JPH06328353A - Grinding method for soft metal - Google Patents

Grinding method for soft metal

Info

Publication number
JPH06328353A
JPH06328353A JP14561293A JP14561293A JPH06328353A JP H06328353 A JPH06328353 A JP H06328353A JP 14561293 A JP14561293 A JP 14561293A JP 14561293 A JP14561293 A JP 14561293A JP H06328353 A JPH06328353 A JP H06328353A
Authority
JP
Japan
Prior art keywords
grinding
wheel
processing
cbn
soft metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14561293A
Other languages
Japanese (ja)
Other versions
JP2510464B2 (en
Inventor
Hideo Oshita
秀男 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Diamond Industrial Co Ltd
Original Assignee
Osaka Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Diamond Industrial Co Ltd filed Critical Osaka Diamond Industrial Co Ltd
Priority to JP5145612A priority Critical patent/JP2510464B2/en
Publication of JPH06328353A publication Critical patent/JPH06328353A/en
Application granted granted Critical
Publication of JP2510464B2 publication Critical patent/JP2510464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low cost, highly efficient and quality machining method by grinding using a super abrasive grain wheel in a removing-machining method for soft metal being below HRC specified value such as stainless steel and non-ferrous material or the like. CONSTITUTION:Soft metal being below HRC 35 is ground by a super abrasive grain wheel made of CBN diamond or the like at high speed above 80m/s in wheel circumferential speed. In addition, it is desirable that the grain size of super abrasive grain is 16/18 to 325/400, and a concentration degree is 50 to 250.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車産業、電気産業、
造船重機産業など、多くの分野で不可欠な鉄鋼材料、非
鉄材料の除去加工方法に関し、特に比較的軟質の此の種
材料の高能率で高品質な新しい加工法を提供しようとす
るものである。
The present invention relates to the automobile industry, the electric industry,
The present invention relates to a method for removing and processing ferrous materials and non-ferrous materials, which are indispensable in many fields such as the shipbuilding heavy machinery industry, and particularly to provide a highly efficient and high quality new processing method for relatively soft materials of this kind.

【0002】[0002]

【従来の技術】従来、アルミニウム、アルミニウム合
金、銅、銅合金、ニッケル、ニッケル合金、チタン、チ
タン合金等の非鉄材料や、鉄鋼材料でも軟鋼、軟鋳鋼、
ステンレス鋼等HRC35程度以下の軟質材料の除去加
工は、バイト、エンドミル、カッター等の切削工具を用
いる切削加工によって行われていた。稀れには、要求さ
れる高い加工精度を満たすため、研削加工の行われるこ
ともあったが、この場合でも用いられる砥石は炭化珪素
系乃至はアルミナ系のものによる通常研削で、ダイヤモ
ンドやCBNの所謂超砥粒ホイールによる研削加工は採
用されていなかった。
2. Description of the Related Art Conventionally, non-ferrous materials such as aluminum, aluminum alloys, copper, copper alloys, nickel, nickel alloys, titanium and titanium alloys, and steel materials such as mild steel, soft cast steel,
The removal of soft materials such as stainless steel having an HRC of about 35 or less has been performed by cutting using a cutting tool such as a cutting tool, end mill, or cutter. In rare cases, grinding was performed in order to satisfy the required high processing accuracy. Even in this case, the grindstone used in this case is normal grinding with a silicon carbide type or an alumina type, and diamond or CBN is used. The so-called superabrasive wheel was not used for grinding.

【0003】[0003]

