JPH06329473A - Normal-pressure sintering silicon nitride material having abrasion resistance - Google Patents

Normal-pressure sintering silicon nitride material having abrasion resistance

Info

Publication number
JPH06329473A
JPH06329473A JP5120165A JP12016593A JPH06329473A JP H06329473 A JPH06329473 A JP H06329473A JP 5120165 A JP5120165 A JP 5120165A JP 12016593 A JP12016593 A JP 12016593A JP H06329473 A JPH06329473 A JP H06329473A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
pressure
sintering
nitride material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120165A
Other languages
Japanese (ja)
Inventor
Sumio Terada
澄夫 寺田
Makoto Ueda
誠 上田
Youji Kuboi
洋司 窪井
Katsumi Nishihara
克己 西原
Koichi Kiyohara
耕一 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Ube Corp
Original Assignee
NTN Corp
Ube Industries Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Ube Industries Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP5120165A priority Critical patent/JPH06329473A/en
Publication of JPH06329473A publication Critical patent/JPH06329473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of coarse pores in molding and to decrease the number of residual pores in a sintered material by using easily collapsible granulation powder. CONSTITUTION:Silicon nitride powder obtained by imide decomposition process and having a specific surface area of >=10m<2>/g is incorporated with 8-13wt.% of a sintering assistant and 0-5wt.% of a carbide of Ti, Ta, etc., and mixed for 24-60 hr in wet state in the presence of an organic solvent to obtain a slurry. The slurry is incorporated with 0-3.0wt.% of a binder, dried and granulated to obtain granulation powder having particle diameter of <=150mum. The powder is converted to a formed article by CIP forming process under a pressure of >=100Mpa. The formed article is sintered in nitrogen atmosphere at 1700-1800 deg.C for 2-3hr under normal pressure to obtain the objective abrasion-resistant normal-pressure sintering silicon nitride material having a durability of >=1X10<7> cycle by the thrust-type rolling fatigue life test under the maximum contact stress of 6.5Gpa at room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素質軸受部材及
びその他の機械材料に用いる耐摩耗性常圧焼結窒化珪素
材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant atmospheric pressure sintered silicon nitride material used for silicon nitride bearing members and other mechanical materials.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】窒化珪
素の焼結に際しては、窒化珪素に自己焼結性がないため
焼結助剤を添加して行っている。焼結助剤としては、一
般にY2 3 などの希土類酸化物とAl 2 3 ,MgO
などの酸化物が組み合わされて用いられており、窒化珪
素粉末にこれらの焼結助剤を湿式混合して乾燥造粒した
後、成形して焼結を行うことにより、窒化珪素質焼結体
を得ている。焼結方法には、常圧の窒素雰囲気下で行う
常圧焼結法、機械的加圧によるホットプレス焼結法、窒
素などのガス圧力による雰囲気加圧焼結法及びHIP処
理法などがある。
PRIOR ART AND PROBLEM TO BE SOLVED BY THE INVENTION Silicon nitride
Since silicon nitride does not have self-sinterability when sintering the element
This is done by adding a sintering aid. As a sintering aid,
Generally Y2O3Rare earth oxides such as Al and 2O3, MgO
It is used in combination with oxides such as
Wet-mixing these sintering aids with elementary powder and dry granulating
After that, by molding and sintering, a silicon nitride sintered body is obtained.
Is getting The sintering method is performed under a nitrogen atmosphere at normal pressure.
Normal pressure sintering method, hot press sintering method by mechanical pressure, nitrogen
Atmospheric pressure sintering method and HIP treatment by gas pressure of elemental gas
There is law and so on.

