JPH06329716A - Method of posttreatment of water-absorbing resin - Google Patents

Method of posttreatment of water-absorbing resin

Info

Publication number
JPH06329716A
JPH06329716A JP11746093A JP11746093A JPH06329716A JP H06329716 A JPH06329716 A JP H06329716A JP 11746093 A JP11746093 A JP 11746093A JP 11746093 A JP11746093 A JP 11746093A JP H06329716 A JPH06329716 A JP H06329716A
Authority
JP
Japan
Prior art keywords
water
resin
absorbent resin
polymerization
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11746093A
Other languages
Japanese (ja)
Inventor
Shuhei Yada
田 修 平 矢
Yoshio Omori
森 美 穂 大
Kensho Fujitani
谷 憲 昭 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP11746093A priority Critical patent/JPH06329716A/en
Publication of JPH06329716A publication Critical patent/JPH06329716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the post treatment of a water-absorbing resin without greatly decreasing the water-absorbing capacity of the resin. CONSTITUTION:A water-absorbing resin obtd. by polymerizing a water-sol. ethylenically unsatd. monomer is treated by subjecting it to at least one step selected from the group consisting of an excess water removal step after polymn., a resin surface modification step, a drying step, and a granulating step at a temp. not exceeding the glass transition point of the resin plus 50 deg.C when the water content of the resin is 25% or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸水性樹脂の後処理方
法に関する。更に詳しくは、本発明は、水溶性エチレン
性不飽和モノマーの重合により得られる吸水性樹脂の吸
水能力を大きく低減することなく該樹脂を後処理する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a post-treatment method for a water absorbent resin. More specifically, the present invention relates to a method for post-treating a water-absorbent resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer without significantly reducing the water-absorbing ability of the resin.

【0002】[0002]

【従来の技術】近年、吸水性樹脂は、生理用品、使い捨
て紙オムツ、使い捨て雑巾等の衛生用品、保水剤、土壌
改良剤等の農園芸用品の他、汚泥凝固剤、結露防止剤や
油類の脱水剤等の種々の用途に使用されている。特に生
理用品や使い捨て紙オムツなどの衛生用品における需要
は年々増大しており、また、結露防止剤としては、建
材、コンテナー輸送、海上輸送など広範な分野に利用さ
れている。このように、吸水性樹脂は我々の社会生活に
大きく貢献している。
2. Description of the Related Art In recent years, water-absorbent resins are used for sanitary products, disposable paper diapers, sanitary products such as disposable rags, agricultural and horticultural products such as water retention agents, soil conditioners, sludge coagulants, anti-condensation agents and oils. It is used in various applications such as dehydrating agents. In particular, the demand for sanitary products and sanitary products such as disposable diapers has been increasing year by year, and as anti-condensation agents, they are used in a wide range of fields such as building materials, container transportation, and marine transportation. As described above, the water absorbent resin has greatly contributed to our social life.

【0003】吸水性樹脂は、一般に水溶性エチレン性不
飽和モノマーを重合することにより製造されている。こ
のような吸水性樹脂としては、アクリル酸塩重合体架橋
物、アクリル酸エステル−酢酸ビニル共重合体ケン化物
の架橋物、澱ぷん−アクリル酸塩グラフト共重合体架橋
物などが知られている。これらの吸水性樹脂は、一般
に、逆相懸濁重合、逆相乳化重合、水溶液重合または有
機溶媒中での反応等によって重合体を合成した後、重合
体に含まれる過剰水を脱水したり、あるいは一部の水を
脱水後、表面改質処理を行い、その後乾燥させるなど、
重合後の様々な後処理工程を経て製品とされている。
The water-absorbent resin is generally produced by polymerizing a water-soluble ethylenically unsaturated monomer. As such a water-absorbent resin, an acrylic acid polymer crosslinked product, an acrylic acid ester-vinyl acetate copolymer saponified product, a starch-acrylic acid salt graft copolymer crosslinked product, etc. are known. . These water-absorbent resins are generally reverse phase suspension polymerization, reverse phase emulsion polymerization, after synthesizing the polymer by reaction in an aqueous solution or reaction in an organic solvent, and then dehydrating excess water contained in the polymer, Alternatively, after dehydrating a part of the water, it is subjected to a surface modification treatment and then dried.
It is made into a product through various post-treatment steps after polymerization.

【0004】吸水性樹脂の重合方法としては、例えば米
国特許第4698404号公報、特開平2−25580
4号公報、特開平2−300210号公報等において、
吸水能の向上を図る種々の重合方法が報告されている。
しかしながら、これらの方法によれば重合工程後におけ
る吸水性樹脂としての吸水能力は改良されるものの、工
業製品として完成させるための重合工程以降の脱水工
程、表面改質工程、乾燥工程等の後処理工程を実施する
ことにより、重合後に得られた非常に高い吸水能力が大
幅に低減し、最終製品形態に至っては僅かな吸水能しか
示さないというのが実情である。
As a method for polymerizing the water-absorbent resin, for example, US Pat. No. 4,698,404 and JP-A-2-25580 are available.
No. 4, JP-A-2-300210, etc.
Various polymerization methods for improving the water absorption capacity have been reported.
However, according to these methods, although the water absorption capacity as a water-absorbent resin after the polymerization step is improved, a post-treatment such as a dehydration step after the polymerization step, a surface modification step, and a drying step for completing an industrial product. By carrying out the process, the very high water absorption capacity obtained after the polymerization is greatly reduced, and the final product form shows only a small water absorption capacity.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、上記
従来技術の実情に鑑み、吸水能力の大幅な低下を伴わず
に吸水性樹脂を後処理する方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances of the prior art, and an object thereof is to provide a method for post-treating a water-absorbent resin without significantly reducing the water-absorbing capacity.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

〔発明の概要〕本発明者らは、工業プロセスで実施する
重合後の種々の後処理工程に関して鋭意研究を重ねた結
果、工程における温度条件と工程における含水した吸水
性樹脂のガラス転移温度、および該吸水性樹脂の性能に
関して特異的な相関を得て本発明を完成するに至った。
即ち、本発明の吸水性樹脂の後処理方法は、水溶性エチ
レン性不飽和モノマーの重合により得られる吸水性樹脂
の後処理方法であって、重合後の後処理工程(過剰水の
脱水工程、表面改質工程、乾燥工程および造粒工程)の
1つ以上の工程を、その工程における前記樹脂の含水率
が25%以上である時に該樹脂のガラス転移温度Tgよ
り50℃高い温度を越えない温度で実施することを特徴
とするものである。
[Summary of the Invention] The present inventors have conducted extensive research on various post-treatment steps after polymerization carried out in an industrial process, and as a result, temperature conditions in the step and the glass transition temperature of the water-absorbing water-absorbent resin in the step, and The present invention has been completed by obtaining a specific correlation with respect to the performance of the water absorbent resin.
That is, the post-treatment method of the water-absorbent resin of the present invention is a post-treatment method of the water-absorbent resin obtained by polymerization of a water-soluble ethylenically unsaturated monomer, the post-treatment step after polymerization (excess water dehydration step, One or more of the surface modification step, the drying step and the granulation step) and does not exceed a temperature higher than the glass transition temperature Tg of the resin by 50 ° C. when the water content of the resin in the step is 25% or more. It is characterized in that it is carried out at a temperature.

