JPH063299A - Method for judging hardness of ultraviolet curing resin covering optical fiber - Google Patents

Method for judging hardness of ultraviolet curing resin covering optical fiber

Info

Publication number
JPH063299A
JPH063299A JP4162675A JP16267592A JPH063299A JP H063299 A JPH063299 A JP H063299A JP 4162675 A JP4162675 A JP 4162675A JP 16267592 A JP16267592 A JP 16267592A JP H063299 A JPH063299 A JP H063299A
Authority
JP
Japan
Prior art keywords
optical fiber
degree
curve
cure
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4162675A
Other languages
Japanese (ja)
Inventor
Naoya Inoue
直哉 井上
Minoru Chiba
実 千葉
Takeo Shiono
武男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4162675A priority Critical patent/JPH063299A/en
Publication of JPH063299A publication Critical patent/JPH063299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To easily and precisely judge the hardness of an ultraviolet curing resin covering an optical fiber within a short time. CONSTITUTION:The temperature-thermal decomposition heating value curve of an optical fiber covered with an ultraviolet curing resin by a differential calorimeter or differential scanning calorimeter, or the temperature-linear expansion coefficient curve by a heat mechanical analyzing device is determined. The glass transition point obtained from the curve is compared with a predetermined standard sample whose hardness is known, whereby the hardness is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバに被覆され
た紫外線硬化型樹脂の硬化度を判定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for judging the degree of curing of an ultraviolet curable resin coated on an optical fiber.

【0002】[0002]

【従来の技術】近年、光ファイバの保護被覆材料とし
て、紫外線硬化型樹脂が従来のシリコーン樹脂やナイロ
ンに代わってその高速硬化性から主流になりつつある。
2. Description of the Related Art In recent years, as a protective coating material for optical fibers, ultraviolet curable resins have become the mainstream in place of conventional silicone resins and nylons because of their fast curability.

【0003】しかして、この紫外線硬化型樹脂は、高速
硬化性とはいえ、その硬化度は、製造ラインにおける紫
外線ランプの出力の経時変化、雰囲気の温度や酸素量、
線速などによって変化し、光ファイバの諸特性ばかりで
なく、製造工程の安定にも大きく影響することが知られ
ている。
Although the ultraviolet curable resin is fast curable, its curing degree depends on changes in the output of the ultraviolet lamp in the production line with time, the temperature of the atmosphere and the amount of oxygen.
It is known that it changes depending on the linear velocity and the like, and greatly affects not only the characteristics of the optical fiber but also the stability of the manufacturing process.

【0004】このため、従来より、光ファイバに被覆さ
れた紫外線硬化型樹脂の硬化度を測定し、管理すること
が行われている。
Therefore, conventionally, the degree of cure of the ultraviolet curable resin coated on the optical fiber has been measured and controlled.

【0005】この種の技術としては、ゲル分率を測定す
る方法や、ヤング率を直接測定する方法のほか、微少硬
度計により硬度を測定する方法(特開平3-105233号公報
参照)、誘電緩和スペクトルを測定する方法(特開平3-
53152 号公報参照)、フォトカロリメトリー(UV−D
SC)を用いて紫外線照射による反応熱から算出する、
いわゆるUV−DSC法と呼ばれる方法(特開平2-2297
41号公報参照)などが知られている。
Examples of this type of technique include a method of measuring the gel fraction, a method of directly measuring the Young's modulus, a method of measuring the hardness with a micro hardness meter (see Japanese Patent Laid-Open No. 3-105233), a dielectric Method for measuring relaxation spectrum (JP-A-3-
53152), photocalorimetry (UV-D
SC) to calculate from the heat of reaction due to UV irradiation,
A so-called UV-DSC method (Japanese Patent Laid-Open No. 2297/1990)
No. 41) is known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来から知られる方法は、いずれも、試料の作成な
ど操作に手間と時間がかかり、製造ラインでの、光ファ
イバに被覆された紫外線硬化型樹脂の硬化度の管理に用
いるには、あまり適当ではなかった。
However, in all of the conventionally known methods, it takes time and labor to prepare a sample and the like, and the ultraviolet curing type coated on the optical fiber in the production line is used. It was not very suitable for use in controlling the degree of cure of the resin.