【0003】焼結体を軸受材料等に使用する場合は、焼
結体に内在する微小な欠陥(気孔等)があると、それら
が転がり疲労によって表面で剥離を起こす原因となる。
また、一般に常圧焼結では焼結時に内部に大きな気孔が
残留しやすく、強度が低いために寿命試験を行っても非
常に短時間で剥離を生じる恐れがある。そこで、軸受材
料等に使用する場合には、常圧焼結に加えて、更にホッ
トプレス焼結法、雰囲気加圧焼結法またはHIP処理法
を用いて外圧により内部の気孔を消滅させる必要があ
り、操作が煩雑であり、またコスト的にも不利である。
When the sintered body is used as a bearing material or the like, if there are minute defects (pores and the like) in the sintered body, they cause peeling on the surface due to rolling fatigue.
Further, generally, in normal pressure sintering, large pores are likely to remain inside during sintering, and since strength is low, peeling may occur in a very short time even when a life test is performed. Therefore, when it is used as a bearing material or the like, in addition to atmospheric pressure sintering, it is necessary to eliminate the internal pores by an external pressure using a hot press sintering method, an atmosphere pressure sintering method or a HIP treatment method. However, the operation is complicated, and the cost is disadvantageous.

【0004】即ち、軸受材料として使用される窒化珪素
質焼結体には、焼結体内に欠陥(気孔等)が存在しない
ことが要求されているが、従来の常圧焼結体では気孔が
残留していたため、耐久性試験にかけても十分な転がり
疲労寿命が得られていなかった。
That is, the silicon nitride sintered body used as the bearing material is required to have no defects (pores, etc.) in the sintered body, but the conventional atmospheric pressure sintered body has pores. Since it remained, sufficient rolling fatigue life was not obtained even after the durability test.

【0005】従って、本発明の目的は、窒化珪素質の常
圧焼結体において、造粒粉を非常につぶれやすくするこ
とにより、成形時に生じる粗大気孔を有さず、焼結体に
おける残留気孔が少なく、軸受材料及び耐摩耗性材料と
して有用な耐摩耗性常圧焼結窒化珪素材料を提供するこ
とにある。
Therefore, an object of the present invention is to make the granulated powder in a silicon nitride-based normal pressure sintered body very easily crushed so that it does not have coarse air holes generated at the time of molding and has residual pores in the sintered body. The present invention is to provide a wear resistant atmospheric pressure sintered silicon nitride material which has a small amount and is useful as a bearing material and a wear resistant material.

【0006】[0006]

【課題を解決するための手段】本発明者らは、これまで
軸受材料として用いていたHIP処理後の窒化珪素質焼
結体の耐久性について研究した結果、材料内に35μm
以上のポア(気孔等の欠陥)が存在した場合に寿命に影
響することを見出し、常圧焼結体でも35μm以上のポ
アのないものを創生すべく検討を行った結果、本発明を
完成するに至った。
The present inventors have studied the durability of a silicon nitride sintered body after HIP treatment, which has been used as a bearing material until now, and as a result, found 35 μm in the material.
The present invention has been completed as a result of finding that the presence of the above pores (defects such as pores) affects the life, and creating a normal pressure sintered body without pores of 35 μm or more. Came to do.

【0007】即ち、本発明は、スラスト式転がり疲労寿
命試験において、室温で6.5GPaの最大接触応力下
で1×107 サイクル以上の耐久性を有する、耐摩耗性
常圧焼結窒化珪素材料を提供するものである。
That is, the present invention provides a wear resistant atmospheric pressure sintered silicon nitride material having durability of 1 × 10 7 cycles or more under a maximum contact stress of 6.5 GPa at room temperature in a thrust type rolling fatigue life test. Is provided.

【0008】以下、本発明の耐摩耗性常圧焼結窒化珪素
材料について、更に詳細に説明する。本発明の耐摩耗性
常圧焼結窒化珪素材料は、該耐摩耗性常圧焼結窒化珪素
材料をボール状、板状等の形状とした際における、スラ
スト式転がり疲労寿命試験において、1×107 サイク
ル以上の耐久性(転がり疲労寿命)を有することを特徴
とする。
The wear resistant atmospheric pressure sintered silicon nitride material of the present invention will be described in more detail below. The wear-resistant atmospheric-pressure sintered silicon nitride material of the present invention is 1 × in a thrust type rolling fatigue life test when the wear-resistant atmospheric-pressure sintered silicon nitride material is formed into a ball shape, a plate shape or the like. It is characterized by having a durability (rolling fatigue life) of 10 7 cycles or more.