【0007】〔発明の具体的な説明〕 <吸水性樹脂>本発明の方法が適用される吸水性樹脂
は、水溶性エチレン性不飽和モノマーを重合することに
より得られる樹脂である。このような吸水性樹脂の例と
しては、(メタ)アクリル酸塩重合体架橋物、(メタ)
アクリル酸エステル−酢酸ビニル共重合体ケン化物の架
橋物、澱ぷん−アクリル酸塩グラフト共重合体架橋物、
澱ぷん−アクリロニトリルグラフト共重合体ケン化物の
架橋物、澱ぷん−(メタ)アクリル酸エステルグラフト
共重合体ケン化物の架橋物等が挙げられる。また、これ
らの吸水性樹脂に良好な性能を与えるモノマーであれ
ば、これらと共重合させた共重合体であっても差し支え
ない。その様な性能を与えるモノマーとしては、官能基
としてカルボン酸または(及び)その塩、リン酸または
(及び)その塩、スルホン酸または(及び)その塩から
誘導される基を有する水溶性エチレン性不飽和モノマー
が挙げられる。具体的には、マレイン酸あるいはその
塩、イタコン酸あるいはその塩、ビニルスルホン酸ある
いはその塩、2−アクリルアミド−2−メチルプロパン
スルホン酸あるいはその塩、2−アクリロイルエタンス
ルホン酸あるいはその塩、2−アクリロイルプロパンス
ルホン酸あるいはその塩、2−イタクロイルエタンスル
ホン酸あるいはその塩、ビニルホスホン酸あるいはその
塩等を例示でき、これらの1種または2種以上を使用す
ることができる。
Detailed Description of the Invention <Water Absorbent Resin> The water absorbent resin to which the method of the present invention is applied is a resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer. Examples of such a water-absorbent resin include (meth) acrylate polymer cross-linked products, (meth)
Acrylic ester-saponified vinyl acetate copolymer crosslinked product, starch-acrylic acid salt graft copolymer crosslinked product,
Examples include crosslinked products of saponified starch-acrylonitrile graft copolymer, and crosslinked products of saponified starch- (meth) acrylic acid graft copolymer. Further, a copolymer obtained by copolymerizing these with the water-absorbent resin may be used as long as the monomer gives good performance to the water-absorbent resin. As the monomer that gives such performance, a water-soluble ethylenic group having a group derived from a carboxylic acid or (and) salt thereof, phosphoric acid or (and) salt thereof, sulfonic acid or (and) salt as a functional group is used. Unsaturated monomers are mentioned. Specifically, maleic acid or a salt thereof, itaconic acid or a salt thereof, vinylsulfonic acid or a salt thereof, 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof, 2-acryloylethanesulfonic acid or a salt thereof, 2- Acryloyl propane sulfonic acid or its salt, 2-itacroyl ethane sulfonic acid or its salt, vinylphosphonic acid or its salt, etc. can be illustrated, and these 1 type (s) or 2 or more types can be used.

【0008】更に、前記の官能基としてカルボン酸また
は(及び)その塩、リン酸または(及び)その塩、スル
ホン酸または(及び)その塩から誘導される基を有する
モノマー以外に、これらと共重合可能な単量体、例えば
(メタ)アクリルアミド、2−ヒドロキシエチル(メ
タ)アクリルアミド、(ポリ)エチレングリコールモノ
(メタ)アクリレート、2−ヒドロキシエチル(メタ)
アクリレート等を生成する吸水性樹脂の性能を低下させ
ない範囲の量で共重合させたものであっても差し支えな
い。また、吸水性樹脂がカルボキシレート型、即ち塩
型、の場合としては、ナトリウムや、カリウム等のアル
カリ金属塩型、マグネシウムやカルシウム等のアルカリ
土類金属塩型等が挙げられるが、特に好ましいのはアル
カリ金属塩型のものである。
Further, in addition to a monomer having a group derived from a carboxylic acid or / and a salt thereof, a phosphoric acid or / and a salt thereof, a sulfonic acid or / and a salt thereof as the functional group, Polymerizable monomer such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, (poly) ethylene glycol mono (meth) acrylate, 2-hydroxyethyl (meth)
The water-absorbent resin that produces acrylate or the like may be copolymerized in an amount within a range that does not deteriorate the performance of the water-absorbent resin. When the water-absorbent resin is a carboxylate type, that is, a salt type, sodium, potassium, and other alkali metal salt types, magnesium, calcium, and other alkaline earth metal salt types, and the like are particularly preferable. Is an alkali metal salt type.

【0009】本発明において使用される吸水性樹脂の製
造においては、樹脂の性能向上のため架橋剤や添加剤を
加えることも可能である。架橋剤としては、前記モノマ
ーと共重合可能な、例えばN,N′−メチレンビス(メ
タ)アクリルアミド、(ポリ)エチレングリコール(メ
タ)アクリレート類等のジビニル化合物、エチレングリ
コールジグリシジルエーテル、ポリエチレングリコール
ジグリシジルエーテル、等のポリグリシジルエーテル、
グリセリン、ペンタエリスリトール等のポリオール、及
びエチレンジアミン等のポリアミン、ハロエポキシ化合
物、ポリアルデヒド類、などカルボン酸、リン酸、スル
ホン酸等の官能基と反応しうる2個以上の官能基を有す
る水溶性の化合物等が好適に使用しうる。添加剤として
は、微粒子状シリカ、二酸化チタン粉末、及びアルミナ
粉末等の不活性な無機質粉末、あるいは界面活性剤等が
挙げられ、所望の目的に応じて適時、適量添加される。
In the production of the water absorbent resin used in the present invention, it is possible to add a crosslinking agent or an additive for improving the performance of the resin. Examples of the cross-linking agent include divinyl compounds copolymerizable with the above-mentioned monomers, such as N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol (meth) acrylates, ethylene glycol diglycidyl ether, and polyethylene glycol diglycidyl. Polyglycidyl ether, such as ether,
Water-soluble compounds having two or more functional groups capable of reacting with functional groups such as carboxylic acid, phosphoric acid and sulfonic acid, such as polyols such as glycerin and pentaerythritol, polyamines such as ethylenediamine, haloepoxy compounds and polyaldehydes Etc. can be preferably used. Examples of the additives include inactive inorganic powders such as fine particle silica, titanium dioxide powder, and alumina powder, and surfactants, which are added at appropriate times and in appropriate amounts according to the desired purpose.

