JPH0632860B2 - Welding robot equipment - Google Patents
Welding robot equipmentInfo
- Publication number
- JPH0632860B2 JPH0632860B2 JP27763685A JP27763685A JPH0632860B2 JP H0632860 B2 JPH0632860 B2 JP H0632860B2 JP 27763685 A JP27763685 A JP 27763685A JP 27763685 A JP27763685 A JP 27763685A JP H0632860 B2 JPH0632860 B2 JP H0632860B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- point
- line
- mountain break
- corner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manipulator (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、溶接ロボット装置に関し、更に詳しくは、山
折れコーナを含むワークを外回りに連続自動溶接可能と
した溶接ロボット装置に関する。TECHNICAL FIELD The present invention relates to a welding robot apparatus, and more particularly to a welding robot apparatus capable of continuously and automatically welding a work including a mountain break corner to the outside.
「従来技術と問題点」 従来の溶接ロボット装置で水平隅肉溶接を行う場合、教
示した溶接線と実際のワークの溶接線のずれを補正する
ためにアーク倣い制御が行われるのが普通である。"Prior art and problems" When performing horizontal fillet welding with a conventional welding robot apparatus, arc tracing control is usually performed to correct the deviation between the taught welding line and the actual welding line of the workpiece. .
ところが、ワークに山折れコーナがある場合には、アー
ク倣い制御による前記ずれの補正を行うことが困難とな
る。However, when the work has a mountain corner, it is difficult to correct the deviation by the arc copying control.
この理由は、アーク倣い制御を好適に行うためには溶接
線の両側に壁面が必要であるところ、山折れコーナでは
急に片側(立板側)の壁面がなくなるために、アーク倣
い制御を好適に行えなくなるからである。The reason for this is that wall surfaces are required on both sides of the welding line in order to carry out arc tracing control favorably, but at the mountain break corner, one side (standing plate side) wall surface suddenly disappears, so arc tracing control is preferable. Because it will not be possible to do so.
従って、ワークが山折れコーナを含む場合には、山折れ
コーナの少し手前までの溶接線と山折れコーナの少し後
からの溶接線とを溶接ロボット装置で溶接し、山折れコ
ーナ部分は手作業で溶接することが行われている。Therefore, when the work contains a mountain break corner, the welding line up to a little before the mountain break corner and the welding line a little behind the mountain break corner are welded by a welding robot device, and the mountain break corner is manually operated. Are being welded in.
しかし、かかる手作業による溶接工程を挟むことは、溶
接ロボット装置を用いる意義を半減させるという問題点
がある。However, interposing such a manual welding process reduces the significance of using the welding robot apparatus by half.
「発明の目的」 本発明の目的とするところは、山折れコーナを含むワー
クの場合にも連続して外回りに自動溶接を行うことがで
きる溶接ロボット装置を提供することにある。"Object of the Invention" An object of the present invention is to provide a welding robot apparatus capable of continuously performing automatic welding to the outer circumference even in the case of a work including a mountain corner.
「発明の構成」 本発明の溶接ロボット装置は、始点から山折れ点へ向け
ての第1の溶接線とその第1の溶接線に係る溶接条件お
よび前記山折れ点から終点へ向けての第2の溶接線とそ
の第2の溶接線に係る溶接条件を設定する条件設定手
段、前記山折れ点の近傍で且つ山折れ点よりも終点側に
位置する第2始点を設定する第2始点設定手段、ウィー
ビングを行い且つ溶接電流または電圧を検出しつつ前記
第1の溶接線方向に前記第1の溶接線に係る溶接条件で
溶接作業を進める第1の溶接作業制御手段、前記溶接電
流または電圧の所定の変化を検出してワークの山折れコ
ーナを検知する山折れコーナ検知手段、前記山折れコー
ナ検知後、前記第2始点に溶接トーチを移動するコーナ
リング制御手段、および前記第2始点に移動後、前記第
2の溶接線方向に前記第2の溶接線に係る溶接条件で溶
接作業を進める第2の溶接作業制御手段を具備してな
り、山折れコーナを含むワークを外回りに連続自動溶接
可能としたことを構成上の特徴とするものである。"Structure of the Invention" The welding robot apparatus of the present invention has a first welding line from a starting point to a mountain break point, welding conditions related to the first welding line, and a first welding line from the mountain break point to an end point. No. 2 welding line and condition setting means for setting welding conditions related to the second welding line, and second starting point setting for setting a second starting point located in the vicinity of the mountain break point and on the end point side of the mountain break point. First welding operation control means for advancing a welding operation in the first welding line direction under the welding conditions related to the first welding line while performing weaving and detecting the welding current or voltage, the welding current or voltage Corner detecting means for detecting a predetermined change in the workpiece to detect the corner break of the workpiece, corner detecting control means for moving the welding torch to the second start point after detecting the corner break, and moving to the second start point. After the second A second welding work control means for advancing the welding work in the welding line direction under the welding conditions relating to the second welding line is provided, and it is possible to continuously and automatically weld a work including a mountain break corner to the outside. It is a feature of the above.
また、本発明の溶接ロボット装置は、始点から山折れ点
へ向けての第1の溶接線とその第1の溶接線に係る溶接
条件および前記山折れ点から終点へ向けての第2の溶接
線とその第2の溶接線に係る溶接条件を設定する条件設
定手段、前記山折れ点の近傍で且つ山折れ点よりも終点
側に位置する第2始点を設定する第2始点設定手段、ウ
ィービングを行い且つ溶接電流または電圧を検出しつつ
前記第1の溶接線方向に前記第1の溶接線に係る溶接条
件で溶接作業を進める第1の溶接作業制御手段、前記溶
接電流または電圧の所定の変化を検出してワークの山折
れコーナを検知する山折れコーナ検知手段、前記山折れ
コーナ検知後、ウィービングを停止し、第1の溶接線に
係る溶接条件での溶接電流より小さい溶接電流で且つ溶
接トーチ角度を、第1の溶接線に係る溶接条件での溶接
トーチ角度から第2の溶接線に係る溶接条件での溶接ト
ーチ角度まで、滑らかに連続して変化させ、前記第2始
点に溶接トーチを移動するコーナリング制御手段、およ
び前記第2始点に移動後、前記第2の溶接線方向に前記
第2の溶接線に係る溶接条件で溶接作業を進める第2の
溶接作業制御手段を具備してなり、山折れコーナを含む
ワークを外回りに連続自動溶接可能としたことを構成上
の特徴とするものである。Further, the welding robot apparatus of the present invention includes a first welding line from the start point to the mountain break point, welding conditions related to the first welding line, and second welding line from the mountain break point to the end point. Condition setting means for setting welding conditions relating to a line and its second welding line, second starting point setting means for setting a second starting point located near the mountain break point and on the end point side of the mountain break point, and weaving And a welding current or voltage is detected and the welding work is advanced in the first welding line direction under the welding conditions relating to the first welding line, and a predetermined welding current or voltage is set. A mountain break corner detecting means for detecting a mountain break corner of a work by detecting a change, after the mountain break corner is detected, weaving is stopped, and a welding current smaller than a welding current under welding conditions relating to the first welding line and Welding torch angle, Cornering control for smoothly and continuously changing from the welding torch angle under the welding condition for the first welding line to the welding torch angle under the welding condition for the second welding line, and moving the welding torch to the second starting point. Means and a second welding operation control means for advancing the welding operation in the second welding line direction under the welding conditions relating to the second welding line after moving to the second starting point. It is a feature of the construction that the work including the above can be continuously and automatically welded to the outside.