【0009】上記スラスト式転がり疲労寿命試験におけ
る諸条件は以下の通りである。 ・最大接触応力:6.5GPa ・窒化珪素質ボール:5/16” ボール3個 ・回転数:3000rpm ・潤滑油:タービン油 ・試験打ち切り回数:1×107 サイクル ここで、上記の試験打ち切りの回数は、軸受鋼の転がり
疲労寿命の約1.5倍である。
The various conditions in the thrust type rolling fatigue life test are as follows.・ Maximum contact stress: 6.5 GPa ・ Silicon nitride balls: 5/16 "3 balls ・ Rotational speed: 3000 rpm ・ Lubricant: Turbine oil ・ Number of test aborts: 1 × 10 7 cycles The number of times is about 1.5 times the rolling fatigue life of the bearing steel.

【0010】本発明の耐摩耗性常圧焼結窒化珪素材料と
しては、上記の耐久性を有するものであれば、特に限定
されるものではないが、例えば、イミド分解法によって
得られる比表面積10m2 /g以上の窒化珪素粉末粉末
に、焼結助剤としてY2 3,Al2 3 を加え、更に
Ta,Ti等の炭化物を加えて焼結された3.2g/cm
3 以上の密度を有する耐摩耗性常圧焼結窒化珪素材料等
が挙げられる。
The wear resistant atmospheric pressure sintered silicon nitride material of the present invention is not particularly limited as long as it has the above-mentioned durability. For example, a specific surface area of 10 m obtained by the imide decomposition method. 3.2 g / cm2 which was sintered by adding Y 2 O 3 , Al 2 O 3 as a sintering aid to a silicon nitride powder powder of 2 / g or more and further adding carbides such as Ta and Ti.
A wear resistant atmospheric pressure sintered silicon nitride material having a density of 3 or more can be used.

【0011】本発明の耐摩耗性常圧焼結窒化珪素材料を
調製するには、下記の製造方法等により、得ることがで
きる。
The wear resistant atmospheric pressure sintered silicon nitride material of the present invention can be prepared by the following manufacturing method.

【0012】〔製造方法〕先ず、窒化珪素粉末に焼結助
剤としてY2 3 とAl2 3 を総量8〜13重量%、
添加剤としてTa,Tiなどの炭化物を0〜5重量%添
加して混合して、スラリーを得る。この際、混合を行う
には、例えば、湿式ボールミル等を用いて、エタノー
ル、メタノール等の有機溶媒の存在下に、24〜60時
間、好ましくは30〜48時間行う。ここで、上記の混
合する時間が、24時間より短いと窒化珪素粉末の凝集
が残り焼結時に欠陥となりやすく、60時間より長いと
ボールミルからの異物の混入が増えて焼結体の強度が低
下するので好ましくない。
[Manufacturing Method] First, Y 2 O 3 and Al 2 O 3 as a sintering aid are added to silicon nitride powder in a total amount of 8 to 13% by weight,
Carbides such as Ta and Ti are added as an additive in an amount of 0 to 5% by weight and mixed to obtain a slurry. At this time, for mixing, for example, a wet ball mill is used in the presence of an organic solvent such as ethanol or methanol for 24 to 60 hours, preferably 30 to 48 hours. Here, if the mixing time is shorter than 24 hours, the agglomeration of the silicon nitride powder remains and tends to become a defect at the time of sintering, and if longer than 60 hours, the inclusion of foreign matters from the ball mill increases and the strength of the sintered body decreases. Is not preferred.

