR101181490B1 (en) | Auto-control heating system of district heating and control method for heating | |
JP2571335B2 (en) | Constant flow valve | |
JPH06331051A (en) | Fixed flow valve with water temperature correction | |
US4664096A (en) | Oil and gas water heater | |
US4151862A (en) | Multiple-mode fluid-flow control valve arrangement | |
JPS6353379A (en) | Fluid mixing valve | |
US3237862A (en) | In-line temperature actuated valve | |
JPS6231236B2 (en) | ||
US1971801A (en) | Oven heat control | |
JPS6141023Y2 (en) | ||
KR940009066B1 (en) | Temperature control valve for hot water | |
US2039358A (en) | Thermally operated valve | |
US3235179A (en) | Control device having temperature responsive means for regulating the pressure regulator thereof | |
GB2505396A (en) | Apparatus to control a flow of heated water from a boiler to a water outlet | |
JP3164786B2 (en) | Constant flow valve | |
JPH0536151Y2 (en) | ||
US2055033A (en) | Temperature control system and apparatus | |
JPH0224036Y2 (en) | ||
JPH0435712Y2 (en) | ||
JP3077425B2 (en) | Constant pressure hot and cold water mixing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20071219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20091219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20101219 |
|
LAPS | Cancellation because of no payment of annual fees |