【0007】本発明はこのような点に対処してなされた
もので、光ファイバに被覆された紫外線硬化型樹脂の硬
化度を容易かつ短時間に、しかも精度良く判定すること
ができる方法を提供することを目的とする。
The present invention has been made in consideration of such a point, and provides a method capable of easily and accurately determining the degree of cure of an ultraviolet curable resin coated on an optical fiber. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本願の第1の発明は、光
ファイバに被覆された紫外線硬化型樹脂の硬化度を判定
する方法において、紫外線硬化型樹脂が被覆された前記
光ファイバの示差熱量計または示差走査熱量計による温
度−熱分解発熱量曲線を求め、この曲線から得られるガ
ラス転移点を、予め求めておいた硬化度既知の標準試料
のそれと比較して硬化度を判定することを特徴とし(請
求項1記載)、また、本願の第2の発明は、紫外線硬化
型樹脂が被覆された前記光ファイバの熱機械分析装置に
よる温度−線膨張係数曲線を求め、この曲線から得られ
るガラス転移点を、予め求めておいた硬化度既知の標準
試料のそれと比較して硬化度を判定することを特徴とす
るもの(請求項2記載)である。
According to a first aspect of the present invention, in a method of determining the degree of curing of an ultraviolet curable resin coated on an optical fiber, the differential calorific value of the optical fiber coated with the ultraviolet curable resin is provided. Of the temperature-pyrolysis exotherm curve by a thermometer or a differential scanning calorimeter, and the glass transition point obtained from this curve is compared with that of a standard sample of known degree of cure to determine the degree of cure. The second invention of the present application is obtained by obtaining a temperature-linear expansion coefficient curve of a thermomechanical analyzer for the optical fiber coated with the ultraviolet curable resin. The glass transition point is compared with that of a standard sample having a known degree of curing, which is determined in advance, to determine the degree of curing (claim 2).

【0009】このような各方法によって、光ファイバに
被覆された紫外線硬化型樹脂の硬化度を判定することが
できるとした理由は、以下の通りである。すなわち、紫
外線硬化型樹脂が被覆された光ファイバから採取した試
料を用いて、被覆された紫外線硬化型樹脂の示差熱量計
(DTA)または示差走査熱量計(DSC)による温度
−熱分解発熱量曲線、あるいは熱機械分析装置(TM
A)による温度−線膨張係数曲線を求めると、図1また
は図2に例示されるような、ある温度Tg 付近を境に発
熱量、もしくは線膨張係数が大きく変化する曲線が得ら
れる(以下、示差熱量計による温度−熱分解発熱量曲線
をDTA曲線、示差走査熱量計による温度−熱分解発熱
量曲線をDSC曲線、熱機械分析装置による温度−線膨
張係数曲線をTMA曲線と記載する。)。これらの各変
化はガラス転移に起因するもので、温度Tg はガラス転
移点を示している。そして、ここで得られるガラス転移
点は、後述する実施例にも示したように、被覆を構成す
る紫外線硬化型樹脂の硬化度によく相関する。したがっ
て、DTA曲線やDSC曲線、あるいはTMA曲線から
このガラス転移点を求め、予め求めておいた硬化度既知
の標準試料のそれと比較することにより、硬化度を精度
よく判定することができる。
The reason why the degree of curing of the ultraviolet curable resin coated on the optical fiber can be determined by each of the above methods is as follows. That is, using a sample collected from an optical fiber coated with an ultraviolet curable resin, a temperature-pyrolysis heat generation curve of the coated ultraviolet curable resin measured by a differential calorimeter (DTA) or a differential scanning calorimeter (DSC). , Or thermomechanical analyzer (TM
When the temperature-linear expansion coefficient curve according to A) is obtained, a curve in which the calorific value or the linear expansion coefficient greatly changes around a certain temperature Tg as shown in FIG. 1 or 2 is obtained (hereinafter, (A temperature-pyrolysis exothermic curve by a differential calorimeter is referred to as a DTA curve, a temperature-pyrolysis exothermic curve by a differential scanning calorimeter is referred to as a DSC curve, and a temperature-linear expansion coefficient curve by a thermomechanical analyzer is referred to as a TMA curve.) . Each of these changes is due to the glass transition, and the temperature Tg shows the glass transition point. The glass transition point obtained here correlates well with the degree of curing of the ultraviolet curable resin that constitutes the coating, as shown in the examples described later. Therefore, the degree of cure can be accurately determined by finding this glass transition point from the DTA curve, DSC curve, or TMA curve and comparing it with that of a standard sample of known degree of cure.

