JPH06329803A - Silicone product free from electrical contact failure - Google Patents

Silicone product free from electrical contact failure

Info

Publication number
JPH06329803A
JPH06329803A JP12147693A JP12147693A JPH06329803A JP H06329803 A JPH06329803 A JP H06329803A JP 12147693 A JP12147693 A JP 12147693A JP 12147693 A JP12147693 A JP 12147693A JP H06329803 A JPH06329803 A JP H06329803A
Authority
JP
Japan
Prior art keywords
silicone
molecular
low
silicone product
contact failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12147693A
Other languages
Japanese (ja)
Inventor
Mikio Aramata
幹夫 荒又
Naoya Noguchi
直也 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP12147693A priority Critical patent/JPH06329803A/en
Publication of JPH06329803A publication Critical patent/JPH06329803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a silicone product excellent also in a respect that it is free from electrical contact failure, having stable characteristics and capable of ready production at a low cost. CONSTITUTION:There is provided a silicone product free from generation of >0.1mg/L low-molecular siloxane in the gas phase in a tightly sealed state at practical working temperatures.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相中へ揮散する低分子
シロキサンを特定量以下に抑えたシリコーン製品に関す
る。本発明のシリコーン製品は低分子シロキサンによる
電気接点障害を起こさないものとして電気関係の用途に
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicone product in which the amount of low-molecular-weight siloxane that volatilizes into the gas phase is suppressed below a specific amount. INDUSTRIAL APPLICABILITY The silicone product of the present invention is useful for electrical applications as it does not cause electrical contact failure due to low molecular weight siloxane.

【0002】[0002]

【従来の技術】現在、低分子シロキサンによる電気接点
障害を防ぐ方法としては、(1)上市されている電気接
点障害対策を施したシリコーン製品を用いる、(2)シ
リコーン以外の材料に切り換える、ことなどが挙げられ
る。しかし、(1)は何種類かの製品が上市されている
ものの基準が明確でない。また幅広い使用温度を想定し
た場合コストアップにつながる。さらに未だ電気接点障
害対策用のものが開発されていないシリコーン製品群も
ある。一方、(2)はシリコーンと同等の特性を持ち、
かつ価格も同レベルの材料を見出すことが困難である。
2. Description of the Related Art At present, as a method of preventing electrical contact failure due to low-molecular-weight siloxane, (1) use a commercially available silicone product provided with measures against electrical contact failure, and (2) switch to a material other than silicone. And so on. However, in (1), although some types of products are on the market, the standard is not clear. It also leads to cost increase when a wide range of operating temperatures is assumed. Furthermore, there is a silicone product group that has not yet been developed for electrical contact failure countermeasures. On the other hand, (2) has the same characteristics as silicone,
Moreover, it is difficult to find materials with the same level of price.

【0003】[0003]

【発明が解決しようとする課題】前記のような状況か
ら、本発明は、実用上充分であるがコストアップにつな
がる過度の対策は施さない電気接点障害防止用シリコー
ン製品を、電気用シリコーン製品の全分野にわたって提
供しようとしてなされたものである。
In view of the above situation, the present invention provides a silicone product for preventing electrical contact failure, which is practically sufficient, but which is not subjected to excessive measures for cost increase. It was designed to be offered in all fields.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記の課題
を解決するため鋭意検討の結果、シリコーン製品の実使
用温度において気相中へ揮散する低分子シロキサンを特
定量以下に抑えると目的が達成できることを見出して本
発明に至った。すなわち、本発明の要旨は、密閉状態に
おける気相中の低分子シロキサンの濃度が実使用温度に
おいて0.1mg/L以下になるようにしたシリコーン製品に
ある。以下に本発明について詳しく説明する。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have aimed to suppress the amount of low-molecular-weight siloxane that volatilizes into the gas phase at the actual use temperature of silicone products to a specified amount or less. The present invention has been accomplished by finding that the above can be achieved. That is, the gist of the present invention is a silicone product in which the concentration of low-molecular-weight siloxane in the gas phase in a sealed state is set to 0.1 mg / L or less at the actual use temperature. The present invention will be described in detail below.