【0010】吸水性樹脂の製造に用いられる重合開始剤
は、水溶性で、かつ水溶性エチレン性不飽和モノマーの
水溶液に溶解しうるものであればよい。具体例を挙げる
と、(イ)過酸化水素、過硫酸カリウム、過硫酸ナトリ
ウム、過硫酸アンモニウム等の過硫酸塩、(ロ)t−ブ
チルハイドロパーオキシドやクメンハイドロパーオキシ
ド等のパーオキシド類、(ハ)アゾイソブチロニトリ
ル、2,2′−アゾビス(2−アミジノプロパン)二塩
酸塩等のアゾ系開始剤が用いられる。これらの重合開始
剤の中でも、特に、過硫酸塩、ハイドロパーオキシド類
等の様な酸化性を示す開始剤は、例えば亜硫酸水素ナト
リウム、L−アスコルビン酸、第一鉄塩等の様な還元性
物質あるいはアミン類との組合せによるレドックス開始
剤として用いることができる。これらの開始剤の使用量
は、一般には水溶性エチレン性不飽和モノマーに対して
0.01〜10重量部%、好ましくは0.1〜2重量部
%である。
The polymerization initiator used for producing the water-absorbent resin may be any one that is water-soluble and can be dissolved in an aqueous solution of a water-soluble ethylenically unsaturated monomer. Specific examples include (a) persulfates such as hydrogen peroxide, potassium persulfate, sodium persulfate, and ammonium persulfate; (b) peroxides such as t-butyl hydroperoxide and cumene hydroperoxide; ) Azo initiators such as azoisobutyronitrile and 2,2'-azobis (2-amidinopropane) dihydrochloride are used. Among these polymerization initiators, initiators exhibiting oxidative properties such as persulfates and hydroperoxides can be used as reducing initiators such as sodium bisulfite, L-ascorbic acid and ferrous salts. It can be used as a redox initiator in combination with a substance or amines. The amount of these initiators used is generally 0.01 to 10 parts by weight, preferably 0.1 to 2 parts by weight, based on the water-soluble ethylenically unsaturated monomer.

【0011】本発明の適用対象となる吸水性樹脂のう
ち、逆相懸濁重合、溶液重合、または逆相乳化重合によ
り製造されるものについて、その重合時に用いられる溶
媒及び界面活性剤は、前記のエチレン性不飽和モノマー
の水溶液を水相とし、溶媒を油相とする油中水滴型の分
散液を安定良く形成し、重合に不活性なものであればい
かなるものも使用できる。このような溶媒としては、脂
肪族炭化水素、脂環族炭化水素、または芳香族炭化水素
があり、脂肪族炭化水素としては、ノルマルペンタン、
ノルマルヘキサン、ノルマルヘプタン等が、脂環族炭化
水素としては、シクロペンタン、メチルシクロペンタ
ン、シクロヘキサン、メチルシクロヘキサン等が、芳香
族炭化水素としては、ベンゼン、トルエン、キシレン等
が適する。特に、ノルマルヘキサン、ノルマルヘプタ
ン、シクロヘキサンは工業的に品質が一定していて、入
手が容易であり、かつ安価なため好ましい。
Among the water-absorbent resins to which the present invention is applied, those produced by reverse phase suspension polymerization, solution polymerization, or reverse phase emulsion polymerization, the solvent and surfactant used during the polymerization are Any aqueous solution of the ethylenically unsaturated monomer can be used as long as it is stable in forming a water-in-oil type dispersion having an aqueous phase as an aqueous phase and a solvent as an oil phase and is inert to polymerization. Such solvents include aliphatic hydrocarbons, alicyclic hydrocarbons, or aromatic hydrocarbons, and the aliphatic hydrocarbons include normal pentane and
Suitable are normal hexane, normal heptane, etc., suitable cycloaliphatic hydrocarbons are cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, etc., and aromatic hydrocarbons are benzene, toluene, xylene, etc. In particular, normal hexane, normal heptane, and cyclohexane are preferable because they have industrially constant quality, are easily available, and are inexpensive.

【0012】界面活性剤としては、ポリオキシエチレン
脂肪酸エステル、ソルビタン脂肪酸エステル、ソルビト
ール脂肪酸エステル、ソルビタン脂肪酸エステルエーテ
ル、ソルビトール脂肪酸エステルエーテル、グリセリン
脂肪酸エステル、ショ糖脂肪酸エステル等が使用でき
る。特に、ソルビトールモノステアレート、ソルビトー
ルモノラウリレート、ソルビタンモノステアレート、ソ
ルビタンモノラウリレート、ショ糖ジステアレート、シ
ョ糖モノ・ジステアレート等が工業的使用においては一
定品質、かつ入手が容易で好ましい。
As the surfactant, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, sorbitol fatty acid ester, sorbitan fatty acid ester ether, sorbitol fatty acid ester ether, glycerin fatty acid ester, sucrose fatty acid ester and the like can be used. In particular, sorbitol monostearate, sorbitol monolaurate, sorbitan monostearate, sorbitan monolaurate, sucrose distearate, sucrose mono-distearate and the like are preferable because they have a certain quality in industrial use and are easily available.

【0013】水溶性エチレン性不飽和モノマーの重合に
よる吸水性樹脂の製造方法については、例えば、特公昭
60−25045号、特公昭61−36763号、特開
昭57−158210号、特開昭57−21405号、
特開昭58−71907号、特開昭57−98513号
各公報などにその詳細が示されている。代表的な重合例
として、次のようなものが挙げられる。 例−1 α、β−不飽和カルボン酸及びそのアルカリ金
属塩水溶液を架橋剤の存在下、または不存在下にショ糖
脂肪酸エステルを含有する石油系炭化水素溶媒中に懸濁
させ、ラジカル重合開始剤の存在下に重合せしめる方
法。 例−2 α,β−不飽和カルボン酸及びそのアルカリ金
属塩水溶液を架橋剤の存在下、または不存在下に、ラジ
カル重合開始剤の存在下に水溶液重合せしめる方法。 例−3 アクリル酸及びアクリル酸アルカリ塩水溶液を
HLB8〜12の界面活性剤を共有する脂環族または脂
肪族炭化水素溶媒中に懸濁させ、水溶性ラジカル重合開
始剤の存在下に重合せしめる方法。 例−4 分子量750〜10,000のモノオレフィン
重合体に1〜20%のα,β−不飽和カルボン酸あるい
はその無水物をグラフトした反応生成物、またはモノオ
レフィン重合体を最終的に酸価が10〜100になるよ
うに酸化して得られる生成物を保護コロイドに用い、単
量体水溶液を重合不活性で疎水性の液体中に懸濁させ
て、水溶性ラジカル重合開始剤の存在下に重合せしめる
方法。 例−5 デンプン及びセルロースのうち少なくとも1種
(A)と付加重合性二重結合を有する水溶性の、または
加水分解により水溶性となる単量体の少なくとも1種
(B)及び架橋剤(C)を必須成分として重合し、必要
により加水分解を行い重合体を得る方法。 例−6 アクリル酸及びアクリル酸アルカリ塩と水混和
性ないし水溶性ジビニル系化合物とを含有し、これら単
量体の濃度が55〜80重量%の範囲にある加温水溶液
に、重合反応開始剤を添加するか、あるいは電子線照射
することにより、外部加熱を行うことなく重合を行わせ
る方法。
Regarding the method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer, for example, JP-B-60-25045, JP-B-61-36663, JP-A-57-158210, and JP-A-57-158210. -21405,
The details are described in JP-A-58-71907 and JP-A-57-98513. The following are typical examples of polymerization. Example-1 Initiating radical polymerization by suspending an α, β-unsaturated carboxylic acid and its alkali metal salt aqueous solution in a petroleum hydrocarbon solvent containing a sucrose fatty acid ester in the presence or absence of a crosslinking agent. A method of polymerizing in the presence of an agent. Example-2 A method in which an aqueous solution of an α, β-unsaturated carboxylic acid and an alkali metal salt thereof is polymerized in the presence or absence of a crosslinking agent in the presence of a radical polymerization initiator. Example-3 A method of suspending acrylic acid and an aqueous solution of an alkali salt of acrylic acid in an alicyclic or aliphatic hydrocarbon solvent sharing a surfactant of HLB 8 to 12 and polymerizing them in the presence of a water-soluble radical polymerization initiator. . Example 4 A reaction product obtained by grafting 1 to 20% of α, β-unsaturated carboxylic acid or its anhydride onto a monoolefin polymer having a molecular weight of 750 to 10,000, or a monoolefin polymer to finally obtain an acid value. The product obtained by oxidation so that the water content is 10 to 100 is used as a protective colloid, and the aqueous monomer solution is suspended in a polymerization-inert and hydrophobic liquid to prevent the presence of a water-soluble radical polymerization initiator. How to polymerize into. Example-5 At least one kind of starch and cellulose (A) and at least one kind of water-soluble monomer having an addition-polymerizable double bond, or water-soluble by hydrolysis (C) and a cross-linking agent (C) Is polymerized as an essential component, and is hydrolyzed if necessary to obtain a polymer. Example 6 A polymerization reaction initiator was added to a warm aqueous solution containing acrylic acid and an acrylic acid alkali salt and a water-miscible or water-soluble divinyl compound, and the concentration of these monomers being in the range of 55 to 80% by weight. Or by irradiating with an electron beam to cause polymerization without external heating.