【0010】本発明においては、線速を変えるなどの方
法で紫外線の照射量を変化させて、硬化度の異なる複数
の標準試料を作製し、これらの各試料についてDTA曲
線、DSC曲線、あるいはTMA曲線を作成してそれぞ
れのガラス転移点を求め、硬化度とそれぞれのガラス転
移点との相関を求めておき、この結果を基に、硬化度未
知の試料について、同様にDTA曲線、DSC曲線、あ
るいはTMA曲線を作成して求めたガラス転移点から、
当該試料の硬化度が判定される。
In the present invention, a plurality of standard samples having different degrees of curing are prepared by changing the irradiation amount of ultraviolet rays by changing the linear velocity or the like, and the DTA curve, DSC curve, or TMA of each of these samples is prepared. A curve is created to obtain each glass transition point, and a correlation between the degree of curing and each glass transition point is obtained in advance. Based on this result, a sample with an unknown degree of curing is similarly subjected to a DTA curve, a DSC curve, Or from the glass transition point obtained by creating the TMA curve,
The degree of cure of the sample is determined.

【0011】[0011]

【作用】本発明の方法においては、紫外線硬化型樹脂が
被覆された光ファイバを、そのまま測定用試料として用
いることができるDTA曲線、DSC曲線、あるいはT
MA曲線を求め、それから得られるガラス転移点を、予
め求めておいた硬化度既知の標準試料のそれと比較する
ので、特別な試料作成の必要もなく、容易かつ短時間に
光ファイバに被覆された紫外線硬化型樹脂の硬化度を判
定することができる。しかも、各曲線から得られるガラ
ス転移点は、紫外線硬化型樹脂の硬化度とよく相関して
いるので、判定は精度の高いものとなる。
In the method of the present invention, the optical fiber coated with the UV-curable resin can be used as it is as a sample for measurement, such as a DTA curve, a DSC curve, or a T.
Since the MA curve is obtained and the glass transition point obtained from the MA curve is compared with that of a standard sample of known curing degree which has been obtained in advance, it is easy and short time to coat the optical fiber without the need for special sample preparation. The degree of cure of the ultraviolet curable resin can be determined. Moreover, the glass transition point obtained from each curve correlates well with the degree of cure of the ultraviolet curable resin, so that the determination is highly accurate.

【0012】[0012]

【実施例】次に本発明の実施例について記載する。EXAMPLES Next, examples of the present invention will be described.

【0013】実施例1 外径 125μmの光ファイバ上に、紫外線硬化型樹脂とし
てウレタン−アクリレート樹脂を被覆し、 3kw紫外線ラ
ンプを用いて紫外線を照射して、外径 250μmの光ファ
イバ心線を製造した。このとき線速を変えて、紫外線硬
化型樹脂の硬化度を異ならせるようにした。このように
して得られた光ファイバ心線から、硬化度の異なる試料
を採取し、DSCにより、空気雰囲気中、昇温速度10℃
/ 分の条件で室温から 800℃まで加熱して、DSC曲線
を作成し、これらのDSC曲線から各試料についてのガ
ラス転移点を求めて、線速に対するガラス転移点の変化
を調べたところ、図3に示すような線速−ガラス転移点
曲線(a)が得られた。すなわち、線速が遅いほど、つ
まり紫外線照射量が多くなるほどガラス転移点は高くな
っていた。一方、これらの各試料について、UV−DS
C法により硬化度を測定し、線速に対する硬化度の変化
をグラフに表したところ、同図3に示すような線速−硬
化度曲線(b)が得られた。
Example 1 An optical fiber having an outer diameter of 125 μm was coated with a urethane-acrylate resin as an ultraviolet curable resin and irradiated with ultraviolet rays using a 3 kw ultraviolet lamp to manufacture an optical fiber core wire having an outer diameter of 250 μm. did. At this time, the linear velocity was changed so that the degree of curing of the ultraviolet curable resin was varied. From the optical fiber thus obtained, samples having different curing degrees were sampled, and the temperature rising rate was 10 ° C in an air atmosphere by DSC.
When DSC curves were created by heating from room temperature to 800 ° C under the condition of / min, the glass transition point for each sample was obtained from these DSC curves, and the change in the glass transition point with respect to the linear velocity was investigated. The linear velocity-glass transition point curve (a) as shown in 3 was obtained. That is, the lower the linear velocity, that is, the higher the irradiation amount of ultraviolet rays, the higher the glass transition point. On the other hand, for each of these samples, UV-DS
When the degree of cure was measured by the C method and changes in the degree of cure with respect to the linear velocity were shown in a graph, a linear velocity-curability curve (b) as shown in FIG. 3 was obtained.