更に、本発明の溶接ロボット装置は、始点から山折れ点
へ向けての第1の溶接線とその第1の溶接線に係る溶接
条件および前記山折れ点から終点へ向けての第2の溶接
線とその第2の溶接線に係る溶接条件を設定する条件設
定手段、前記山折れ点の近傍で且つ山折れ点よりも終点
側に位置する第2始点を設定する第2始点設定手段、前
記山折れ点の近傍で且つ山折れ点よりも始点側に位置す
る近傍点を設定する近傍点設定手段、前記第1の溶接線
方向に前記第1の溶接線に係る溶接条件で前記近傍点ま
で溶接作業を進める第1の溶接作業制御手段、前記近傍
点に到達後、溶接電流を減少し、ウィービングを行い且
つ溶接電流または電圧を検出しつつ前記第1の溶接線方
向に溶接作業を進める近傍部溶接作業制御手段、前記溶
接電流または電圧の所定の変化を検出してワークの山折
れコーナを検知する山折れコーナ検知手段、前記山折れ
コーナ検知後、ウィービングを停止し、第1の溶接線に
係る溶接条件での溶接電流より小さい溶接電流で且つ溶
接トーチ角度を、第1の溶接線に係る溶接条件での溶接
トーチ角度から第2の溶接線に係る溶接条件での溶接ト
ーチ角度まで、滑らかに連続して変化させ、前記第2始
点に溶接トーチを移動するコーナリング制御手段、およ
び前記第2始点に移動後、前記第2の溶接線方向に前記
第2の溶接線に係る溶接条件で溶接作業を進める第2の
溶接作業制御手段を具備してなり、山折れコーナを含む
ワークを外回りに連続自動溶接可能としたことを構成上
の特徴とするものである。Further, the welding robot apparatus of the present invention includes a first welding line from the start point to the mountain break point, welding conditions related to the first welding line, and second welding line from the mountain break point to the end point. Condition setting means for setting welding conditions relating to a line and its second welding line, second start point setting means for setting a second start point located near the mountain break point and closer to the end point than the mountain break point, Proximity point setting means for setting a proximate point located near the mountain break point and closer to the starting point than the mountain break point, up to the proximate point under the welding condition related to the first welding line in the first welding line direction First welding work control means for advancing welding work, near the advancing welding work in the first welding line direction while the welding current is reduced and weaving is performed and the welding current or voltage is detected after reaching the proximity point. Section welding work control means, the welding current or voltage A mountain break corner detecting means for detecting a predetermined change and detecting a mountain break corner of the work, and after the mountain break corner is detected, weaving is stopped and a welding current smaller than the welding current under the welding condition relating to the first welding line. And the welding torch angle is smoothly and continuously changed from the welding torch angle under the welding conditions related to the first welding line to the welding torch angle under the welding conditions related to the second welding line. A cornering control means for moving the welding torch, and a second welding work control means for advancing the welding work in the second welding line direction under the welding conditions related to the second welding line after moving to the second starting point. The present invention is characterized in that the work including the mountain corners can be continuously and automatically welded to the outside.
「実施例」 以下、図に示す実施例に基づいて本発明を更に詳しく説
明する。ここに第1図は本発明の一実施例の溶接ロボッ
ト装置の構成ブロック図、第2図は山折れコーナを含む
ワークの一例の斜視図、第3図は第1図に示す装置の作
動の要部フローチャート、第4図は第1図に示す装置に
おける溶接トーチの移動軌跡並びに溶接電流波形の模式
図、第5図は本発明の他の実施例の第1図相当図、第6
図は第5図に示す装置における第3図相当図、第7図は
第5図に示す装置における第4図相当図、第8図は本発
明の更に他の実施例における第4図相当図である。な
お、図に示す実施例により本発明が限定されるものでは
ない。[Examples] Hereinafter, the present invention will be described in more detail based on the examples shown in the drawings. Here, FIG. 1 is a block diagram showing the construction of a welding robot apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view of an example of a work including a mountain break corner, and FIG. 3 is an operation of the apparatus shown in FIG. FIG. 4 is a schematic view of the movement locus of the welding torch and the welding current waveform in the apparatus shown in FIG. 1, FIG. 5 is a view corresponding to FIG. 1 of another embodiment of the present invention, and FIG.
FIG. 7 is an equivalent view of FIG. 3 in the apparatus shown in FIG. 5, FIG. 7 is an equivalent view of FIG. 4 in the apparatus shown in FIG. 5, and FIG. 8 is an equivalent view of FIG. 4 in still another embodiment of the present invention. Is. The present invention is not limited to the embodiments shown in the drawings.
第1図に示す溶接ロボット装置1において、制御装置2
は、サーボ回路3を介して、ロボット本体4に、溶接線
方向への移動およびその移動方向に直角なウィービング
運動を行うよう駆動信号を与える。また、溶接機5を介
して、溶接トーチ6の電気的制御を行い、ワークWの溶
接を行う。更に、アークセンサ7を介し、溶接電流を検
出する。更にまた、制御盤8を介し、オペレータの指示
を読み込む。In the welding robot apparatus 1 shown in FIG.
Supplies a drive signal to the robot body 4 via the servo circuit 3 so as to perform a movement in the welding line direction and a weaving movement perpendicular to the movement direction. Further, the work W is welded by electrically controlling the welding torch 6 via the welding machine 5. Further, the welding current is detected via the arc sensor 7. Furthermore, the operator's instruction is read via the control panel 8.
かかる制御装置2は、コンピュータを中枢として構成さ
れるもので、条件設定部10,第2始点設定部12,山
折れコーナ検知部13,第1溶接作業制御部14,コー
ナリング制御部16および第2溶接作業制御部17を有
している。The control device 2 is configured with a computer as a center, and includes a condition setting unit 10, a second start point setting unit 12, a mountain break corner detection unit 13, a first welding work control unit 14, a cornering control unit 16 and a second. It has a welding work control unit 17.
次に、第3図および第4図を参照し、この溶接ロボット
装置1をその動作の順に従って説明する。ここで説明の
都合上、第2図に示す如きワークWにおいて、始点P1
→山折れ点P2→終点P3の順に溶接を行う作業を考え
る。Next, referring to FIGS. 3 and 4, the welding robot apparatus 1 will be described in the order of its operation. For convenience of explanation, in the work W as shown in FIG. 2, the starting point P 1
→ Consider the work of welding in the order of the mountain break point P 2 → the end point P 3 .
まず、オペレータは、制御盤8を介し、始点P1,山折
れ点P2,終点P3を入力する。第4図に示すように、
これらの点は、教示された始点TP1,山折れ点TP2,終点
TP3としてそれぞれ条件設定部10に設定される。First, the operator inputs a start point P 1 , a mountain break point P 2 , and an end point P 3 via the control panel 8. As shown in FIG.
These points are the taught start point TP 1 , mountain break point TP 2 and end point.
It is set in the condition setting unit 10 as TP 3 .
これにより、制御装置2は、始点TP1と山折れ点TP2の間
を第1の溶接線L1と認識し、山折れ点TP2と終点TP3の
間を第2の溶接線L2と認識する。As a result, the control device 2 recognizes the area between the starting point TP 1 and the mountain break point TP 2 as the first welding line L 1, and the area between the mountain breaking point TP 2 and the end point TP 3 is the second welding line L 2. Recognize that.
更に、オペレータは、その第1の溶接線L1に係る溶接
条件並びに第2の溶接線L2に係る溶接条件を入力す
る。Further, the operator inputs the welding conditions for the first welding line L 1 and the welding conditions for the second welding line L 2 .