【0005】本発明のシリコーン製品は、シリコーンオ
イル、シリコーングリース、シリコーンゴムなど、電気
用に用いられる全てのものを包含する。シリコーン製品
は通常低分子シロキサンを含有し、これが温度上昇時に
気相中へ揮散し、電気製品に用いられた場合、電気接点
に付着して障害を起こすのである。このような低分子シ
ロキサンは実質的に環状シロキサンである。もし、電気
製品、電子機器類の作動中に内部の換気が充分行われて
おれば障害の発生は少なくなると考えられるが、実際上
は難題であり、また、換気が充分でないことから内部の
温度も上昇する。したがって、換気が行われない状態
(密閉状態)でシリコーン製品が曝されるかなり高い温
度(実使用温度)での低分子シロキサンの揮散が問題と
なる。
The silicone products of the present invention include all those used for electrical purposes such as silicone oil, silicone grease and silicone rubber. Silicone products usually contain low molecular weight siloxanes, which volatilize into the gas phase when the temperature rises and, when used in electrical products, adhere to electrical contacts and cause damage. Such low molecular siloxanes are essentially cyclic siloxanes. If internal ventilation is adequately performed during the operation of electrical products and electronic devices, it is considered that the occurrence of obstacles will be reduced, but in reality it is a difficult problem, and since ventilation is insufficient, the internal temperature Also rises. Therefore, volatilization of the low-molecular-weight siloxane at a considerably high temperature (actual use temperature) to which the silicone product is exposed without ventilation (closed state) becomes a problem.

【0006】そこで本発明者らは密閉状態においてシリ
コーン製品から揮散する気相中の低分子シロキサンにつ
いて検討し、各温度においてその濃度が0.1mg/L 以下で
あれば障害が発生しないことを見出したのである。その
ためには、図1に示されるような、指定された温度(実
使用温度)における蒸気圧により0.1mg/L を超える気相
中の濃度を与えるような重合度n以下の低分子シロキサ
ンDn (ただし、実質的に全体を占める重合度nの環状
ジメチルポリシロキサンDn として示す)をシリコーン
製品から実質的に除去しておくとよい。除去方法として
は減圧留去及び/又は加熱などがあり、抽出できること
もある。また、シリコーン製品の原料であるオルガノポ
リシロキサンから予め低分子シロキサンを除去しておく
ことも有効である。シリコーン製品のうち、シリコーン
ゴム成形品など加熱が可能なものについては二次加硫な
どの後工程で加熱処理し、所定のDn を実質的に除去し
ておくこと(残留量は各々10ppm 未満)ができる。
Therefore, the present inventors have examined low molecular weight siloxane in the gas phase which is volatilized from a silicone product in a sealed state, and found that no trouble occurs if the concentration is 0.1 mg / L or less at each temperature. Of. For that purpose, as shown in FIG. 1, a low-molecular-weight siloxane D n having a degree of polymerization of n or less that gives a concentration in the gas phase exceeding 0.1 mg / L by vapor pressure at a specified temperature (actual use temperature). (However, it is preferable to substantially remove the cyclic dimethylpolysiloxane D n having a degree of polymerization of n, which occupies substantially the entire amount) from the silicone product. Removal methods include distillation under reduced pressure and / or heating, and in some cases extraction is possible. It is also effective to remove low-molecular-weight siloxane from the organopolysiloxane that is a raw material for silicone products in advance. Silicone products that can be heated, such as silicone rubber molded products, should be heat-treated in a post-process such as secondary vulcanization to substantially remove the prescribed D n (residual amount less than 10 ppm each). ) Can be done.