【0014】図3のグラフから明らかなように、DSC
曲線から得られるガラス転移点は光ファイバ上に被覆さ
れた紫外線硬化型樹脂の硬化度によく相関しており、こ
のことは、紫外線硬化型樹脂が被覆された光ファイバの
DSC曲線を測定し、それから得られるガラス転移点
を、予め求めておいた硬化度とガラス転移点との関係を
示す標準曲線などにあてはめることによって、硬化度を
精度よく判定することができることを示しており、ま
た、光ファイバ心線製造ラインにおいて、かかるガラス
転移点を随時繰り返し測定することにより、紫外線硬化
型樹脂被覆の硬化度の変動を知ることができ、光ファイ
バ上に被覆された紫外線硬化型樹脂の硬化度を適確に管
理して、光ファイバ心線の品質の向上、製造工程の安定
化を図ることができることを示している。
As is apparent from the graph of FIG. 3, the DSC
The glass transition point obtained from the curve correlates well with the degree of curing of the ultraviolet curable resin coated on the optical fiber, which means that the DSC curve of the optical fiber coated with the ultraviolet curable resin is measured, By applying the glass transition point obtained from it to a standard curve showing the relationship between the glass transition point and the degree of curing that has been obtained in advance, it is shown that the degree of curing can be accurately determined. By repeatedly measuring the glass transition point on the fiber core manufacturing line, it is possible to know the change in the degree of cure of the UV-curable resin coating, and to determine the degree of cure of the UV-curable resin coated on the optical fiber. It shows that the quality of the optical fiber can be improved and the manufacturing process can be stabilized by performing appropriate management.

【0015】ちなみに、上記結果を基に、随時、上記と
同様にして、DSC曲線を測定し、そのガラス転移点を
求めることによって、紫外線硬化型樹脂被覆の硬化度を
管理しながら、上記製造ラインで、同一構成の光ファイ
バ心線を製造したところ、所望の硬化度を有する品質の
よい光ファイバ心線を安定して製造することができた。
By the way, based on the above results, the DSC curve is measured at any time in the same manner as above, and the glass transition point thereof is determined to control the degree of cure of the ultraviolet-curable resin coating while controlling the degree of cure of the ultraviolet-curable resin coating. Then, when the optical fiber core wire having the same structure was manufactured, it was possible to stably manufacture a high quality optical fiber core wire having a desired degree of curing.

【0016】なお、詳細は省略するが、DSCに代えて
DTA、およびTMAを用いて求めた各ガラス転移点
も、光ファイバ上に被覆された紫外線硬化型樹脂の硬化
度によく相関し、DTA曲線から得られるガラス転移点
も、TMA曲線から得られるガラス転移点によっても、
DSCから得られるガラス転移点による場合と同様の効
果が得られることが、上記と同様にして行った実験(た
だし、TMAによる測定は、空気雰囲気中、昇温速度 3
℃/ 分の条件で -50℃から 150℃まで加熱して行っ
た。)の結果から確認された。
Although not described in detail, the glass transition points obtained by using DTA and TMA instead of DSC also correlate well with the degree of curing of the ultraviolet curable resin coated on the optical fiber. According to the glass transition point obtained from the curve and the glass transition point obtained from the TMA curve,
The same effect as obtained by the glass transition point obtained from DSC can be obtained by the experiment conducted in the same manner as described above (however, the measurement by TMA was performed in an air atmosphere at a temperature rising rate 3
It was heated from -50 ℃ to 150 ℃ under the condition of ℃ / min. ) Was confirmed from the results.