この溶接条件の具体例としては、例えば、溶接電流25
0A,溶接速度24cm/分,ウィービング幅10mm,ウ
ィービング周波数2Hz等である。ただし、これに限定さ
れず、例えば、溶接電流70〜500A,溶接速度1〜
200cm/分,ウィービング周波数0.5〜3Hzの範囲で
適宜選択されうる。As a specific example of this welding condition, for example, a welding current of 25
0A, welding speed 24 cm / min, weaving width 10 mm, weaving frequency 2 Hz, etc. However, the present invention is not limited to this, and for example, a welding current of 70 to 500 A and a welding speed of 1 to
It can be appropriately selected within the range of 200 cm / min and the weaving frequency of 0.5 to 3 Hz.
上記入力操作の後、オペレータが、溶接のスタートを指
示すると、制御装置2は、第3図に示す手順に従って溶
接作業を開始する。After the input operation, when the operator gives an instruction to start the welding, the control device 2 starts the welding operation according to the procedure shown in FIG.
まず制御装置2の第2始点設定部12は、第2始点
P3′の設定を行う(S1)。具体的には、例えば第2
の溶接線L2上で且つ山折れ点TP2から例えば脚長と等
しい距離にある点として第2始点P3′を設定する。た
だし、これに限定されず、例えば0.5〜1.5(は脚
長)の範囲から適宜選択されうる。First, the second start point setting unit 12 of the control device 2 sets the second start point P 3 ′ (S1). Specifically, for example, the second
The second starting point P 3 ′ is set as a point on the welding line L 2 and at a distance equal to the leg length from the mountain break point TP 2 . However, the present invention is not limited to this, and can be appropriately selected from the range of, for example, 0.5 to 1.5 (the leg length).
次に制御装置2の第1溶接作業制御部14は、第1の溶
接線L1に係る溶接条件に基づいて始点TP1より山折れ
点TP2に向けて、すなわち第1の溶接線L1の方向に、
溶接作業を開始する(S2)。The first welding operation control unit 14 of the next control device 2, toward the outward bending point TP 2 from the start point TP 1 based on the welding condition according to the first weld line L 1, that is, the first weld line L 1 In the direction of
Welding work is started (S2).
このとき、教示された溶接線L1と実際のワークWの溶
接線(第4図破線)がずれているのを補正するために、
アーク倣い制御が行われる。そこで、第4図に示すよう
に、始点TP1の付近では、真の溶接線から溶接トーチ6
がややずれているが、すぐに真の溶接線を倣うようにな
る。かかるアーク倣い制御は従来公知の技術であり、例
えば特開昭54-124850,55-22488、58-53375号公報に開示
されている。At this time, in order to correct the deviation between the taught welding line L 1 and the actual welding line of the work W (broken line in FIG. 4),
Arc copying control is performed. Therefore, as shown in FIG. 4, in the vicinity of the starting point TP 1 , the welding torch 6 starts from the true welding line.
Although it is slightly off, it will soon follow the true weld line. Such arc copying control is a conventionally known technique and is disclosed in, for example, Japanese Patent Laid-Open Nos. 54-124850, 55-22488 and 58-53375.
制御装置2の山折れコーナ検知部13は、上記ステップ
S2における第1の溶接線L1方向の溶接作業の間、溶
接電流の変化を検出している。溶接電流は、アーク倣い
制御が適正に行われているときはウィービングの右端位
置と左端位置においてほぼ等しいピーク電流値となる
が、ワークWの山折れコーナCを溶接トーチ6が過ぎれ
ば、ウィービングの右端位置で壁面が対応しなくなるの
で、その右端位置で最小の電流値を検出するようにな
る。そこでウィービングの右端位置における電流値の極
端な低下を2回検出すると、ワークの山折れコーナCを
検知したと判定する。2回検出した後かかる判定を行う
のは、誤判定を防止するためであり、しかも行き過ぎ量
を最小にするためである。The mountain break corner detection unit 13 of the control device 2 detects a change in the welding current during the welding operation in the first welding line L 1 direction in step S2. The welding currents have almost the same peak current values at the right end position and the left end position of the weaving when the arc tracing control is properly performed, but if the welding torch 6 passes through the mountain break corner C of the work W, the weaving Since the wall surface does not correspond at the right end position, the minimum current value is detected at the right end position. Therefore, when the extreme decrease of the current value at the right end position of the weaving is detected twice, it is determined that the mountain fold corner C of the work is detected. The reason for making such a determination after detecting twice is to prevent an erroneous determination and to minimize the overshoot amount.
なお、かかる判定は、電圧変化の検出によっても行うこ
とができる。It should be noted that such a determination can also be made by detecting a voltage change.
山折れコーナCが検知されると(S3)、制御装置2の
コーナリング制御部16は、ただちにウィービングを停
止し、先に設定した第2始点P3′へ溶接トーチ6を移
動させる(S4)。When the mountain folding corner C is detected (S3), the cornering control unit 16 of the control device 2, immediately stops the weaving, to move the welding torch 6 to a second start point P 3 'previously set (S4).
第2始点P3′に到着すると(S5)、第2の溶接線L
3に係る溶接条件にて溶接を開始する(S6)。When it reaches the second starting point P 3 ′ (S5), the second welding line L
Welding is started under the welding conditions according to No. 3 (S6).
このとき、アーク倣い制御を行うことで、教示した溶接
線L2と実際のワークWの溶接線のずれがあっても次第
に補正されることは先に説明した通りである。At this time, by performing the arc tracing control, even if there is a deviation between the taught welding line L 2 and the actual welding line of the work W, it is gradually corrected, as described above.
以上のように、この溶接ロボット装置1によれば、特に
教示の負担を増加させることなく、山折れコーナを含む
ワークでも好適に外回りに連続自動溶接することが可能
となることが理解されよう。換言すれば、この溶接ロボ
ット装置1では教示が簡単なので、山折れコーナを有す
るワークでも熟練を要さず溶接することができるのであ
る。As described above, according to the welding robot apparatus 1, it will be understood that it is possible to preferably perform continuous automatic welding on the outer circumference of a work including a mountain corner without increasing the burden of teaching. In other words, since the teaching is simple in the welding robot apparatus 1, it is possible to perform welding on a work having a bent corner without skill.
次に第5図に示す溶接ロボット装置1′は、本発明の他
の実施例である。Next, a welding robot apparatus 1'shown in FIG. 5 is another embodiment of the present invention.
第1図に示す実施例装置1との相違点は、制御装置2′
にあり、その他の点は同様の構成である。The difference from the device 1 of the embodiment shown in FIG.
In other respects, the configuration is similar.
制御装置2′の条件設定部10′では、始点TP1,山折
れ点TP2,終点TP3および第1の溶接線L1に係る溶接条
件,第2の溶接線L2に係る溶接条件が設定される。こ
の設定は、先に説明したようにオペレータにより教示さ
れてもよいが、予め設定されておいてもよい。In the condition setting unit 10 'of the control device 2', the welding condition relating to the starting point TP 1 , the mountain break point TP 2 , the ending point TP 3 and the first welding line L 1 and the welding condition relating to the second welding line L 2 are set. Is set. This setting may be taught by the operator as described above, or may be set in advance.
近傍点設定部11′は、第1の溶接線L1上で且つ山折
れ点TP2から例えば9mmの距離に近傍点P1′を設定す
る(第6図S11)。ただし、これに限定されず、教示
した溶接線と実際のワークの溶接線のずれの予想され得
る最大値よりも大きく設定されればよい。通常は、20
mm以下である。The near point setting unit 11 ′ sets the near point P 1 ′ on the first welding line L 1 and at a distance of, for example, 9 mm from the mountain break point TP 2 (S11 in FIG. 6). However, the present invention is not limited to this, and may be set to be larger than the predicted maximum value of the deviation between the taught welding line and the actual welding line of the work. Usually 20
mm or less.