【0007】[0007]

【実施例】次に、本発明の実施例を挙げる。 実施例1 10L の密閉容器中にマイクロモーターを入れ、それに電
流波形測定用のオシログラフをつないだ。そして環状低
分子シロキサンの代表としてオクタメチルシクロテトラ
シロキサン(D4 :760mmHg における沸点は 175℃)
を、密閉容器気相中の濃度を変えて添加した。各々の添
加量においてマイクロモーターを動作させた。条件は、
接点トラブルが発生し易いとされる負荷条件とし、直流
3V、100mAとした。オシログラフを観察し電流波形に異常
の発生する時間及びマイクロモーターの停止する時間を
測定した。結果は図2に示すとおりであった。気相中の
4 濃度は、活性炭吸着法と熱分解ガスクロマトグラフ
ィーを用いる分析法[分析化学,Vol.40,T37(1991)参
照]によって測定した。結果は図2の縦軸に示されるも
のであった。
EXAMPLES Next, examples of the present invention will be described. Example 1 A micromotor was placed in a 10 L closed container, and an oscillograph for measuring a current waveform was connected thereto. The representative as octamethylcyclotetrasiloxane cyclic low-molecular siloxane (D 4: boiling point at 760mmHg is 175 ° C.)
Was added at various concentrations in the gas phase of a closed container. The micromotor was operated at each addition amount. condition is,
The DC condition is set as a load condition that is likely to cause contact trouble.
3V, 100mA. The oscillograph was observed to measure the time when the current waveform was abnormal and the time when the micromotor stopped. The result was as shown in FIG. The D 4 concentration in the gas phase was measured by an analytical method using an activated carbon adsorption method and a pyrolysis gas chromatography [Analytical Chemistry, Vol. 40, T37 (1991)]. The results are shown on the vertical axis in FIG.

【0008】気相中のD4 濃度が1mg/L の場合、ほぼマ
イクロモーター動作開始直後から波形異常が観測され、
100 時間未満でモーターが停止した。気相中のD4 濃度
が0.3mg/L の場合、400 時間程度でやや波形異常が観測
されはじめた。また、気相中のD4 濃度が0.1mg/L の場
合、700 時間以上でも波形異常は認められなかった。こ
の結果から、気相中の低分子シロキサンの濃度が 0.1mg
/L以下であれば障害が起こらないことが明らかになっ
た。
When the concentration of D 4 in the gas phase is 1 mg / L, an abnormal waveform is observed almost immediately after the start of the micromotor operation.
Motor stopped in less than 100 hours. When the D 4 concentration in the gas phase was 0.3 mg / L, waveform anomalies began to be observed after about 400 hours. When the D 4 concentration in the gas phase was 0.1 mg / L, no abnormal waveform was observed even after 700 hours. From this result, the concentration of low-molecular-weight siloxane in the gas phase was 0.1 mg.
It was clarified that if / L or less, no trouble would occur.

【0009】実施例2 10L の密閉容器中にマイクロモーターを入れ、実施例1
と全く同様の試験装置を用意した。容器内に各種シリコ
ーンゴム製品10g を入れ、実施例1と同様にしてマイク
ロモーターの動作テストを行った。
Example 2 A micromotor was placed in a 10 L closed container, and Example 1 was used.
A test device exactly the same as above was prepared. 10 g of various silicone rubber products were put in the container, and the operation test of the micromotor was conducted in the same manner as in Example 1.

【0010】使用したシリコーンゴム製品はサンプルA
〜Eの5種類のプレス成形品で、この5種類についてプ
レス加硫( 160℃×5分)のみのもの、及び前記プレス
加硫後に二次加硫( 200℃×4時間)を行って得たも
の、いずれも厚さ 2mmの成形品計10種類である。これら
のサンプルについて、それに含まれる環状低分子シロキ
サンDn (n=3〜10)の各々を測定した。その結果を
表1に示す。測定は、1gのサンプルを四塩化炭素10mlに
一昼夜浸漬し、抽出液をガスクロマトグラフ分析するこ
とにより行った。
The silicone rubber product used is sample A
~ E of 5 types of press-molded products, which are obtained by performing press vulcanization (160 ° C x 5 minutes) only on these 5 types, and secondary vulcanization (200 ° C x 4 hours) after the press vulcanization. There are 10 types of molded products, each with a thickness of 2 mm. For each of these samples, each of the cyclic low-molecular-weight siloxanes D n (n = 3 to 10) contained therein was measured. The results are shown in Table 1. The measurement was carried out by immersing 1 g of the sample in 10 ml of carbon tetrachloride for one day and subjecting the extract to gas chromatographic analysis.