【0014】本発明の対象とする吸水性樹脂は、これら
の方法に限定されず、如何なる方法で重合したものであ
ってもよい。また、吸水性樹脂のさまざまな機能(耐久
性、吸水能力等)を向上させるために、米国特許第46
98404号公報、特開平2−300210号公報、特
開平2−255804号公報、特開平3−179008
号公報等に記載の種々の添加剤を添加して重合してもよ
い。本発明の効果は、これらの文献に記載のような重合
後の吸水能が高い吸水性樹脂ほど顕著に認められる。
The water-absorbent resin which is the object of the present invention is not limited to these methods and may be polymerized by any method. In addition, in order to improve various functions (durability, water absorption ability, etc.) of the water absorbent resin, US Pat.
98404, JP-A-2-300210, JP-A-2-255804, and JP-A-3-179008.
Polymerization may be carried out by adding various additives described in Japanese Patent Publication No. The effect of the present invention is more remarkably observed as the water-absorbent resin having higher water-absorbing ability after polymerization as described in these documents.

【0015】<後処理工程>水溶性エチレン性不飽和モ
ノマーを重合して得られる吸水性樹脂は、重合後、ポリ
マーに含水される過剰の水を脱水したり、必要に応じて
該ポリマーの表面改質をしたりする種々の後処理工程を
実施した後に工業製品として得られるものである。これ
らの後処理工程として、前述の公報等に記載されている
もので代表的なものを次に示す。 (ア)懸濁重合系における「懸濁重合後の重合後液を撹
拌下、ポリマー粒子を浮游させた状態で加熱し、炭化水
素溶媒と共に過剰水を蒸発させ、水は除去し、蒸発した
炭化水素溶媒は懸濁液に一部、または全量をもどす」脱
水操作とこれに付帯するスラリー等の受け入れ、排出等
の操作を含めた脱水工程。 (イ)水溶液重合系における「重合後の高含水率ポリマ
ーをベルト式乾燥機、気流式乾燥機、ロータリー式乾燥
機、パドル式乾燥機等の乾燥機器で加熱脱水する」脱水
操作とこれに付帯する受け入れ、排出等の操作を含めた
脱水工程。 (ウ)前項(ア)および(イ)の脱水操作で樹脂の含水
率を適度に調整し、その後、必要に応じて固液分離等の
操作により樹脂のスラリー濃度を調整した後、表面改質
剤を添加して表面改質反応を実施する操作とこれに付帯
するスラリーあるいは粉体の受け入れ、排出、加温等の
操作を含めた表面改質工程。 (エ)表面改質後の過剰水を含む含水樹脂につき必要に
応じて固液分離操作を実施した後、製品要求レベルまで
含水率を調製する乾燥操作とこれに付帯するスラリーあ
るいは粉体の受け入れ、排出、加温等の操作を含めた乾
燥工程。 (オ)水溶液重合後の過剰水を含む含水樹脂から所定の
含水率に調整するための加熱による脱水、あるいは乾燥
操作。 (カ)樹脂の粒子径を要求品質に適応させるための造粒
として、必要に応じて加湿し、造粒用助剤(バインダ
ー)の混合、加熱乾燥、解砕、および分級を行う造粒工
程。 本発明の方法は、これらの代表的操作に限定されずに適
用されることは言うまでもない。
<Post-Processing Step> The water-absorbent resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer has a property that after polymerization, the excess water contained in the polymer is dehydrated or, if necessary, the surface of the polymer. It is obtained as an industrial product after carrying out various post-treatment steps such as modification. Typical post-treatment processes described in the above-mentioned publications are shown below. (A) In the suspension polymerization system, "the liquid after polymerization after suspension polymerization is heated with stirring while the polymer particles are suspended, the excess water is evaporated together with the hydrocarbon solvent, the water is removed, and the evaporated carbonization is carried out. The hydrogen solvent returns a part or the whole amount to the suspension. "A dehydration process including operations such as dehydration operation and operations such as receiving and discharging slurry incidental to this. (B) Dehydration operation in the aqueous solution polymerization system, in which the high water content polymer after polymerization is heated and dehydrated by a dryer such as a belt dryer, an airflow dryer, a rotary dryer, a paddle dryer, etc. Dehydration process including operations such as receiving and discharging. (C) The water content of the resin is adjusted to an appropriate degree by the dehydration operation of the above (A) and (A), and then the slurry concentration of the resin is adjusted by an operation such as solid-liquid separation, if necessary, and then the surface modification A surface modification process that includes the operation of adding a chemical agent to carry out the surface modification reaction and the operations of receiving, discharging, and heating the slurry or powder incidental thereto. (D) After the solid-liquid separation operation is performed on the water-containing resin containing excess water after surface modification as necessary, the drying operation to adjust the water content to the required level of the product and the reception of the slurry or powder incidental thereto Drying process including operations such as discharge, heating, etc. (E) Dehydration by heating or drying operation for adjusting the water content of the water-containing resin containing excess water after aqueous solution polymerization to a predetermined water content. (F) As a granulation for adjusting the particle size of the resin to the required quality, a granulation step of humidifying as necessary, mixing a granulation aid (binder), heating and drying, crushing, and classifying . It goes without saying that the method of the present invention is applicable without being limited to these representative operations.