第1溶接作業制御部14′は、始点TP1から第1の溶接
線L1の方向へ第1の溶接線L1に係る溶接条件で溶接
作業を開始する(S12)。このときアーク倣い制御が
行われ、実際のワークWとのずれが補正される。The first welding operation control unit 14 'starts the welding operation at the welding condition according to the direction the first weld line L 1 first weld line L 1 from the starting point TP 1 (S12). At this time, arc copying control is performed, and the deviation from the actual work W is corrected.
そこで溶接トーチ6は、実際のワークWの溶接線を倣っ
て溶接作業を進めるが、前記近傍点P1′に対応する近
傍対応点P1″に到着すると(S13)、近傍部溶接作
業制御部15′が、溶接電流を例えば230Aに設定す
る。これはワークWの山折れコーナCで過度の熱集中が
起こりやすいために、電流値を制限するものである。通
常、近傍対応点P1″までの溶接電流は大きいので、近
傍対応点P1″以後は溶接電流を例えば20A程度減少
させるとよい。ただし、これに限定されず、例えば10
0A〜250Aの範囲から適宜選択されうる。Therefore, the welding torch 6 advances the welding work by following the welding line of the actual work W, but when the welding torch 6 arrives at the neighboring corresponding point P 1 ″ corresponding to the neighboring point P 1 ′ (S13), the neighboring portion welding work control unit. 15 'sets the welding current to, for example, 230 A. This is for limiting the current value because excessive heat concentration is likely to occur at the corner C of the work W. Usually, the corresponding point P 1 ″ in the vicinity. Since the welding current up to is large, the welding current may be decreased by, for example, about 20 A after the corresponding point P 1 ″ in the vicinity.
It can be appropriately selected from the range of 0A to 250A.
また、ウィービング幅を例えば3mmに設定し、ウィービ
ング周波数を例えば4Hzに設定する。これは山折れコー
ナCを検出する応答性を向上するためである。ただし、
これに限定されず、例えばウィービング幅2〜4mm,ウ
ィービング周波数2〜6Hzの範囲から適宜選択されう
る。The weaving width is set to, for example, 3 mm, and the weaving frequency is set to, for example, 4 Hz. This is to improve the responsiveness of detecting the mountain break corner C. However,
However, the weaving width is 2 to 4 mm, and the weaving frequency is 2 to 6 Hz.
更に、現在の進行方向を維持するものとしてアーク倣い
制御を停止する。これは近傍対応点P1″までにずれは
十分補正されており、近傍対応点P1″以後はそれほど
補正が必要でないこと、および山折れコーナCを溶接ト
ーチ6が少し行き過ぎるがこのときアーク倣い制御が働
くと溶接ビードが曲がり美観が悪くなるのでこれを避け
るのが好ましいことのためである。Further, the arc copying control is stopped to maintain the current traveling direction. This "are shifted are well corrected up to the vicinity corresponding point P 1" near the corresponding point P 1 that is subsequently not required so much correction, and outward bending welding torch 6 corner C is a little too far arc tracking this time This is because it is preferable to avoid this because the weld bead bends and becomes unaesthetic when the control is activated.
更にまた、溶接電流を下げることにより過度の溶接ビー
ドがやせるのを防止するため溶接電流の減少比率に比例
して溶接トーチの移動速度を減少させる。Furthermore, the welding torch moving speed is reduced in proportion to the reduction rate of the welding current in order to prevent excessive welding bead thinning by reducing the welding current.
このように、近傍部溶接作業制御手段15′で近傍対応
点P1″以後の溶接作業を進める(S14)が、山折れ
コーナ検知部13′はこのあいだ溶接電流の変化を検出
する。前述したようにウィービングの右端位置での溶接
電流の極端な低下を2回検出すると、山折れコーナ検知
部13′は、山折れコーナCの検知と判定する(S1
5)。In this way, the welding operation after the vicinity corresponding point P 1 ″ is advanced by the vicinity welding work control means 15 ′ (S 14), while the ridge break corner detection unit 13 ′ detects the change in the welding current during this time. When the extreme decrease of the welding current at the right end position of the weaving is detected twice, the mountain break corner detecting unit 13 'determines that the mountain break corner C is detected (S1).
5).
山折れコーナCを検知すると(S15)、第2始点設定
部12′は第2始点P3′の算出を行う(S16)。す
なわち、第2始点設定部12′は、ウィービングの右端
での電流低下を初めて生じた右端位置とその前のウィー
ビングの左端位置とをロボット本体4の位置検出器のデ
ータから得て、それらの中間1を山折れコーナ対応点P
2とする。そして、この山折れコーナ対応点P2と終点
TP3を結ぶ線上で且つ山折れコーナ対応点P2から例え
ば脚長の1/2の距離に第2始点P3′を設定する。ただ
し、これに限定されず、例えば0.5〜1.5(は脚
長)の範囲から適宜選択されうる。When detecting the described bending corner C (S15), a second start point setting unit 12 'and the second start point P 3' to calculate the (S16). That is, the second start point setting unit 12 'obtains the right end position where the current drop at the right end of the weaving first occurs and the previous left end position of the weaving from the data of the position detector of the robot body 4, and the intermediate between them. 1 for mountain break corner corresponding point P
Set to 2 . And this mountain break corner corresponding point P 2 and end point
A second starting point P 3 ′ is set on the line connecting TP 3 and at a distance of, for example, ½ of the leg length from the mountain corner corresponding point P 2 . However, the present invention is not limited to this, and can be appropriately selected from the range of, for example, 0.5 to 1.5 (the leg length).
コーナリング制御部16′は、ウィービングを停止し、
例えば溶接電流を200Aにし、溶接トーチ6の移動速
度を48cm/分に設定し、溶接トーチ6の角度(姿勢)
を滑らかに第2溶接線L2に係る溶接条件での角度(姿
勢)に変化させつつ、第2始点P3′へ溶接トーチ6を
移動させる(S17)。ただし、これに限定されず、例
えば、溶接電流100〜250A,トーチ移動速度3〜
200cm/分の範囲から適宜選択されうる。The cornering control unit 16 'stops the weaving,
For example, the welding current is set to 200 A, the moving speed of the welding torch 6 is set to 48 cm / min, and the angle (posture) of the welding torch 6 is set.
The welding torch 6 is moved to the second starting point P 3 ′ while smoothly changing the angle (posture) under the welding conditions related to the second welding line L 2 (S17). However, the invention is not limited to this, and for example, a welding current of 100 to 250 A and a torch moving speed of 3 to
It can be appropriately selected from the range of 200 cm / min.
かかる溶接電流や溶接トーチの移動速度は、山折れコー
ナCでの熱集中を避け、また溶接ビードが過多となるこ
とを避けるように設定され、通常は第1の溶接線L1に
係る溶接線より小さな溶接電流とされ、また、大きなト
ーチ移動速度とされる。この意味で、折れコーナCの検
知から第2始点P3′に到達するまでの時間は、5秒以
下とするのが好ましい。Moving speed of such welding current or welding torch, outward bending avoiding heat concentration on the corner C, also the weld bead is set to avoid becoming excessive, weld lines typically of a first weld line L 1 Smaller welding current and larger torch movement speed. In this sense, it is preferable that the time from the detection of the corner C to reach the second starting point P 3 ′ is 5 seconds or less.
溶接トーチ6が第2始点P3′に到達すると(S1
8)、その第2始点P3′から終点TP3へ向けて、第2
の溶接線L2に係る溶接条件で溶接作業を進める(S1
9)。このとき、アーク倣い制御によって、教示された
溶接線L2と実際のワークWのずれは補正される。When the welding torch 6 reaches the second starting point P 3 ′ (S1
8), from the second start point P 3 ′ toward the end point TP 3 the second point
The welding operation is carried out under the welding conditions relating to the welding line L 2 (S1)
9). At this time, the deviation between the taught welding line L 2 and the actual work W is corrected by the arc copying control.