【0013】次に、得られたスラリーにバインダーとし
てポリビニルブチラール(PVB)等を0〜3.0重量
%、好ましくは0.5〜1.0重量%添加し、スプレー
乾燥装置で乾燥造粒した後、150μm以下の造粒粉に
分級する。ここで、上記バインダーの添加量が3重量%
を超えると造粒粉が固くてつぶれにくくなり、成形時に
気孔が生じやすくなるので好ましくない。
Next, polyvinyl butyral (PVB) or the like as a binder was added to the obtained slurry in an amount of 0 to 3.0% by weight, preferably 0.5 to 1.0% by weight, and the mixture was dried and granulated by a spray dryer. Then, it is classified into granulated powder of 150 μm or less. Here, the addition amount of the binder is 3% by weight.
If it exceeds, the granulated powder is hard and difficult to be crushed, and pores are easily generated during molding, which is not preferable.

【0014】尚、混合時の溶媒としてエタノール等の有
機溶媒を使用するのは、乾燥造粒時に溶媒が蒸発しやす
く、一次粒子間に隙間が生じてつぶれやすくなるためで
ある。これに対して、水を用いた場合には蒸発しにくい
ために一次粒子が密に詰まり、造粒粉が固くてつぶれに
くくなり粗大気孔を生じやすくなるので好ましくない。
The use of an organic solvent such as ethanol as a solvent during mixing is because the solvent is likely to evaporate during dry granulation and voids are easily formed between the primary particles to easily collapse. On the other hand, when water is used, the primary particles are densely packed because they are hard to evaporate, the granulated powder is hard and difficult to be crushed, and coarse air holes are easily generated, which is not preferable.

【0015】次いで、成形を行う。該成形は、造粒粉を
金型成形したものやゴム型に充填したものを、好ましく
は圧力100MPa以上、より好ましくは150〜50
0MPaでCIP成形を行う。成形圧力が100MPa
より小さいと成形体密度が低くなり焼結時に十分緻密化
しないので好ましくない。
Next, molding is performed. The molding is performed by molding a granulated powder into a mold or filling a rubber mold with a pressure of preferably 100 MPa or more, more preferably 150 to 50.
CIP molding is performed at 0 MPa. Molding pressure is 100MPa
If it is smaller than the above range, the density of the molded body becomes low and the compact is not sufficiently densified during sintering, which is not preferable.

【0016】次いで、上記成形により得られた成形体を
焼結して、目的とする焼結体を得る。焼結条件は、常
圧、窒素雰囲気下において、1700〜1800℃で1
〜4時間、好ましくは1700〜1750℃、2〜3時
間である。温度が1700℃より低いと、緻密化しなか
ったり、強度が発現しない場合があり、1800℃を超
えると窒化珪素の分解を生じるので好ましくない。ま
た、保持時間が1時間より短いと窒化珪素のβ粒が十分
成長せず、4時間より長いと粒成長しすぎて強度が低下
するので好ましくない。
Next, the molded body obtained by the above molding is sintered to obtain a desired sintered body. The sintering conditions are 1700 to 1800 ° C. under normal pressure and nitrogen atmosphere at 1
˜4 hours, preferably 1700 to 1750 ° C., 2-3 hours. If the temperature is lower than 1700 ° C, densification may not occur or strength may not be exhibited, and if it exceeds 1800 ° C, silicon nitride is decomposed, which is not preferable. Further, if the holding time is shorter than 1 hour, β grains of silicon nitride will not grow sufficiently, and if longer than 4 hours, grain growth will be excessive and the strength will decrease, which is not preferable.

【0017】本発明の耐摩耗性常圧焼結窒化珪素材料
は、耐久性の要求される種々の用途に用いることができ
るが、特に、転がり軸受部材等として好ましく用いるこ
とができる。
The wear resistant atmospheric pressure sintered silicon nitride material of the present invention can be used in various applications requiring durability, and particularly preferably used as a rolling bearing member and the like.