【0017】[0017]

【発明の効果】以上の実施例からも明らかなように、本
発明によれば、光ファイバに被覆された紫外線硬化型樹
脂の硬化度を、容易に、しかも精度よく判定することが
できる。したがって、光ファイバ心線製造ラインでの、
紫外線硬化型樹脂被覆の硬化度の管理に有用で、光ファ
イバ心線の品質の向上、安定化を容易に図ることができ
る。
As is apparent from the above embodiments, according to the present invention, the degree of cure of the ultraviolet curable resin with which the optical fiber is coated can be easily and accurately determined. Therefore, in the optical fiber core wire production line,
It is useful for controlling the degree of cure of the ultraviolet-curable resin coating, and can easily improve the quality and stability of the optical fiber core wire.

【図面の簡単な説明】[Brief description of drawings]

【図1】紫外線硬化型樹脂が被覆された光ファイバのD
TA曲線(またはDSC曲線)の一例を示すグラフ。
FIG. 1 D of an optical fiber coated with a UV curable resin
The graph which shows an example of a TA curve (or DSC curve).

【図2】紫外線硬化型樹脂が被覆された光ファイバのT
MA曲線の一例を示すグラフ。
FIG. 2 T of an optical fiber coated with a UV curable resin
The graph which shows an example of MA curve.

【図3】DSC曲線から得られるガラス転移点の線速に
対する変化を示すグラフ、およびUV−DSC法により
測定された硬化度の線速に対する変化を示すグラフ。
FIG. 3 is a graph showing a change in a glass transition point with respect to a linear velocity obtained from a DSC curve and a graph showing a change in a curing degree measured by a UV-DSC method with respect to a linear velocity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバに被覆された紫外線硬化型樹
脂の硬化度を判定する方法において、 紫外線硬化型樹脂が被覆された前記光ファイバの示差熱
量計または示差走査熱量計による温度−熱分解発熱量曲
線を求め、この曲線から得られるガラス転移点を、予め
求めておいた硬化度既知の標準試料のそれと比較して硬
化度を判定することを特徴とする光ファイバに被覆され
た紫外線硬化型樹脂の硬化度判定方法。
1. A method for determining the degree of cure of an ultraviolet-curable resin coated on an optical fiber, comprising: a temperature-pyrolysis heat generated by a differential calorimeter or a differential scanning calorimeter of the optical fiber coated with the ultraviolet-curable resin. Obtaining a quantity curve, the glass transition point obtained from this curve is compared with that of a standard sample with a known degree of cure determined in advance to determine the degree of cure. A method for determining the degree of cure of a resin.
【請求項2】 光ファイバに被覆された紫外線硬化型樹
脂の硬化度を判定する方法において、 紫外線硬化型樹脂が被覆された前記光ファイバの熱機械
分析装置による温度−線膨張係数曲線を求め、この曲線
から得られるガラス転移点を、予め求めておいた硬化度
既知の標準試料のそれと比較して硬化度を判定すること
を特徴とする光ファイバに被覆された紫外線硬化型樹脂
の硬化度判定方法。
2. A method for determining the degree of cure of an ultraviolet curable resin coated on an optical fiber, wherein a temperature-linear expansion coefficient curve of a thermomechanical analyzer for the optical fiber coated with the ultraviolet curable resin is determined, The glass transition point obtained from this curve is compared with that of a standard sample of known degree of cure determined in advance to determine the degree of cure, and the degree of cure of the ultraviolet curable resin coated on the optical fiber is determined. Method.
JP4162675A 1992-06-22 1992-06-22 Method for judging hardness of ultraviolet curing resin covering optical fiber Pending JPH063299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162675A JPH063299A (en) 1992-06-22 1992-06-22 Method for judging hardness of ultraviolet curing resin covering optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162675A JPH063299A (en) 1992-06-22 1992-06-22 Method for judging hardness of ultraviolet curing resin covering optical fiber

Publications (1)

Publication Number Publication Date
JPH063299A true JPH063299A (en) 1994-01-11

Family

ID=15759160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162675A Pending JPH063299A (en) 1992-06-22 1992-06-22 Method for judging hardness of ultraviolet curing resin covering optical fiber

Country Status (1)