上記説明から理解されるように、この溶接ロボット装置
1′によれば、山折れコーナを含むワークに対して好適
に外回りに連続自動溶接を行うことができる。As can be understood from the above description, according to the welding robot apparatus 1 ', continuous automatic welding can be preferably performed on the outer circumference of the work including the mountain corner.
また、近傍点に到達後は溶接電流を減少するなど溶接条
件を修正することで、山折れコーナにおける熱集中を防
止し、山折れコーナ検知の応答性を向上し、美観に優れ
た溶接ビードを形成可能とする。In addition, by adjusting the welding conditions such as decreasing the welding current after reaching the near point, heat concentration at the mountain break corners can be prevented, the responsiveness of mountain corner detection can be improved, and the weld beads with excellent appearance can be obtained. It can be formed.
更に山折れコーナ検知後第2始点までの移動は、溶接電
流を小さな値とし、比較的速い移動速度で溶接トーチを
移動させるから、山折れコーナにおける熱集中が防止さ
れ、立板の溶け過ぎが抑制できる。Furthermore, when moving to the second start point after detecting the mountain break corner, the welding current is set to a small value and the welding torch is moved at a relatively high moving speed, so that heat concentration at the mountain break corner is prevented, and the vertical plate does not melt too much. Can be suppressed.
また、近傍部においてアーク倣い制御を行うと、山折れ
コーナの溶け落ちによって誤倣いを生ずることがある
が、アーク倣い制御を停止するので、かかる誤倣いが防
止される。Further, if arc copying control is performed in the vicinity, erroneous copying may occur due to melting of the mountain break corner, but since arc copying control is stopped, such erroneous copying is prevented.
第8図は本発明の更に他の実施例を説明するものであ
る。FIG. 8 illustrates another embodiment of the present invention.
すなわち、第8図に係る溶接ロボット装置では、近傍対
応点P1″と山折れコーナ対応点P2とにより実際のワ
ークWについての第1の溶接線L1′を得、それと教示
された第1の溶接線L1とを比較して、ずれの平行移動
量と回転移動量とを演算し、それにより教示れた第2の
溶接線L2を平行・回転移動して修正溶接線L2′を求
め、その修正溶接線L2′上に第2始点P3′をとり、
またその修正溶接線L2′に沿って第2の溶接線L2に
係る溶接条件で溶接作業を行うものである。That is, in the welding robot apparatus according to FIG. 8, the first welding line L 1 ′ for the actual work W is obtained from the neighboring corresponding point P 1 ″ and the mountain corner corresponding point P 2, and the teaching is made as such. No. 1 welding line L 1 is calculated, the parallel displacement amount and rotational displacement amount of the shift are calculated, and the taught second welding line L 2 is moved in parallel and rotationally to correct the welding line L 2. ′ Is obtained, and a second starting point P 3 ′ is set on the corrected welding line L 2 ′,
In addition, the welding work is performed along the modified welding line L 2 ′ under the welding conditions related to the second welding line L 2 .
また、本実施例では、修正溶接線L2′、第2始点
P3′の算出の際に回転移動をも含めたが、単に平行移
動のみでも良い。Further, in the present embodiment, the rotational movement is included in the calculation of the corrected welding line L 2 ′ and the second starting point P 3 ′, but only parallel movement may be performed.
これによれば、ほとんどずれのない溶接を行うことがで
きる。According to this, welding with almost no deviation can be performed.
なお、本発明に係る山折れコーナ検知は、多層盛溶接に
おける2パス目以後には適用することができないが、1
パス目に適用して得られた情報を利用することで、2パ
ス目以後でも実際のワークに忠実な溶接を行うことが可
能である。Note that the mountain break corner detection according to the present invention cannot be applied after the second pass in multi-layer welding, but
By using the information obtained by applying the second pass, it is possible to perform welding that is faithful to the actual work even after the second pass.
「発明の効果」 本発明によれば、始点から山折れ点へ向けての第1の溶
接線とその第1の溶接線に係る溶接条件および前記山折
れ点から終点へ向けて第2の溶接線とその第2の溶接線
に係る溶接条件を設定する条件設定手段、前記山折れ点
の近傍で且つ山折れ点よりも終点側に位置する第2始点
を設定する第2始点設定手段、ウィービングを行い且つ
溶接電流または電圧を検出しつつ前記第1の溶接線方向
に前記第1の溶接線に係る溶接条件で溶接作業を進める
第1の溶接作業制御手段、前記溶接電流また電圧の所定
の変化を検出してワークの山折れコーナを検知する山折
れコーナ検知手段、前記山折れコーナ検知後、前記第2
始点に溶接トーチを移動するコーナリング制御手段、お
よび前記第2始点に移動後、前記第2の溶接線方向に前
記第2の溶接線に係る溶接条件で溶接作業を進める第2
の溶接作業制御手段を具備したことを特徴とする溶接ロ
ボット装置が提供され、これにより教示した山折れ点と
実際のワークの山折れコーナとがずれている場合にも、
実際の山折れコーナを検知して好適に溶接トーチをコー
ナリングさせることができるようになるので、山折れコ
ーナを含むワークを外回りに連続自動溶接できるように
なる。[Advantage of the Invention] According to the present invention, the first welding line from the starting point to the mountain break point, the welding condition relating to the first welding line, and the second welding from the mountain break point to the end point. Condition setting means for setting welding conditions relating to a line and its second welding line, second starting point setting means for setting a second starting point located near the mountain break point and on the end point side of the mountain break point, and weaving And a welding current or voltage is detected and the welding operation is performed in the first welding line direction under the welding conditions according to the first welding line, and the welding operation control means determines a predetermined welding current or voltage. A mountain break corner detecting means for detecting a mountain break corner of a work by detecting a change, and the second corner after the mountain break corner is detected.
A cornering control means for moving a welding torch to a start point, and a second welding process under the welding conditions related to the second weld line in the second weld line direction after moving to the second start point
There is provided a welding robot apparatus characterized by including the welding work control means, and even when the taught mountain break point and the actual work mountain break corner are misaligned,
Since the welding torch can be suitably cornered by detecting an actual mountain break corner, a work including the mountain break corner can be continuously and automatically welded to the outside.
また、本発明によれば、上記溶接ロボット装置のコーナ
リング制御手段として、前記山折れコーナ検知後、ウィ
ービングを停止し、第1の溶接線に係る溶接条件での溶
接電流より小さい溶接電流で且つ溶接トーチ角度を、第
1図の溶接線にかかる溶接条件での溶接電流より小さい
溶接電流で且つ溶接トーチ角度を、第1の溶接線に係る
溶接条件での溶接トーチ角度から第2の溶接線に係る溶
接条件での溶接トーチ角度から第2の溶接線に係る溶接
条件での溶接トーチ角度まで、滑らかに連続して変化さ
せ、前記第2始点に溶接トーチを移動するコーナリング
制御手段をもつ溶接ロボット装置が提供され、これによ
りワークの山折れコーナでの熱集中が制御されるので、
山折れコーナの溶け落ちがなく美観の美しい溶接を行え
るようになる。Further, according to the present invention, as the cornering control means of the welding robot apparatus, after the mountain break corner is detected, the weaving is stopped, the welding current is smaller than the welding current under the welding condition relating to the first welding line, and the welding is performed. The torch angle is a welding current smaller than the welding current under the welding conditions related to the welding line in FIG. 1 and the welding torch angle is changed from the welding torch angle under the welding conditions related to the first welding line to the second welding line. A welding robot having a cornering control means for smoothly and continuously changing the welding torch angle under such welding conditions to the welding torch angle under the welding conditions for the second welding line and moving the welding torch to the second starting point. A device is provided, which controls the heat concentration at the corner of the ridge of the workpiece,
It will be possible to perform aesthetically pleasing welding without the corners breaking through.