【0011】上記サンプルを1種類ずつ試験装置に入
れ、60℃でマイクロモーターの動作テストを行った。プ
レス加硫のみで二次加硫(低分子シロキサンの加熱除
去)をしていないサンプルについての結果は図3のとお
りであり、低分子シロキサンの含有量の多いものほど含
有量に比例して不良発生率が高かった。ただし、図3の
縦軸は不良(オシログラフ波形異常又はマイクロモータ
ー停止)発生率(n=10における)を表す。二次加硫を
行ったサンプルについては不良は発生しなかった。図1
からは、60℃の実使用温度においては重合度9(D9
以下の環状低分子シロキサンを実質的に除去しておけば
よいことが分かるが、表1にみられるとおり、前記の二
次加硫(加熱処理)条件によればこのような環状低分子
シロキサンの含有量は10ppm未満に低下し実質的に除去
されている。これらの結果から、図1に基づいてDn
含有量を気相中の濃度が 0.1mg/L以下になるように管理
することの有効性は明らかである。
Each of the above samples was put into a test apparatus and a micromotor operation test was conducted at 60 ° C. The results for the sample that was only press-vulcanized but not subjected to secondary vulcanization (removal of low-molecular-weight siloxane by heating) are as shown in Fig. 3. The higher the content of low-molecular-weight siloxane, the poorer the proportion of the content. The incidence was high. However, the vertical axis of FIG. 3 represents the failure rate (at oscillograph waveform abnormality or micromotor stop) (at n = 10). No defects occurred in the sample subjected to secondary vulcanization. Figure 1
Shows that the degree of polymerization is 9 (D 9 ) at the actual use temperature of 60 ° C.
It can be seen that the following cyclic low-molecular-weight siloxane should be substantially removed. As shown in Table 1, according to the above-mentioned secondary vulcanization (heat treatment) conditions, such cyclic low-molecular-weight siloxane is The content has dropped to below 10 ppm and has been substantially removed. From these results, the effectiveness of controlling the D n content so that the concentration in the gas phase becomes 0.1 mg / L or less is clear based on FIG.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例3 実施例1と同様の10L の密閉容器を備えた試験装置でマ
イクロモーターを用いたトラブルシミュレーションを行
った。サンプルには接触障害トラブルが発生した市販の
ラジオカセットから回収したシリコーンゴム成形品を用
いた。まず、このサンプルに含まれる環状低分子シロキ
サン(3〜10量体)を実施例2で用いた測定法により、
回収されたままのサンプル、実際にラジオカセット中で
使用される温度条件(60℃)で24時間加熱したサンプ
ル、及び 200℃×4時間加熱処理したサンプルについて
測定した。結果は表2に示すとおりであった。次に、上
記のサンプルを試験装置に 20g(2g×10個)入れ、60℃
にてn=5でテストを行った。結果は図4のとおりであ
り、 200℃×4時間の加熱処理を行った場合は不良発生
がなく、環状低分子シロキサン(3〜10量体)を除去し
たことによる効果が明らかに認められる。
Example 3 A trouble simulation using a micromotor was carried out in the same test apparatus equipped with a 10 L closed container as in Example 1. As the sample, a silicone rubber molded product recovered from a commercially available radio cassette in which a contact failure trouble occurred was used. First, the cyclic low-molecular siloxane (3 to 10 mer) contained in this sample was measured by the measurement method used in Example 2.
The measurement was performed on the as-collected sample, the sample heated at the temperature condition (60 ° C) actually used in the radio cassette for 24 hours, and the sample heat-treated at 200 ° C x 4 hours. The results are shown in Table 2. Next, put 20g (2g x 10 pieces) of the above sample into the test equipment and 60 ℃
At n = 5, the test was conducted. The results are as shown in FIG. 4, and when heat treatment was carried out at 200 ° C. for 4 hours, no defects occurred, and the effect of removing the cyclic low-molecular-weight siloxane (3 to 10 mer) is clearly recognized.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明のシリコーン製品は、密閉状態に
おける気相中の低分子シロキサンの濃度が実使用温度に
おいて0.1mg/L 以下になるように設定されており、これ
により電気接点障害を起こさない点で特性が優れかつ安
定している。また、本発明のシリコーン製品は容易かつ
安価に得ることができる。
EFFECTS OF THE INVENTION The silicone product of the present invention is set so that the concentration of low-molecular-weight siloxane in the gas phase in a hermetically sealed state is 0.1 mg / L or less at the actual use temperature, which causes electrical contact failure. The characteristics are excellent and stable in that there is no point. Further, the silicone product of the present invention can be obtained easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】低分子シロキサンDn の液相共存下、密閉状態
における気相中の濃度が0.1mg/L になるときのnと温度
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between n and temperature when the concentration of the low-molecular-weight siloxane D n in the liquid phase coexists in a closed state at a concentration of 0.1 mg / L.