【0018】[0018]

【実施例】次いで、実施例及び比較例により、本発明を
更に詳細に説明するが、本発明はこれらに限定されるも
のではない。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0019】〔実施例及び比較例〕窒化珪素粉末(宇部
興産製:「SN−E10」)90重量%と、Y2
3 (信越化学製:微粒品)5重量%と、Al2 3 (住
友化学製:「AKP−30」)4重量%と、TaC
(H.C.Starch:0.7my)1重量%とを表
1に示す溶媒で36時間湿式混合した。
[Examples and Comparative Examples] 90% by weight of silicon nitride powder ("SN-E10" manufactured by Ube Industries) and Y 2 O
3 (Shin-Etsu Chemical: fine-grained product) 5% by weight, Al 2 O 3 (Sumitomo Chemical: “AKP-30”) 4% by weight, TaC
1% by weight of (HC Starch: 0.7 my) was wet mixed with the solvent shown in Table 1 for 36 hours.

【0020】得られたスラリーに表1に示すバインダー
を0.5〜1.0重量%添加してスプレー乾燥機にて造
粒乾燥した。造粒粉はふるいによりふるい分け、150
μm以下のものを用いた。この造粒粉を50×50×5
mmの板形状に150MPaの圧力でCIP成形した後、
常圧の窒素雰囲気下で1750℃、2時間の条件で常圧
焼結した。
0.5 to 1.0% by weight of the binder shown in Table 1 was added to the obtained slurry, and the mixture was granulated and dried by a spray dryer. The granulated powder is sieved through a sieve, 150
Those having a size of μm or less were used. 50 x 50 x 5 of this granulated powder
After CIP molding with a pressure of 150 MPa into a plate shape of mm,
Sintering was carried out under atmospheric pressure in a nitrogen atmosphere at 1750 ° C. for 2 hours under atmospheric pressure.

【0021】得られた常圧焼結体(試験片)の転がり疲
労寿命試験面を研削仕上げによりRmax =0.3μm以
下に仕上げた後、スラスト式転がり疲労寿命試験に供し
た。上記スラスト式転がり疲労寿命試験について、図1
を参照して説明する。ここで、図1は、スラスト式転が
り疲労寿命試験装置を示す概略図である。図1に示す如
くスラスト式転がり疲労寿命試験装置10は、内面の中
央部分に試験片1を固定するための凹部を有する試験槽
6と、窒化珪素質ボール2を等配分する保持器3と、該
窒化珪素質ボール2と当接する部分に溝が形成されてい
る内輪4と、該内輪4を取り付けている回転軸7とから
なっている。また、潤滑油として、試験片1、窒化珪素
質ボール2、保持器3及び内輪4が浸るようにタービン
油5を投入している。そして、試験槽6に矢印A方向の
荷重を加えた後、回転軸7を矢印B方向に所定の回転速
度で回転させることにより試験を行うことができる。
The rolling fatigue life test surface of the obtained pressureless sintered body (test piece) was finished by grinding to Rmax = 0.3 μm or less, and then subjected to a thrust type rolling fatigue life test. Figure 1 shows the thrust type rolling fatigue life test.
Will be described with reference to. Here, FIG. 1 is a schematic diagram showing a thrust type rolling fatigue life test apparatus. As shown in FIG. 1, a thrust type rolling fatigue life test apparatus 10 includes a test tank 6 having a recess for fixing the test piece 1 in the center of the inner surface thereof, a cage 3 for equally distributing the silicon nitride balls 2. It comprises an inner ring 4 having a groove formed in a portion in contact with the silicon nitride ball 2, and a rotary shaft 7 to which the inner ring 4 is attached. Further, as the lubricating oil, turbine oil 5 is added so that the test piece 1, the silicon nitride balls 2, the cage 3 and the inner ring 4 are immersed. Then, after applying a load in the direction of arrow A to the test tank 6, the test can be performed by rotating the rotary shaft 7 in the direction of arrow B at a predetermined rotation speed.