またさらに本発明によれば、上記溶接ロボット装置に更
に加えて、前記山折れ点の近傍で且つ山折れ点よりも始
点側に位置する近傍点を設定する近傍設定手段、および
前記近傍点に到達後、溶接電流を減少し、ウィービング
を行い且つ溶接電流または電圧を検出しつつ前記第1の
溶接線方向に溶接作業を進める近傍溶接作業制御手段を
具備してなる溶接ロボット装置が提供され、これにより
ワークの山折れコーナに近接した時点で溶接電流を減少
するから、山折れコーナでの熱集中がより完全に制御さ
れ、より美しい溶接を行うことが可能となる。Further, according to the present invention, in addition to the welding robot apparatus, a proximity setting means for setting a proximity point located near the mountain break point and closer to the starting point than the mountain break point, and reaching the proximity point Then, a welding robot apparatus is provided, which is provided with a neighboring welding work control means for advancing the welding work in the first welding line direction while reducing the welding current, weaving and detecting the welding current or voltage. As a result, the welding current is reduced when the workpiece approaches the mountain break corner, so that the heat concentration at the mountain corner can be more completely controlled and more beautiful welding can be performed.
第1図は本発明の一実施例の溶接ロボット装置の構成ブ
ロック図、第2図は山折れコーナを含むワークの一例の
斜視図、第3図は第1図に示す装置の作動の要部フロー
チャート、第4図は第1図に示す装置による溶接トーチ
の移動軌跡並びに溶接電流波形の模式図、第5図は本発
明の他の実施例の第1図相当図、第6図は第5図に示す
装置における第3図相当図、第7図は第5図に示す装置
における第4図相当図、第8図は本発明の更に他の実施
例における第4図相当図である。 (符号の説明) 1,1′……溶接ロボット装置 2,2′……制御装置、4……ロボット本体 5……溶接機、6……溶接トーチ 7……アークセンサ、8……制御盤 10,10′……条件設定部 11′……近傍点設定部 12,12′……第2始点設定部 13,13……山折れコーナ検知部 14,14′……第1溶接作業制御部 15′……近傍部溶接作業制御部 16,16′……コーナリング制御部 17,17′……第2溶接作業制御部 P1,TP1……始点、P2,TP2……山折れ点 P3,TP3……終点、C……山折れコーナ P3′……第2始点、P1′……近傍点 P1″……点近傍対応点 P2……山折れコーナ対応点 L1……第1の溶接線、L2……第2の溶接線 W……ワーク。FIG. 1 is a block diagram showing the construction of a welding robot apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view of an example of a work including a mountain corner, and FIG. 3 is a main part of the operation of the apparatus shown in FIG. FIG. 4 is a flow chart, FIG. 4 is a schematic diagram of the locus of movement of the welding torch and the welding current waveform by the apparatus shown in FIG. 1, FIG. 5 is a view corresponding to FIG. 1 of another embodiment of the present invention, and FIG. FIG. 7 is an equivalent view of the apparatus shown in FIG. 7, FIG. 7 is an equivalent view of FIG. 4 of the apparatus shown in FIG. 5, and FIG. 8 is an equivalent view of FIG. 4 in still another embodiment of the present invention. (Explanation of symbols) 1, 1 '... welding robot device 2, 2' ... control device, 4 ... robot body 5 ... welding machine, 6 ... welding torch 7 ... arc sensor, 8 ... control panel 10, 10 '... Condition setting section 11' ... Proximity point setting section 12, 12 '... Second start point setting section 13, 13 ... Mountain break corner detecting section 14, 14' ... First welding work control section 15 '.... vicinity welding operation controller 16, 16' .... cornering control unit 17, 17 '... second welding operation control unit P 1, TP 1 ... start point, P 2, TP 2 ...... outward bending point P 3 , TP 3 ...... End point, C ...... Curve corner corner P 3 ′ …… Second start point, P 1 ′ …… Neighbor point P 1 ″ …… Point near corresponding point P 2 …… Mountain corner corner corresponding point L 1 ... 1st welding line, L 2 ... 2nd welding line W ... Work.
Claims (23)
接線とその第1の溶接線に係る溶接条件および前記山折
れ点から終点へ向けて第2の溶接線とその第2の溶接線
に係る溶接条件を設定する条件設定手段、 (b)前記山折れ点の近傍で且つ山折れ点よりも終点側に
位置する第2始点を設定する第2始点設定手段、 (c)ウィービングを行い且つ溶接電流または電圧を検出
しつつ前記第1の溶接線方向に前記第1の溶接線に係る
溶接条件で溶接作業を進める第1の溶接作業制御手段、 (d)前記溶接電流または電圧の所定の変化を検出してワ
ークの山折れコーナを検知する山折れコーナ検知手段、 (e)前記山折れコーナ検知後、前記第2始点に溶接トー
チを移動するコーナリング制御手段、および (f)前記第2始点に移動後、前記第2の溶接線方向に前
記第2の溶接線に係る溶接条件で溶接作業を進める第2
の溶接作業制御手段 を具備してなり、山折れコーナを含むワークを外回りに
連続自動溶接可能としたことを特徴とする溶接ロボット
装置。1. (a) A first welding line from a starting point to a mountain break point, welding conditions relating to the first welding line, and a second welding line from the mountain break point to an end point and the same. Condition setting means for setting welding conditions relating to the second welding line, (b) second start point setting means for setting a second start point located near the mountain break point and closer to the end point than the mountain break point, c) first welding work control means for advancing the welding work in the first welding line direction under the welding conditions relating to the first welding line while performing weaving and detecting the welding current or voltage, (d) the welding Mountain break corner detecting means for detecting a mountain change corner of a work by detecting a predetermined change in current or voltage, (e) Cornering control means for moving the welding torch to the second starting point after detecting the mountain break corner, and (f) After moving to the second start point, in the second welding line direction, the Second advancing welding work in welding conditions according to the second weld line
The welding robot apparatus is equipped with the welding work control means described above, and is capable of continuously and automatically welding a work including a mountain break corner to the outside.
終点の3点が教示されることで第1の溶接線と第2の溶
接線とが設定される特許請求の範囲第1項記載の溶接ロ
ボット装置。2. The first welding line and the second welding line are set by teaching three points of a start point, a mountain break point, and an end point in the condition setting means. Welding robot equipment.
作業制御手段が、アーク倣い制御を行う特許請求の範囲
第1項又は第2項記載の溶接ロボット装置。3. The welding robot apparatus according to claim 1, wherein the first welding work control means and the second welding work control means perform arc tracing control.
つ山折れ点から0.5以上1.5以下(は脚長)の距離
に第2始点を設定する特許請求の範囲第1項から第3項
のいずれか一つに記載の溶接ロボット装置。4. The second starting point setting means sets the second starting point on the second welding line and at a distance of 0.5 or more and 1.5 or less (the leg length) from the mountain break point. The welding robot apparatus according to any one of items.