【0016】<樹脂の含水率とガラス転移温度Tg>一
般の高分子の含水率とガラス転移温度Tgとの関係につ
いては、『高分子と水分』(高分子学会編:幸書房刊
行)、『高分子物性工学』(金丸競著:地人書館刊行)
等の成書に記載のとうり、高分子の含水率が大きくなる
とTgは低温側に移行し、Tg以上で高分子のセグメン
トの運動は活発となる。このように含水率に応じて高分
子のTgが変化することについての理論的解明は未だな
されていない。本発明者らは、前述の吸水性樹脂につい
て検討した結果、各々の吸水性樹脂において絶対値は異
なるが、一般の高分子材料と同様な傾向が含水率とTg
に関して得られた。そして、このTg値と前述の後処理
工程時の温度条件とを比較検討した結果、各処理工程を
その工程における含水状態の該樹脂のTgより50℃高
い温度を越えない温度、好ましくは40℃を越えない温
度で実施した場合に、当該後処理に伴う樹脂の吸水能低
下が著しく抑制されることを見出した。この理由は明ら
かではないが、高分子のセグメントの運動をある程度以
下に抑えた状態で操作することで、熱による自己架橋反
応抑制、残存ラジカルの反応抑制等が発現し、重合で得
られた吸水性樹脂の性能をできるだけ保持した状態が保
たれることによるものと推定される。熱による高分子反
応がTgよりもかなり高い温度条件下で始めて生じるこ
と(樹脂の吸水能低下の事実により反応が生じているも
のと推定される)が確認されたのは、興味深い。
<Water Content of Resin and Glass Transition Temperature Tg> Regarding the relationship between the water content of a general polymer and the glass transition temperature Tg, “Polymer and Moisture” (edited by The Polymer Society of Japan, published by Koshobo), “ Polymer Physical Properties Engineering "(Kanamaru Race: published by Chijin Shokan)
As described in the above-mentioned book, when the water content of the polymer increases, Tg shifts to the low temperature side, and the motion of the polymer segment becomes active at Tg or higher. Thus, the theoretical elucidation that the Tg of the polymer changes depending on the water content has not been made yet. As a result of examining the above-mentioned water-absorbent resin, the present inventors have found that although the absolute values are different in each water-absorbent resin, the same tendency as that of a general polymer material shows that the water content and the Tg are the same.
Got about. Then, as a result of comparing and examining this Tg value and the temperature condition at the time of the above-mentioned post-treatment step, the temperature at which each treatment step does not exceed 50 ° C. higher than the Tg of the water-containing resin in that step, preferably 40 ° C. It was found that the decrease in the water absorption capacity of the resin due to the post-treatment is significantly suppressed when the temperature is not exceeded. The reason for this is not clear, but by operating with the motion of the polymer segment suppressed to a certain level or less, suppression of self-crosslinking reaction due to heat, reaction suppression of residual radicals, etc. are expressed, and water absorption obtained by polymerization It is presumed that this is because the performance of the functional resin is maintained as much as possible. It is interesting that it was confirmed that the polymer reaction due to heat first occurred under the temperature condition considerably higher than Tg (the reaction is presumed to be caused by the fact that the water absorption capacity of the resin is lowered).

【0017】<本発明の方法による後処理>本発明の方
法においては、上述の後処理工程のうち少なくとも1つ
の工程を、その工程における樹脂の含水率が25%以上
である時に該樹脂のTgより50℃高い温度を超えない
温度で実施する。本発明の方法の実施のための具体的操
作を以下に記述する。前述の脱水工程(ア)において
は、工程温度が炭化水素溶媒と水系の設定圧力下におけ
る沸点となるため、工程温度が上記温度範囲内となるよ
う減圧下で実施する。脱水初期は樹脂の含水率が大きい
ためTgが低く、従って必要設定温度はかなり低温とな
るが、脱水が進行するとTgの上昇に伴い必要設定温度
は上昇し、工業的に操作し易いものとなる。前述の脱水
工程(イ)においては、工程温度が水の沸点と略同一と
なるため、工程温度を上記温度範囲内とするためには、
工程(ア)と同様に減圧下で実施すれば良い。但し、こ
れらの工程において脱水初期における工程温度が必要設
定温度以上であっても、即ち、樹脂のTgより50℃以
上高温であっても、かかる温度下での加温時間が工程
(ア)または(イ)における全所要時間の30%以下、
好ましくは10%以下であれば本発明の効果は得られ
る。
<Post-treatment by the method of the present invention> In the method of the present invention, at least one of the above-mentioned post-treatment steps is carried out when the water content of the resin in the step is 25% or more. It is carried out at a temperature not exceeding 50 ° C. higher. Specific operations for carrying out the method of the present invention are described below. In the dehydration step (a) described above, the step temperature is the boiling point under the set pressure of the hydrocarbon solvent and the water system, so that the step temperature is performed under reduced pressure so that the step temperature falls within the above temperature range. At the initial stage of dehydration, the water content of the resin is high, so Tg is low, and therefore the required set temperature is considerably low. However, as dehydration progresses, the required set temperature rises as Tg rises, which facilitates industrial operation. . In the above-mentioned dehydration step (a), since the step temperature is substantially the same as the boiling point of water, in order to keep the step temperature within the above temperature range,
It may be carried out under reduced pressure as in the step (a). However, even if the process temperature at the initial stage of dehydration in these processes is equal to or higher than the required set temperature, that is, 50 ° C. or higher than the Tg of the resin, the heating time under such temperature is the process (a) or 30% or less of the total required time in (a),
The effect of the present invention can be obtained if it is preferably 10% or less.

【0018】前述の表面改質工程(ウ)においては、本
発明の方法に従って表面改質反応を低温度で実施するた
めに、(1)表面改質剤の樹脂に対する濃度を高めるた
め表面改質剤の混合後、あるいは混合前に炭化水素溶媒
を除去、(2)表面改質反応の触媒添加、(3)低温
で、かつ短時間で反応する表面改質剤に変更、等を実施
する。前述の工程(ウ)、(エ)、(オ)あるいは
(カ)においては、必要に応じて工程(ア)と同様に減
圧下で実施する。
In the above surface modification step (c), in order to carry out the surface modification reaction according to the method of the present invention at a low temperature, (1) the surface modification is carried out to increase the concentration of the surface modifier with respect to the resin. After or before mixing the agents, the hydrocarbon solvent is removed, (2) the catalyst for the surface modification reaction is added, and (3) the surface modifier that reacts at a low temperature in a short time is changed. In step (c), (d), (e), or (f), the step (a) is carried out under reduced pressure in the same manner as step (a), if necessary.

【0019】造粒工程(カ)に於いては、造粒用のバイ
ンダー、水、および樹脂の混合時の樹脂の含水率は、特
開平2−284927号(含水率35〜60%に調
整)、特開平2−308820号(含水率10〜60%
に調整)、特開平3−137129号(含水率10〜8
0%に調整)、特開昭61−97333号(含水率1〜
30%に調整)各公報に示されるように、一般に高含水
率に調整されるが、この混合/造粒操作およびそれに続
く乾燥操作を従来法とは異なり本発明の方法に従って行
うことが好ましい。上述の後処理工程のうち、特に、脱
水工程における高含水状態の樹脂の熱による吸水能低下
は著しく(Tgと処理温度との差が一般に大きい)、従
って少なくとも脱水工程において本発明の方法を適用
し、これに加えて必要に応じ、他の工程への適用を付加
していくことが望ましい。
In the granulating step (f), the water content of the resin at the time of mixing the binder for granulation, water, and the resin is described in JP-A-2-284927 (water content adjusted to 35 to 60%). JP-A-2-308820 (water content 10 to 60%
Adjustment), JP-A-3-137129 (water content 10 to 8).
Adjusted to 0%), JP-A-61-97333 (water content 1 to
(Adjusted to 30%) As shown in each publication, it is generally adjusted to a high water content, but it is preferable to carry out the mixing / granulation operation and the subsequent drying operation according to the method of the present invention unlike the conventional method. Among the above-mentioned post-treatment steps, in particular, the water absorption capacity of the resin having a high water content in the dehydration step is significantly decreased by heat (the difference between Tg and the treatment temperature is generally large), and therefore the method of the present invention is applied at least in the dehydration step. However, in addition to this, it is desirable to add application to other processes as necessary.