【0022】スラスト式転がり疲労寿命試験の試験条件
は次の通りである。 ・最大接触応力:6.5GPa ・窒化珪素質ボール:5/16” ボール3個 ・回転数:3000rpm ・潤滑油:タービン油 ・打ち切り回数:1×107 サイクル
The test conditions for the thrust type rolling fatigue life test are as follows.・ Maximum contact stress: 6.5 GPa ・ Silicon nitride balls: 5/16 ”3 balls ・ Rotational speed: 3000 rpm ・ Lubricant oil: Turbine oil ・ Cutoff frequency: 1 × 10 7 cycles

【0023】また、焼結体の曲げ強度はJIS−R−1
601により測定した3点曲げ強度である。その結果を
表1に示す。
The bending strength of the sintered body is JIS-R-1.
It is the three-point bending strength measured by 601. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示す結果から、明らかなように、本
発明の耐摩耗性常圧焼結窒化珪素材料は、焼結体内部の
残留気孔が20μm以下であり、曲げ強度も1000M
Pa以上に達した。この常圧焼結体の転がり疲労寿命試
験結果は、1×107 サイクルを超えており軸受材料と
して使用可能な耐久性を有していた。一方、比較例であ
る溶媒にイオン交換水を使用し、バインダーをアクリル
樹脂やPVAとしたものは、造粒粉が固くてつぶれにく
くなっているため常圧焼結体内に50μmの残留気孔が
存在しており、曲げ強度も800〜900MPaと低か
った。これらを転がり疲労寿命試験した結果、1×10
6 サイクル以下で剥離を生じた。
As is clear from the results shown in Table 1, in the wear resistant atmospheric pressure sintered silicon nitride material of the present invention, the residual pores inside the sintered body are 20 μm or less and the bending strength is 1000 M.
Reached Pa or higher. The rolling fatigue life test result of this pressureless sintered body exceeded 1 × 10 7 cycles and had durability that could be used as a bearing material. On the other hand, in the comparative example in which ion-exchanged water is used as the solvent and the binder is acrylic resin or PVA, the granulated powder is hard and is difficult to be crushed, so that 50 μm residual pores exist in the atmospheric pressure sintered body. The bending strength was low at 800 to 900 MPa. As a result of rolling fatigue life test of these, 1 × 10
Peeling occurred in 6 cycles or less.

【0026】従って、耐摩耗性常圧焼結窒化珪素材料
は、造粒粉がつぶれやすいことにより残留気孔が非常に
小さく優れた強度及び転がり疲労に対する耐久性を得ら
れることがわかる。
Therefore, it is understood that the wear resistant atmospheric pressure sintered silicon nitride material has very small residual pores and excellent strength and durability against rolling fatigue due to the crushing of the granulated powder.

【0027】[0027]

【発明の効果】本発明の耐摩耗性常圧焼結窒化珪素材料
は、窒化珪素質の常圧焼結体において、造粒粉を非常に
つぶれやすくすることにより、成形時に生じる粗大気孔
を有さず、焼結体における残留気孔が少なく、軸受材料
及び耐摩耗性材料として有用である。
EFFECTS OF THE INVENTION The wear-resistant atmospheric pressure sintered silicon nitride material of the present invention has coarse atmospheric holes generated at the time of molding in a silicon nitride atmospheric pressure sintered body by making the granulated powder very easily crushed. In other words, the sintered body has few residual pores and is useful as a bearing material and a wear resistant material.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、スラスト式転がり疲労寿命試験装置を
示す概略図である。
FIG. 1 is a schematic diagram showing a thrust type rolling fatigue life test apparatus.