段で検知したワークの山折れコーナに対応する山折れコ
ーナ対応点を算出し、その山折れコーナ対応点と終点と
を結ぶ線上で且つ山折れコーナ対応点から0.5以上1.5
以下(は脚長)の距離に第2始点を設定する特許請
求の範囲第1項から第3項のいずれか一つに記載の溶接
ロボット装置。5. The second starting point setting means calculates a mountain break corner corresponding point corresponding to the mountain break corner of the workpiece detected by the mountain break corner detecting means, and on a line connecting the mountain break corner corresponding point and the end point. And 0.5 or more from the point corresponding to the mountain break corner 1.5
The welding robot apparatus according to any one of claims 1 to 3, wherein a second starting point is set at a distance of (hereinafter, leg length).
接線とその第1の溶接線に係る溶接条件および前記山折
れ点から終点へ向けての第2の溶接線とその第2の溶接
線に係る溶接条件を設定する条件設定手段、 (b)前記山折れ点の近傍で且つ山折れ点よりも終点側に
位置する第2始点を設定する第2始点設定手段、 (c)ウィービングを行い且つ溶接電流または電圧を検出
しつつ前記第1の溶接線方向に前記第1の溶接線に係る
溶接条件で溶接作業を進める第1の溶接作業制御手段、 (d)前記溶接電流または電圧の所定の変化を検出してワ
ークの山折れコーナを検知する山折れコーナ検知手段、 (e)前記山折れコーナ検知後、ウィービングを停止し、
第1の溶接線に係る溶接条件での溶接電流より小さい溶
接電流で且つ溶接トーチ角度を、第1の溶接線に係る溶
接条件での溶接トーチ角度から第2の溶接線に係る溶接
条件での溶接トーチ角度まで、滑らかに連続して変化さ
せ、前記第2始点に溶接トーチを移動するコーナリング
制御手段、および (f)前記第2始点に移動後、前記第2の溶接線方向に前
記第2の溶接線に係る溶接条件で溶接作業を進める第2
の溶接作業制御手段 を具備してなり、山折れコーナを含むワークを外回りに
連続自動溶接可能としたことを特徴とする溶接ロボット
装置。6. (a) A first welding line from the starting point to the mountain break point, welding conditions relating to the first welding line, and a second welding line from the mountain break point to the end point. Condition setting means for setting welding conditions relating to the second welding line, (b) second start point setting means for setting a second start point located near the mountain break point and closer to the end point than the mountain break point, (c) A first welding work control means for advancing the welding work in the first welding line direction under the welding conditions relating to the first welding line while weaving and detecting the welding current or voltage, (d) Mountain break corner detecting means for detecting a predetermined change in welding current or voltage to detect a mountain break corner of the work, (e) after detecting the mountain break corner, weaving is stopped,
The welding current is smaller than the welding current under the welding conditions related to the first welding line, and the welding torch angle is changed from the welding torch angle under the welding conditions related to the first welding line to the welding conditions related to the second welding line. Cornering control means for smoothly and continuously changing the welding torch angle to move the welding torch to the second start point, and (f) after moving to the second start point, the second welding line in the second welding line direction. The welding work under the welding conditions related to the welding line of No. 2
The welding robot apparatus is equipped with the welding work control means described above, and is capable of continuously and automatically welding a work including a mountain break corner to the outside.
終点の3点が教示されることで第1の溶接線と第2の溶
接線とが設定される特許請求の範囲第6項記載の溶接ロ
ボット装置。7. The first welding line and the second welding line are set by teaching three points of a start point, a mountain break point, and an end point in the condition setting means. Welding robot equipment.
作業制御手段が、アーク倣い制御を行う特許請求の範囲
第6項又は第7項記載の溶接ロボット装置。8. The welding robot apparatus according to claim 6 or 7, wherein the first welding work control means and the second welding work control means perform arc tracing control.
つ山折れ点から0.5以上1.5以下(は脚長)の距離
に第2始点を設定する特許請求の範囲第6項から第8項
のいずれか一つに記載の溶接ロボット装置。9. The method according to claims 6 to 8, wherein the second starting point setting means sets the second starting point on the second welding line and at a distance of 0.5 or more and 1.5 or less (the leg length) from the mountain break point. The welding robot apparatus according to any one of items.
手段で検知したワークの山折れコーナに対応する山折れ
コーナ対応点を算出し、その山折れコーナ対応点と終点
とを結ぶ線上で且つコーナ対応点から0.5以上1.5以
下(は脚長)の距離に第2始点を設定する特許請求の
範囲第6項から第8項のいずれか一つに記載の溶接ロボ
ット装置。10. The second starting point setting means calculates a mountain break corner corresponding point corresponding to the mountain break corner of the work detected by the mountain break corner detecting means, and on a line connecting the mountain break corner corresponding point and the end point. The welding robot apparatus according to any one of claims 6 to 8, wherein the second starting point is set at a distance of 0.5 or more and 1.5 or less (has a leg length) from the corner corresponding point.
に係る溶接条件での溶接トーチ速度より大なる溶接トー
チ速度とする特許請求の範囲第6項から第10項のいず
れか一つに記載の溶接ロボット装置。11. The cornering control means sets the welding torch speed higher than the welding torch speed under the welding conditions relating to the first welding line, according to any one of claims 6 to 10. Welding robot equipment.
溶接線とその第1の溶接線に係る溶接条件および前記山
折れ点から終点へ向けて第2の溶接線とその第2の溶接
線に係る溶接条件を設定する条件設定手段、 (b)前記山折れ点の近傍で且つ山折れ点よりも始点側に
位置する近傍点を設定する近傍点設定手段、 (c)前記山折れ点の近傍で且つ山折れ点よりも終点側に
位置する第2始点を設定する第2始点設定手段、 (d)前記第1の溶接線方向に前記第1の溶接線に係る溶
接条件で前記近傍点まで溶接作業を進める第1の溶接作
業制御手段、 (e)前記近傍点に到達後、溶接電流を減少し、ウィービ
ングを行い且つ溶接電流または電圧を検出しつつ前記第
1の溶接線方向に溶接作業を進める近傍部溶接作業制御
手段、 (f)前記溶接電流または電圧の所定の変化を検出してワ
ークの山折れコーナを検知する山折れコーナ検知手段、 (g)前記山折れコーナ検知後、ウィービングを停止し、
第1の溶接線に係る溶接条件での溶接電流より小さい溶
接電流で且つ溶接トーチ角度を、第1の溶接線に係る溶
接条件での溶接トーチ角度から第2の溶接線に係る溶接
条件での溶接トーチ角度まで、滑らかに連続して変化さ
せ、前記第2始点に溶接トーチを移動するコーナリング
制御手段、および (h)前記第2始点に移動後、前記第2の溶接線方向に前
記第2の溶接線に係る溶接条件で溶接作業を進める第2
の溶接作業制御手段 を具備してなり、山折れコーナを含むワークを外回りに
連続自動溶接可能としたことを特徴とする溶接ロボット
装置。12. (a) A first welding line from a starting point to a mountain break point, welding conditions relating to the first welding line, and a second welding line from the mountain break point to an end point and the same. Condition setting means for setting welding conditions relating to the second welding line, (b) proximity point setting means for setting a proximity point located near the mountain break point and closer to the starting point than the mountain break point, (c) Second start point setting means for setting a second start point located near the mountain break point and closer to the end point than the mountain break point, (d) welding relating to the first weld line in the first weld line direction First welding work control means for advancing welding work to the near point under the conditions, (e) after reaching the near point, the welding current is reduced, weaving is performed, and the welding current or voltage is detected while the first Welding work control means for advancing welding work in the welding line direction, (f) Predetermined welding current or voltage Described bending corner detecting means detects a change to detect the described bending corner of the workpiece, (g) the described bending after corner detection, stops weaving,
The welding current is smaller than the welding current under the welding conditions related to the first welding line, and the welding torch angle is changed from the welding torch angle under the welding conditions related to the first welding line to the welding conditions related to the second welding line. Cornering control means for smoothly and continuously changing the welding torch angle to move the welding torch to the second starting point, and (h) after moving to the second starting point, the second welding line is moved to the second welding line direction. The welding work under the welding conditions related to the welding line of No. 2
The welding robot apparatus is equipped with the welding work control means described above, and is capable of continuously and automatically welding a work including a mountain break corner to the outside.