【0020】[0020]

【実施例】以下実施例および比較例によって本発明を更
に具体的に説明するが、本発明はこれらに限定されるも
のではない。尚、実施例で得られた吸水性樹脂につき、
下記の測定を行った。 <人工尿吸水能>吸水性樹脂試料1gを400メッシュ
のナイロン袋(10cm×10cmの大きさ)に入れ、
1リットルの人工尿に30分浸漬する(同時にブランク
のナイロン袋も浸漬する)。30分後、ナイロン袋を引
き上げ、15分水切り後重量測定をし、ブランク補正し
て、吸水性樹脂試料1gが吸液した人工尿の重量を人工
尿吸水能とした。樹脂試料の含水率の影響は次式にて補
正し、含水率5%に相当する吸水性樹脂の補正吸水能と
して、異なる含水率の吸水性樹脂の吸水能を比較した。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited thereto. Incidentally, for the water-absorbent resin obtained in the example,
The following measurements were performed. <Artificial urine water absorption capacity> 1 g of water-absorbent resin sample was placed in a 400-mesh nylon bag (size of 10 cm x 10 cm),
Immerse in 1 liter of artificial urine for 30 minutes (at the same time immerse a blank nylon bag). After 30 minutes, the nylon bag was pulled up, drained for 15 minutes, weighed, blank-corrected, and the weight of the artificial urine absorbed by 1 g of the water-absorbent resin sample was taken as the artificial urine water-absorption capacity. The influence of the water content of the resin sample was corrected by the following equation, and the water absorption capacity of the water absorbent resin having a different water content was compared as the corrected water absorption capacity of the water absorbent resin having a water content of 5%.

【0021】[0021]

【数1】 尚、ここで使用する人工尿の組成は下記の通りである。人工尿組成 尿 素 1.94% 塩化ナトリウム 0.80% 塩化カルシウム 0.06% 硫酸マグネシウム 0.11% 純 水 97.09% <ガラス転移温度Tg>Tgは、示差走査熱量測定(D
SC)装置(昇温速度10℃/分)にて測定し、図1に
示すB点をTgとした。ここで図1はポリマーのガラス
転移のDSC曲線の模式図であり、高分子学会編「高分
子測定法(構造と物性)」上巻、培風館(株)発行、昭
和48年1月30日、第181頁に記載の第1図を引用
したものである。
[Equation 1] The composition of the artificial urine used here is as follows. Artificial urine composition Urine 1.94% Sodium chloride 0.80% Calcium chloride 0.06% Magnesium sulfate 0.11% Pure water 97.09% <Glass transition temperature Tg> Tg is measured by differential scanning calorimetry (D
SC) device (temperature increase rate 10 ° C./min), and point B shown in FIG. 1 was taken as Tg. Here, FIG. 1 is a schematic diagram of the DSC curve of the glass transition of a polymer, “Polymer Measurement Method (Structure and Physical Properties)”, Volume 1, edited by The Society of Polymer Science, published by Baifukan Co., Ltd., January 30, 1973, FIG. 1 cited on page 181 is cited.

【0022】製造例1 撹拌機、ジャケット、窒素ガス導入管を備えたSUS3
04製の器にシクロヘキサン100重量部を仕込み、H
LB3のソルビタンモノステアレート0.8重量部を添
加分散した。窒素ガスを吹き込んで溶存酸素を追い出し
た後、60℃まで昇温し、撹拌下で、ソルビタンモノス
テアレートを溶解した後、冷却した液を(ア)液とし
た。次に、ジャケット付きSUS304製の撹拌槽中に
80重量%のアクリル酸水溶液100重量部を取り、外
部より冷却しつつ、25.4重量%の苛性ソーダ水溶液
131.47重量部を滴下して75モル%の中和を行っ
た後、N,N′−メチレンビスアクリルアミド0.03
重量部、次亜燐酸ソーダ0.8重量部、過硫酸カリウム
0.12重量部を加えて溶解した液を(イ)液とした。
撹拌機、ジャケット、加硫冷却器、窒素ガス導入管を備
えたSUS304製の重合反応器に(ア)液を100重
量部、(イ)液を80重量部加えて分散させ、再び系内
を窒素で十分置換した後に昇温を行いジャケットを70
〜75℃に保持して15分間、その後65℃にて1時間
の重合反応を行い、含水率57%の吸水性樹脂(ウ)の
重合液を得た。
Production Example 1 SUS3 equipped with a stirrer, jacket, and nitrogen gas inlet pipe
Charge 04 parts of cyclohexane to 100 parts by weight of
0.8 part by weight of sorbitan monostearate of LB3 was added and dispersed. Nitrogen gas was blown in to expel the dissolved oxygen, the temperature was raised to 60 ° C., sorbitan monostearate was dissolved under stirring, and then the cooled liquid was used as the (A) liquid. Next, 100 parts by weight of an 80% by weight acrylic acid aqueous solution was placed in a jacketed SUS304 stirring tank, and while cooling from the outside, 131.47 parts by weight of a 25.4% by weight caustic soda aqueous solution was added dropwise to 75 mol. %, N, N'-methylenebisacrylamide 0.03
A solution obtained by adding 1 part by weight, 0.8 part by weight of sodium hypophosphite, and 0.12 part by weight of potassium persulfate to form a solution (a) was prepared.
100 parts by weight of solution (a) and 80 parts by weight of solution (a) were added to a polymerization reactor made of SUS304 equipped with a stirrer, a jacket, a vulcanization cooler, and a nitrogen gas inlet tube to disperse the system again. After sufficiently purging with nitrogen, raise the temperature and cover the jacket with 70
The polymerization reaction was carried out by holding at ˜75 ° C. for 15 minutes and then at 65 ° C. for 1 hour to obtain a polymerization liquid of a water absorbent resin (c) having a water content of 57%.

【0023】比較例1 製造例1の重合液(ウ)を加熱し、シクロヘキサンとポ
リマーに含まれる水を蒸発させ、凝縮の後シクロヘキサ
ンは全量系内へ連続的に還流させる脱水操作を72〜7
6℃で実施し、含水率25%の吸水性樹脂(エ)を得
た。この樹脂に対し同様な操作で脱水を継続し、含水率
17%にした後、沈降分離させ、上澄み液を60重量部
除去し、表面改質剤としてγ−グリシドキシプロピルト
リメトキシシランを0.034重量部添加し、30分撹
拌の後、105℃に昇温してシクロヘキサンを蒸発させ
た後、30分保持することにより、表面改質を行った。
この樹脂を120℃に昇温して3時間乾燥し、含水率5
%の吸水性樹脂(オ)を得た。
Comparative Example 1 Polymerization liquid (c) of Production Example 1 was heated to evaporate cyclohexane and water contained in the polymer, and after condensation, cyclohexane was continuously refluxed into the system in a total amount of 72 to 7.
This was carried out at 6 ° C. to obtain a water absorbent resin (D) having a water content of 25%. Dehydration was continued for this resin by the same operation to make the water content 17%, followed by settling and separation, and 60 parts by weight of the supernatant was removed, and γ-glycidoxypropyltrimethoxysilane was added as a surface modifier to 0%. After adding 0.034 part by weight and stirring for 30 minutes, the temperature was raised to 105 ° C. to evaporate cyclohexane, and then the mixture was held for 30 minutes to perform surface modification.
The resin was heated to 120 ° C. and dried for 3 hours to give a water content of 5
% Water absorbent resin (e) was obtained.