【図2】気相中のD4 濃度と、この気相中でマイクロモ
ーターを動作させたときの電流波形に異常が発生する時
間及びマイクロモーターが停止する時間の関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the concentration of D 4 in the gas phase, the time when an abnormality occurs in the current waveform when the micromotor is operated in this gas phase, and the time when the micromotor stops.

【図3】プレス加硫のみ行ったシリコーンゴム成形品の
密閉共存下でのマイクロモーターの動作テストにおける
不良発生率を示すグラフである。
FIG. 3 is a graph showing a failure occurrence rate in an operation test of a micromotor in a coexisting sealed state of a silicone rubber molded product which was only press-vulcanized.

【図4】接触障害トラブルが発生した市販のラジオカセ
ットから回収したシリコーンゴム成形品の密閉共存下で
のマイクロモーターのトラブルシミュレーションにおけ
る不良発生率を示すグラフである。
FIG. 4 is a graph showing a failure occurrence rate in a trouble simulation of a micromotor under coexistence of a silicone rubber molded product recovered from a commercially available radio cassette in which a contact failure trouble has occurred.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉状態における気相中の低分子シロキ
サンの濃度が実使用温度において0.1mg/L 以下になるよ
うにしたシリコーン製品。
1. A silicone product in which the concentration of low-molecular-weight siloxane in the gas phase in a sealed state is set to 0.1 mg / L or less at an actual use temperature.
JP12147693A 1993-05-24 1993-05-24 Silicone product free from electrical contact failure Pending JPH06329803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12147693A JPH06329803A (en) 1993-05-24 1993-05-24 Silicone product free from electrical contact failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12147693A JPH06329803A (en) 1993-05-24 1993-05-24 Silicone product free from electrical contact failure

Publications (1)

Publication Number Publication Date
JPH06329803A true JPH06329803A (en) 1994-11-29

Family

ID=14812101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12147693A Pending JPH06329803A (en) 1993-05-24 1993-05-24 Silicone product free from electrical contact failure

Country Status (1)