と終点の3点が教示されることで第1の溶接線と第2の
溶接線とが設定される特許請求の範囲第12項記載の溶
接ロボット装置。13. The condition setting means sets a first welding line and a second welding line by teaching three points of a start point, a mountain break point, and an end point. Welding robot equipment.
接作業制御手段が、アーク倣い制御を行う特許請求の範
囲第12項または第13項記載の溶接ロボット装置。14. The welding robot apparatus according to claim 12 or 13, wherein the first welding work control means and the second welding work control means perform arc tracing control.
速度を減少する特許請求の範囲第14項に記載の溶接ロ
ボット装置。15. The welding robot apparatus according to claim 14, wherein the near field welding work control means reduces the welding torch speed.
グ周波数を増大する特許請求の範囲第14項または第1
5項に記載の溶接ロボット装置。16. The welding control means in the vicinity of the weaving frequency is increased to increase the weaving frequency.
The welding robot apparatus according to item 5.
グ幅を減少する特許請求の範囲第14項から第16項の
いずれか一つに記載の溶接ロボット装置。17. The welding robot apparatus according to any one of claims 14 to 16, wherein the vicinity welding work control means reduces the weaving width.
制御を停止する特許請求の範囲第14項から第17項の
いずれか一つに記載の溶接ロボット装置。18. The welding robot apparatus according to any one of claims 14 to 17, wherein the vicinity welding work control means stops the arc copying control.
つ山折れ点から5mm以上20mm以下の距離に近傍点を設
定する特許請求の範囲第12項から第18項のいずれか
一つに記載の溶接ロボット装置。19. The method according to claim 12, wherein the neighboring point setting means sets the neighboring point on the first welding line at a distance of 5 mm or more and 20 mm or less from the mountain break point. The welding robot apparatus described in 1.
且つ山折れ点から0.5以上1.5以下(は脚長)の距
離に第2始点を設定する特許請求の範囲第12項から第
19項のいずれか一つに記載の溶接ロボット装置。20. The method according to claim 12, wherein the second starting point setting means sets the second starting point on the second welding line and at a distance of 0.5 or more and 1.5 or less (the leg length) from the mountain break point. The welding robot apparatus according to any one of items.
手段で検知したワークの山折れコーナに対応する山折れ
コーナ対応点を算出し、その山折れコーナ対応点と終点
とを結ぶ線上で且つ山折れコーナ対応点から0.5以上
1.5以下(は脚長)の距離に第2始点を設定する特
許請求の範囲第12項から第19項のいずれか一つに記
載の溶接ロボット装置。21. The second start point setting means calculates a mountain break corner corresponding point corresponding to the mountain break corner of the workpiece detected by the mountain break corner detecting means, and on a line connecting the mountain break corner corresponding point and the end point. And 0.5 or more from the point corresponding to the mountain break corner
The welding robot apparatus according to any one of claims 12 to 19, wherein the second starting point is set at a distance of 1.5 or less (a leg length).
手段で検知したワークの山折れコーナに対応する山折れ
コーナ対応点を算出し、第1の溶接線のズレの平行,回
転移動量より第2の溶接線を算出し、その線上で山折れ
コーナ対応点から0.5以上1.5以下(は脚長)の距
離に第2始点を設定する特許請求の範囲第12項から第
19項のいずれか一つに記載の溶接ロボット装置。22. The second starting point setting means calculates a mountain break corner corresponding point corresponding to the mountain break corner of the workpiece detected by the mountain break corner detecting means, and the first welding line shift parallel and rotational movement amount. A second welding line is calculated from the above, and a second starting point is set on the line at a distance of 0.5 or more and 1.5 or less (the leg length) from the point corresponding to the mountain fold corner. The welding robot device according to one.
に係る溶接条件での溶接トーチ速度より大なる溶接トー
チ速度とする特許請求の範囲第12項から第22項のい
ずれか一つに記載の溶接ロボット装置。23. The cornering control means sets a welding torch speed higher than a welding torch speed under a welding condition relating to a first welding line, according to any one of claims 12 to 22. Welding robot equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27763685A JPH0632860B2 (en) | 1985-12-09 | 1985-12-09 | Welding robot equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27763685A JPH0632860B2 (en) | 1985-12-09 | 1985-12-09 | Welding robot equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62137177A JPS62137177A (en) | 1987-06-20 |
JPH0632860B2 true JPH0632860B2 (en) | 1994-05-02 |
Family
ID=17586186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27763685A Expired - Lifetime JPH0632860B2 (en) | 1985-12-09 | 1985-12-09 | Welding robot equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0632860B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109332928A (en) * | 2018-10-23 | 2019-02-15 | 江苏山扬智能装备有限公司 | Street lamp post robot welding system and welding method based on deep learning on-line checking |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4842656B2 (en) * | 2006-02-14 | 2011-12-21 | 株式会社ダイヘン | Welding robot controller |
CN106103012B (en) | 2014-03-27 | 2017-12-12 | 松下知识产权经营株式会社 | robot control method |
CN110465805A (en) * | 2018-05-11 | 2019-11-19 | 云南正晓安全监测科技有限公司 | A kind of pipe profile bending and welding equipment |
JP6875332B2 (en) * | 2018-07-31 | 2021-05-19 | ファナック株式会社 | robot |
-
1985
- 1985-12-09 JP JP27763685A patent/JPH0632860B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109332928A (en) * | 2018-10-23 | 2019-02-15 | 江苏山扬智能装备有限公司 | Street lamp post robot welding system and welding method based on deep learning on-line checking |
Also Published As
Publication number | Publication date |
---|---|
JPS62137177A (en) | 1987-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008238248A (en) | One-side welding equipment and method | |
JP3267912B2 (en) | Welding path correction method for welding torch | |
JPH0632860B2 (en) | Welding robot equipment | |
JP2003334662A (en) | Pulse plasma automatic welding method for lap welding of thin plate and its device | |
EP1013370A1 (en) | Method of detecting root gap and arc welding method using the former | |
JPH0818132B2 (en) | Weaving Welding Method Using Arc Sensor | |
JPH0632861B2 (en) | Welding robot equipment | |
JP3323784B2 (en) | Control method of bead lap welding | |
JPS58221672A (en) | Copying control system of welding robot | |
JP4727106B2 (en) | Automatic operation method of welding robot | |
JP3233063B2 (en) | Horizontal fillet welding method for corners of structures | |
JP3077931B2 (en) | Welding method | |
JPH11207461A (en) | Lap welding method for bead connection and its automatic welding device | |
JP4768222B2 (en) | Welding method and welding apparatus | |
JP3209138B2 (en) | Welding condition adaptive control method | |
JP3075038B2 (en) | Arc sensor | |
JPH1133727A (en) | Control method of welding robot | |
JP3913614B2 (en) | Automatic welding method and automatic welding robot controller | |
JP4518909B2 (en) | Automatic fillet welding method | |
JP2023050273A (en) | Welding robot system for steel pipe column | |
JPH07115185B2 (en) | Arc welding method | |
JPS62279080A (en) | Control method for welding conditions at weaving time | |
JPH0438511B2 (en) | ||
JPH05293655A (en) | Automatic welding method | |
JPH03114670A (en) | Groove automatic profile control method by arc sensor |