【0024】実施例1 減圧下50〜54℃にて操作した以外は比較例1と全く
同様の脱水操作を行い、含水率25%の吸水性樹脂
(カ)を得た。この樹脂に対し比較例1と全く同様にし
て追加脱水、表面改質、乾燥を行い、含水率5%の吸水
性樹脂(キ)を得た。
Example 1 Except for operating at 50 to 54 ° C. under reduced pressure, the same dehydration operation as in Comparative Example 1 was carried out to obtain a water absorbent resin (f) having a water content of 25%. This resin was subjected to additional dehydration, surface modification and drying in exactly the same manner as in Comparative Example 1 to obtain a water absorbent resin (K) having a water content of 5%.

【0025】比較例2 表面改質剤としてエチレングリコールジグシジルエーテ
ルを0.074重量部添加し、30分撹拌後110℃に
昇温してシクロヘキサンを蒸発除去した後60分保持す
ることにより表面改質を行った以外は比較例1と全く同
様の操作を行い、含水率5%の吸水性樹脂(ク)を得
た。
Comparative Example 2 0.074 parts by weight of ethylene glycol diglycidyl ether was added as a surface modifier, and the mixture was stirred for 30 minutes, heated to 110 ° C. to evaporate and remove cyclohexane, and then maintained for 60 minutes to improve the surface. The same operation as in Comparative Example 1 was carried out except that the quality was changed to obtain a water absorbent resin (K) having a water content of 5%.

【0026】実施例2 比較例2の方法により表面改質を行った以外は実施例1
と全く同様に操作して、含水率5%の吸水性樹脂(ケ)
を得た。
Example 2 Example 1 except that the surface modification was carried out by the method of Comparative Example 2.
Exactly the same operation as above, water-absorbent resin (ke) with a water content of 5%
Got

【0027】製造例2 ジャケット付きSUS304製の撹拌槽中に80重量%
のアクリル酸水溶液100重量部を取り、外部より冷却
しつつ、25.4重量%の苛性ソーダ水溶液131.4
7重量部を滴下して75モル%の中和を行った後、N,
N′−メチレンビスアクリルアミド0.0984重量
部、界面活性剤としてスパン20(花王アトラス(株)
製)0.492重量部を入れ、窒素雰囲気下で液温を4
0℃とした後、過硫酸アンモニウム0.0343重量部
及び亜硫酸水素ナトリウム0.0115重量部を添加し
均一に溶解した。重合は穏やかに進行し、55〜80℃
で約7時間保持により、含水率57%の吸水性樹脂
(コ)を得た。
Production Example 2 80% by weight in a jacketed SUS304 stirred tank
While taking 100 parts by weight of the acrylic acid aqueous solution of 31.4% and cooling from the outside, 25.4% by weight of a caustic soda aqueous solution 131.4
After 7 parts by weight was added dropwise to neutralize 75 mol%, N,
0.0984 parts by weight of N'-methylenebisacrylamide, Span 20 as a surfactant (Kao Atlas Co., Ltd.)
0.492 parts by weight, and the liquid temperature is 4 under nitrogen atmosphere.
After the temperature was set to 0 ° C., 0.0343 parts by weight of ammonium persulfate and 0.0115 parts by weight of sodium hydrogen sulfite were added and uniformly dissolved. Polymerization proceeds gently, 55-80 ° C
By holding for about 7 hours, a water absorbent resin (K) having a water content of 57% was obtained.

【0028】比較例3 製造例2で得られたゲル状の吸水性樹脂(コ)を細断
後、熱風乾燥機にて120℃で2時間乾燥し、含水率2
5%の吸水性樹脂(サ)を得た。この樹脂に対し、更に
同様条件下での乾燥を継続し、含水率5%の吸水性樹脂
(シ)を得た。
Comparative Example 3 The gel water-absorbing resin (Co) obtained in Production Example 2 was shredded and then dried at 120 ° C. for 2 hours with a hot air dryer to obtain a water content of 2
5% of water absorbent resin (SA) was obtained. The resin was further dried under the same conditions to obtain a water absorbent resin (shi) having a water content of 5%.

【0029】実施例3 製造例2で得られたゲル状の吸水性樹脂(コ)を細断
後、減圧乾燥機にて50℃で3時間乾燥し、含水率25
%の吸水性樹脂(ス)を得た。この樹脂に対し、比較例
2と同じ熱風乾燥機を用いて120℃で追加乾燥を行
い、含水率5%の吸水性樹脂(セ)を得た。
Example 3 The gel-like water absorbent resin (Co) obtained in Production Example 2 was shredded and then dried at 50 ° C. for 3 hours in a vacuum dryer to obtain a water content of 25.
% Water absorbent resin (s) was obtained. This resin was additionally dried at 120 ° C. using the same hot air dryer as in Comparative Example 2 to obtain a water absorbent resin (C) having a water content of 5%.

【0030】製造例3 アクリル酸414重量部、およびアクリル酸ナトリウム
37重量%水溶液4380重量部、および架橋剤として
ポリエチレングリコールジアクリレート(n=8)5
4.97重量部、次亜燐酸ナトリウム1水和物9.76
重量部、イオン交換水380重量部を用いて濃度40
%、中和度75%の単量体水溶液(ソ)を得た後、窒素
ガスを吹き込んで溶存酸素を追い出した。内容量10リ
ットルのシグマ型羽根を有するジャケット付きステンレ
ス製双腕型ねっか機(ニーダー)に蓋をつけ、この反応
器に上記の単量体水溶液(ソ)を送入し、窒素ガスを吹
き込んで反応系内を窒素置換した。ついで2本のシグマ
型羽根を回転させると共に、ジャケットに35℃の温水
を通じて加熱しながら、重合開始剤として過硫酸アンモ
ニウム2.62重量部と亜硫酸水素ナトリウム0.12
重量部を添加することにより重合を開始させた。重合を
開始してから60分後に蓋をはずし、含水ゲル状重合体
(タ)を取り出した。
Production Example 3 414 parts by weight of acrylic acid, 4380 parts by weight of a 37% by weight aqueous solution of sodium acrylate, and polyethylene glycol diacrylate (n = 8) 5 as a crosslinking agent.
4.97 parts by weight, sodium hypophosphite monohydrate 9.76
40 parts by weight, using 380 parts by weight of deionized water, a concentration of 40
%, And a neutralization degree of 75% were obtained, and then nitrogen gas was blown in to expel dissolved oxygen. A stainless steel double-armed beading machine (kneader) with a jacket having a sigma type blade with an internal capacity of 10 liters is attached with a lid, and the above monomer aqueous solution (so) is fed into this reactor, and nitrogen gas is blown into it. The inside of the reaction system was replaced with nitrogen. Then, while rotating the two sigma type blades and heating the jacket with warm water of 35 ° C., 2.62 parts by weight of ammonium persulfate and 0.12 part of sodium bisulfite were used as a polymerization initiator.
Polymerization was initiated by adding parts by weight. After 60 minutes from the start of polymerization, the lid was removed and the hydrogel polymer (Ta) was taken out.