Country Link
JP (1) JPH06329803A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012667A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, solution composition thereof, and polyimidesilicone resin coating film
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof
JP2002146024A (en) * 2000-11-06 2002-05-22 Shin Etsu Chem Co Ltd Method for refining organopolysiloxane and organopolysiloxane obtained therefrom
JP2003086047A (en) * 2001-09-13 2003-03-20 Yamatake Corp Limit switch
JP2006028533A (en) * 2005-10-13 2006-02-02 Shin Etsu Chem Co Ltd Polyimide silicone resin and method for producing the same
EP2042559A1 (en) 2007-09-21 2009-04-01 Shin-Etsu Chemical Co., Ltd. Addition curable silicone rubber composition and cured product thereof
JPWO2011118109A1 (en) * 2010-03-23 2013-07-04 株式会社朝日ラバー Flexible reflective substrate, method for producing the same, and raw material composition used for the reflective substrate
JP2018154130A (en) * 2017-03-15 2018-10-04 株式会社Shindo Laminae sheet for forming septum for encapsulating aperture of headspace vial, manufacturing method thereof, septum for encapsulating aperture of headspace vial and septum
WO2019240122A1 (en) * 2018-06-12 2019-12-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Manufacturing method for cured silicone product, cured silicone product, and optical member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012667A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, solution composition thereof, and polyimidesilicone resin coating film
JP2002012666A (en) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd Polyimidesilicone resin, method for producing the same and composition thereof
JP2002146024A (en) * 2000-11-06 2002-05-22 Shin Etsu Chem Co Ltd Method for refining organopolysiloxane and organopolysiloxane obtained therefrom
JP2003086047A (en) * 2001-09-13 2003-03-20 Yamatake Corp Limit switch
JP2006028533A (en) * 2005-10-13 2006-02-02 Shin Etsu Chem Co Ltd Polyimide silicone resin and method for producing the same
EP2042559A1 (en) 2007-09-21 2009-04-01 Shin-Etsu Chemical Co., Ltd. Addition curable silicone rubber composition and cured product thereof
JPWO2011118109A1 (en) * 2010-03-23 2013-07-04 株式会社朝日ラバー Flexible reflective substrate, method for producing the same, and raw material composition used for the reflective substrate
JP2018154130A (en) * 2017-03-15 2018-10-04 株式会社Shindo Laminae sheet for forming septum for encapsulating aperture of headspace vial, manufacturing method thereof, septum for encapsulating aperture of headspace vial and septum
WO2019240122A1 (en) * 2018-06-12 2019-12-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Manufacturing method for cured silicone product, cured silicone product, and optical member
JPWO2019240122A1 (en) * 2018-06-12 2020-06-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Method for producing cured silicone, cured silicone and optical member

Similar Documents

Publication Publication Date Title
JPH06329803A (en) Silicone product free from electrical contact failure
CN1222764C (en) Apparatus and method for extracting volatime components
TWI749125B (en) Analysis method of surface impurities of polysilicon crushed material
Shkolnik et al. Statistical insights into furan interpretation using a large dielectric fluid testing database
Liu et al. Variation of baking oils and baking methods on altering the contents of cyclosiloxane in food simulants and cakes migrated from silicone rubber baking moulds
JPH05320347A (en) Production of lowly active polydiorganosiloxane
US7601541B2 (en) Method for detecting Cu concentration of silicon substrate
JPS6338292B2 (en)
Claes et al. Controlled deposition of organic contamination and removal with ozone-based cleanings
JPH07330905A (en) Production of organopolysiloxane oil containing very low amount of low-molecular siloxane
Weschler Polydimethylsiloxanes associated with indoor and outdoor airborne particles
Chan et al. Electrical failure of multilayer ceramic capacitors subjected to environmental screening testing
JP3011556B2 (en) Aging deterioration diagnosis method for oil-filled electrical equipment
EP0655134B1 (en) Testing lubricating oil for mineral oil contaminants
CN111334050A (en) Heat-conducting silica gel sheet with low content of condensable volatile matters and preparation method thereof
US20240131449A1 (en) Fluorinated Fluid Conditioning System
Saito Evaluation and control method of organic contamination on wafer surfaces
TW202300213A (en) Fluorinated fluid conditioning system
EP3467459B1 (en) Temperature estimation method
Laly et al. Determination of particle-bound metallic impurities in semiconductor grade gases. 1. silane
JP3205637B2 (en) Method for estimating and detecting impurities in the measured object
CN114720319A (en) Composite insulator silicon rubber dehumidification method and device based on vacuum thermal cycle
Nelson et al. Evaluation of a low-cost commercially available extraction device for assessing lead bioaccessibility in contaminated soils
Kao et al. Comparison of Impinger and Canister Methods for the Determination of Siloxanes in Air
Andersson et al. Silicone elastomers for electronic applications. II. Effects of noncrosslinked materials