Country Link
JP (1) JPH063299A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063843A (en) * 2001-08-27 2003-03-05 Fujikura Ltd Ultraviolet-curing type resin for coating optical fiber and manufacturing method using the same for coated optical fiber
US7041306B2 (en) 2000-09-11 2006-05-09 Matsushita Electric Industrial Co., Ltd. Insect pest-repellent film, insect pest-repellent paint and method for producing the same
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2020096055A1 (en) * 2018-11-09 2020-05-14 住友電気工業株式会社 Optical fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910056U (en) * 1982-06-28 1984-01-21 株式会社島津製作所 Differential thermal analyzer
JPS62297749A (en) * 1986-06-17 1987-12-24 Matsushita Electronics Corp Measuring method for glass transition temperature
JPS6390746A (en) * 1986-10-03 1988-04-21 Fuji Electric Co Ltd Measuring method for thermal size variation of off-specification sample of thermomechanical measuring instrument
JPH0353152A (en) * 1989-07-20 1991-03-07 Fujikura Ltd Method for measuring degree of curing of ultraviolet curing resin
JPH0363557A (en) * 1989-07-31 1991-03-19 Fujikura Ltd Measuring method for degree of cure in ultraviolet curing type resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910056U (en) * 1982-06-28 1984-01-21 株式会社島津製作所 Differential thermal analyzer
JPS62297749A (en) * 1986-06-17 1987-12-24 Matsushita Electronics Corp Measuring method for glass transition temperature
JPS6390746A (en) * 1986-10-03 1988-04-21 Fuji Electric Co Ltd Measuring method for thermal size variation of off-specification sample of thermomechanical measuring instrument
JPH0353152A (en) * 1989-07-20 1991-03-07 Fujikura Ltd Method for measuring degree of curing of ultraviolet curing resin
JPH0363557A (en) * 1989-07-31 1991-03-19 Fujikura Ltd Measuring method for degree of cure in ultraviolet curing type resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041306B2 (en) 2000-09-11 2006-05-09 Matsushita Electric Industrial Co., Ltd. Insect pest-repellent film, insect pest-repellent paint and method for producing the same
JP2003063843A (en) * 2001-08-27 2003-03-05 Fujikura Ltd Ultraviolet-curing type resin for coating optical fiber and manufacturing method using the same for coated optical fiber
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2020096055A1 (en) * 2018-11-09 2020-05-14 住友電気工業株式会社 Optical fiber
US11835756B2 (en) 2018-11-09 2023-12-05 Sumitomo Electric Industries, Ltd. Optical fiber with primary and secondary coating layers

Similar Documents

Publication Publication Date Title
US11513284B2 (en) Reduced diameter optical fiber and manufacturing method
JPH02275727A (en) Drawing method for optical fiber
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JPH063299A (en) Method for judging hardness of ultraviolet curing resin covering optical fiber
CN110579288A (en) Optical fiber sensor based on double capillary glass tube packaging
KR101161462B1 (en) Method and apparatus for the continuous quality control of a shape memory alloy wire
Mawardi et al. Numerical simulations of an optical fiber drawing process under uncertainty
JPH0572339B2 (en)
JP3076441B2 (en) Method for judging degree of curing of ultraviolet curable resin coated on optical fiber
CN1931757B (en) Optical fiber drawing process and control new method
Wang et al. Humidity characteristics of a weak fiber Bragg grating array coated with polyimide
JP2742450B2 (en) Method for measuring the degree of cure of UV-curable resin
JP2691765B2 (en) Method for determining the degree of crosslinking of UV-curable resin coated on optical fiber
JP2010269971A (en) Method for manufacturing optical fiber
JP4063160B2 (en) Method for determining degree of cure of UV curable resin coated on optical fiber
KR100547279B1 (en) 실시간 Real-time Curing Degree Measuring System
JP2732679B2 (en) Method for measuring the degree of cure of UV-curable resin
JPH0680444A (en) Production of optical fiber core filament
RU2702695C1 (en) Method for fast determination of temperature dependence of viscosity and characteristic glass temperatures and device for its implementation
JPH02293354A (en) Production of hermetically coated optical fiber
JP2803310B2 (en) Method and apparatus for manufacturing conductive thin film coated optical fiber
RU2082080C1 (en) Method of determination of thickness of coat
JPH02255551A (en) Production of optical fiber coated with ultraviolet curing resin
JPH02289441A (en) Production of optical fiber
JP2859796B2 (en) Optical fiber coating resin

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001114