【0031】比較例4 製造例3で得られた重合体(タ)を50メッシュの金網
上に広げ、120℃の温度で熱風乾燥して含水率25%
の乾燥物(チ)を得た。この乾燥物を更に同一条件で乾
燥し含水率7%とした後、ハンマー型粉砕機で粉砕し、
20メッシュ金網でふるい分けして20メッシュ通過物
の吸水性樹脂(ツ)を得た。
Comparative Example 4 The polymer (Ta) obtained in Production Example 3 was spread on a 50-mesh wire net and dried with hot air at a temperature of 120 ° C. to obtain a water content of 25%.
To obtain a dried product (h). The dried product was further dried under the same conditions to have a water content of 7%, and then crushed by a hammer crusher,
A 20-mesh wire mesh was used for sieving to obtain a 20-mesh water-absorbent resin (tsu).

【0032】実施例4 製造例3で得られた重合体(タ)を50メッシュの金網
上に広げ、減圧乾燥機にて50℃の温度で乾燥して含水
率25%の乾燥物(テ)を得た。この乾燥物を比較例4
と同一条件で乾燥し含水率7%とした後、ハンマー型粉
砕機で粉砕し、20メッシュ金網でふるい分けして20
メッシュ通過物の吸水性樹脂(ト)を得た。上記実施例
および比較例で得られた吸水性樹脂につき、上述の方法
により測定したTgおよび人工尿吸水能の結果を表1に
示す。
Example 4 The polymer (ta) obtained in Production Example 3 was spread on a 50-mesh wire net and dried at 50 ° C. in a vacuum dryer to give a dried product (te) having a water content of 25%. Got This dried product was used as Comparative Example 4
After drying under the same conditions as above to obtain a water content of 7%, it was crushed with a hammer-type crusher and sieved with a 20-mesh wire mesh to 20
A water-absorbent resin (g) that passed through the mesh was obtained. Table 1 shows the results of Tg and water absorption capacity of artificial urine measured by the above-mentioned methods for the water-absorbent resins obtained in the above Examples and Comparative Examples.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の方法によれば、水溶性エチレン
性不飽和モノマーを重合して得られた吸水性樹脂の吸水
能を大幅に低下させることなく、該樹脂を後処理するこ
とが可能となる。即ち、本発明によれば、吸水性樹脂が
重合終了時に有する高い吸水能を最終製品においても享
受することができる。従って、各種衛生用品等高吸水性
が要求される製品の分野における本発明の工業的貢献度
は極めて高いものである。
According to the method of the present invention, it is possible to post-treat a water-absorbent resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer without significantly reducing the water-absorbing ability of the resin. Becomes That is, according to the present invention, it is possible to enjoy the high water-absorbing ability of the water-absorbent resin at the end of the polymerization even in the final product. Therefore, the industrial contribution of the present invention is extremely high in the field of products requiring high water absorption such as various sanitary products.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリマーのガラス転移のDSC曲線の模式図で
ある。
FIG. 1 is a schematic diagram of a DSC curve of glass transition of a polymer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水溶性エチレン性不飽和モノマーの重合に
より得られる吸水性樹脂の後処理方法であって、下記
(1)〜(4)の後処理工程の1つ以上の工程を、その
工程における前記樹脂の含水率が25%以上である時に
該樹脂のガラス転移温度より50℃高い温度を越えない
温度で実施することを特徴とする方法。 (1)重合後の過剰水の脱水工程 (2)樹脂の表面改質工程 (3)乾燥工程 (4)造粒工程
1. A post-treatment method for a water-absorbent resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer, which comprises one or more of the following post-treatment steps (1) to (4): The method is characterized in that it is carried out at a temperature not exceeding a temperature higher than the glass transition temperature of the resin by 50 ° C. when the water content of the resin is 25% or more. (1) Dehydration step of excess water after polymerization (2) Surface modification step of resin (3) Drying step (4) Granulation step
JP11746093A 1993-05-19 1993-05-19 Method of posttreatment of water-absorbing resin Pending JPH06329716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11746093A JPH06329716A (en) 1993-05-19 1993-05-19 Method of posttreatment of water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11746093A JPH06329716A (en) 1993-05-19 1993-05-19 Method of posttreatment of water-absorbing resin

Publications (1)

Publication Number Publication Date
JPH06329716A true JPH06329716A (en) 1994-11-29

Family

ID=14712230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11746093A Pending JPH06329716A (en) 1993-05-19 1993-05-19 Method of posttreatment of water-absorbing resin

Country Status (1)

Country Link
JP (1) JPH06329716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
WO2010032694A1 (en) * 2008-09-16 2010-03-25 株式会社日本触媒 Water-absorbent resin manufacturing method and liquid permeability improvement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875511B2 (en) 2002-05-30 2005-04-05 Nippon Shokubai Co., Ltd. Production process for particulate water-absorbent resin
WO2010032694A1 (en) * 2008-09-16 2010-03-25 株式会社日本触媒 Water-absorbent resin manufacturing method and liquid permeability improvement method
US20110166300A1 (en) * 2008-09-16 2011-07-07 Nippon Shokubai Co. Ltd Water-absorbent resin manufacturing method and liquid permeability improvement method
JPWO2010032694A1 (en) * 2008-09-16 2012-02-09 株式会社日本触媒 Method for producing water absorbent resin and method for improving liquid permeability
US8436090B2 (en) 2008-09-16 2013-05-07 Nippon Shokubai Co., Ltd. Production method and method for enhancing liquid permeability of water-absorbing resin
JP5560192B2 (en) * 2008-09-16 2014-07-23 株式会社日本触媒 Method for producing water absorbent resin and method for improving liquid permeability

Similar Documents

Publication Publication Date Title
JP5349723B2 (en) Method for producing water absorbent resin
AU2010362811B2 (en) Method for producing water-absorbent resin particles and water-absorbent resin particles
EP0878488B1 (en) Method for production of hydrophilic resin
US5281683A (en) Process for producing water-absorbent resin
US7973095B2 (en) Water-soluble or water-swellable polymers, particularly water-soluble or water-swellable copolymers made of acrylamide and at least one ionic comonomer having a low residual monomer concentration
JP5027414B2 (en) Method for producing water absorbent resin particles
WO2007126002A1 (en) Process for production of water-absorbable resin
JPH0912613A (en) Production of water-absorbing resin
JPH03179008A (en) Production of water-absorptive resin of excellent durability
JP3363000B2 (en) Method for producing water absorbent resin
JP3357093B2 (en) Method for producing water absorbent resin
JPH0519563B2 (en)
JP3349768B2 (en) Method and composition for producing acrylate polymer
JP3259143B2 (en) Method for producing water absorbent resin
JPH03195713A (en) Production of polymer having high water absorption
JPH04227705A (en) Production of salt-resistant water absorbing resin
JPS6343930A (en) Production of highly water-absorptive polymer
JPH03195709A (en) Production of polymer having high water absorption
JPH06329716A (en) Method of posttreatment of water-absorbing resin
JPH0848721A (en) Preparation of water-absorptive resin
JPH0656933A (en) Water-absorbing resin and its production
JP3119897B2 (en) Method for producing water-soluble or water-swellable polymer
JP4408691B2 (en) Manufacturing method of water absorbent resin
JP3544372B2 (en) Acrylate-based polymer and sanitary material using the same
JP3333332B2 (en) Treatment method for granular water absorbent resin