【符号の説明】[Explanation of symbols]

1 試験片(常圧焼結体) 2 窒化珪素質ボール 3 保持器 4 内輪 5 タービン油 6 試験槽 7 回転軸 10 スラスト式転がり疲労寿命試験装置 1 Test piece (sintered body under pressure) 2 Silicon nitride balls 3 Cage 4 Inner ring 5 Turbine oil 6 Test tank 7 Rotating shaft 10 Thrust type rolling fatigue life tester

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪井 洋司 山口県宇部市大字小串1978番地の5 宇部 興産株式会社無機材料研究所内 (72)発明者 西原 克己 三重県桑名市桜通55 (72)発明者 清原 耕一 三重県桑名市大字東方2224−1 曙寮 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Youji Kukai 5 1978, Ogushi, Ube City, Yamaguchi Prefecture 5 1978, Ube Industries Ltd. Inorganic Materials Research Laboratory (72) Inventor Katsumi Nishihara 55, Sakuradori, Kuwana City, Mie Prefecture (72) Inventor Kiyohara, Koichi Mie Prefecture, Kuwana City, Tozai 22224, Toho, Akebono Dormitory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スラスト式転がり疲労寿命試験におい
て、室温で6.5GPaの最大接触応力下で1×107
サイクル以上の耐久性を有する、耐摩耗性常圧焼結窒化
珪素材料。
1. In a thrust type rolling fatigue life test, 1 × 10 7 under a maximum contact stress of 6.5 GPa at room temperature.
A wear-resistant atmospheric pressure sintered silicon nitride material that has durability over a cycle.
JP5120165A 1993-05-21 1993-05-21 Normal-pressure sintering silicon nitride material having abrasion resistance Pending JPH06329473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120165A JPH06329473A (en) 1993-05-21 1993-05-21 Normal-pressure sintering silicon nitride material having abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120165A JPH06329473A (en) 1993-05-21 1993-05-21 Normal-pressure sintering silicon nitride material having abrasion resistance

Publications (1)

Publication Number Publication Date
JPH06329473A true JPH06329473A (en) 1994-11-29

Family

ID=14779560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120165A Pending JPH06329473A (en) 1993-05-21 1993-05-21 Normal-pressure sintering silicon nitride material having abrasion resistance

Country Status (1)

Country Link
JP (1) JPH06329473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929472A (en) * 2021-11-24 2022-01-14 福州赛瑞特新材料技术开发有限公司 Preparation method of composite boron nitride ceramic nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929472A (en) * 2021-11-24 2022-01-14 福州赛瑞特新材料技术开发有限公司 Preparation method of composite boron nitride ceramic nozzle

Similar Documents

Publication Publication Date Title
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
JPS63166763A (en) High hardness silicon nitride sintered body
JP2764589B2 (en) Silicon nitride based sintered body for bearing
US4530808A (en) Binder removal from thermoplastically formed SiC article
US20030176270A1 (en) Process for producing ceramic bearing components
JPH06329473A (en) Normal-pressure sintering silicon nitride material having abrasion resistance
JP2009179507A (en) Silicon carbide/boron nitride composite material sintered compact, method for producing the same, and member using the sintered compact
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
JPWO2007097402A1 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
JP3987719B2 (en) Method for producing porous vitrified grinding wheel and pore forming agent
JPH03505908A (en) shaft bearing unit
JP2000319064A (en) Ceramic material, rolling bearing and cutting tool using the same and production of the ceramic material
JP3970394B2 (en) Method for manufacturing silicon carbide sintered body
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
JP3764089B2 (en) Composite SiC sliding member, sealing ring for mechanical seal, mechanical seal, and method for manufacturing composite SiC sliding member
JPH06329471A (en) Production of sintered silicon nitride
JP3770288B2 (en) Ceramic rolling parts and manufacturing method thereof
JP3773080B2 (en) Rolling bearing
JP4642392B2 (en) Method for producing porous carbon material, porous carbon material, and sliding component using the porous carbon material
JPH1029871A (en) Granule for ceramic compacting
JPH08183665A (en) Ceramic granule
JPH02129056A (en) Production of spherical ceramics
JP4789293B2 (en) SiC sintered body
JPH0625038B2 (en) Method for manufacturing wear-resistant silicon carbide sintered body