【発明が解決しようとする課題】そして、従来これらの
HRC35以下の軟質金属の除去加工において常に問題
となるのが切り屑処理である。すなわち、一般的に金属
材料の切り屑は塑性流動に基づく流れ型となるが、軟質
金属の場合、発生する切り屑自体が軟らかいため切り屑
が分断、微細化されにくく連続した流れ型切り屑となり
易い。従来の切削工具にはこれら連続した切り屑を分
断、微細化する処置が施されている。その最も代表的な
ものがチップブレーカーと呼ばれる刃先処理である。と
ころが最近の被加工部品は除去加工の前段階である鍛造
や鋳造技術が進み、除去加工での加工代が激減した。す
なわち、従来は半径で2〜5mmが普通であった加工代
が、1mm以下のものも多くなってきた。このような加工
代の小さい被加工材の切り屑はチップブレーカーをもっ
てしても分断、微細化することが困難となっている。ま
た、幅が狭く深い溝の切削加工なども取り代に関係なく
切り屑処理が難しい加工であった。これら軟質金属の切
削加工における最大の問題点は、上述した切り屑処理が
うまくいかず、切り屑除去や工具切れ刃の折損のため加
工ラインが停止することである。すなわち、切り屑の工
具や被加工材への巻き付きによる加工の停止、加工面の
品位の劣化や工具切れ刃のチッピングによるびびり、表
面粗さ不良、寸法精度不良などが発生し加工ラインの停
止に至る。これら問題点のため切削加工を含む加工ライ
ンでは自動化、無人化、高精度化が困難であった。
The chip processing has always been a problem in the removal processing of these soft metals of HRC 35 or less. That is, chips of metal materials are generally of the flow type based on plastic flow, but in the case of soft metals, the chips themselves are soft and the chips are divided and become continuous flow type chips that are difficult to be miniaturized. easy. A conventional cutting tool is provided with a treatment for dividing and miniaturizing these continuous chips. The most typical one is a cutting edge treatment called a chip breaker. However, recently, the forging and casting technologies, which are the pre-stages of the removal process, have progressed for the parts to be processed, and the machining cost for the removal process has drastically decreased. That is, the machining allowance, which conventionally used to have a radius of 2 to 5 mm, has increased to 1 mm or less. It is difficult to divide and miniaturize such chips of a work material having a small machining allowance even with a chip breaker. Further, it is difficult to cut chips regardless of the machining allowance, such as cutting of narrow and deep grooves. The biggest problem in the cutting of these soft metals is that the above-mentioned chip treatment does not work well, and the machining line is stopped due to chip removal or breakage of the tool cutting edge. In other words, the processing is stopped due to the stop of processing due to the winding of chips around the tool or the work material, the deterioration of the quality of the processing surface, the chatter due to chipping of the tool cutting edge, the surface roughness defect, the dimensional accuracy defect, etc. Reach Due to these problems, it was difficult to automate, unmanned, and improve accuracy in a processing line including cutting.

【0004】一方、研削加工は切れ刃が極めて多数であ
るため切り屑も小さく、切り屑による工具損傷により加
工ラインの停止が発生する危険性は極めて低い。従っ
て、加工の自動化、無人化には最適な除去加工方法であ
る。しかし、現在軟質金属の研削加工で用いられている
アルミナ系砥粒や炭化ケイ素系砥粒を用いた在来砥石に
よる加工では、砥石の加工能力が低いために切削加工並
みの能率では加工できず、加工能率における問題があっ
た。例えば、軟鋼の単純な丸棒の最大加工能力を比較す
る。加工能率は材料除去率Z( mm3/min )で表すこと
ができる。すなわち、材料除去率Z=切り込み深さa
(mm)×被加工材速度Vw(mm/min )×被加工材1回転
当たりの送り量f(mm/rev )である。超硬合金のバイ
トを用いた切削加工における加工条件は、a=2、Vw=
100000、f=0.5 でZ=100000となる。アルミナ砥石に
よる研削加工では、a=0.02、Vw=15000 、f=10で、
Z=3000、すなわち研削加工は切削加工の約1/30の能
率でしかなく、在来砥石を用いた研削加工では切削加工
の代替は困難であった。研削加工能率を向上させるため
に、砥石として研削能力が格段に優れるダイヤモンドホ
イールやCBNホイール等の超砥粒ホイールを用いる方
法も考えられる。しかし、従来の研削技術では超砥粒ホ
イールにより軟質金属を研削加工すると、加工能率を高
めようとすると目ずまりが生じ要求される加工精度や加
工品位が得られなかったり、低い加工能率でもホイール
摩耗が大きいため経済的な加工ができないなど、軟質金
属の研削加工への超砥粒ホイールを適用することは不可
能であった。
On the other hand, in the grinding process, since the number of cutting edges is extremely large, the chips are small, and the risk of the machining line being stopped due to tool damage due to the chips is extremely low. Therefore, it is an optimum removal processing method for automation and unmanned processing. However, with conventional grinding stones that use alumina-based abrasive grains or silicon carbide-based abrasive grains, which are currently used in the grinding of soft metals, the grinding stone's processing capacity is low, so it cannot be processed with efficiency comparable to that of cutting. There was a problem in processing efficiency. For example, compare the maximum working capacity of a simple round bar of mild steel. The processing efficiency can be expressed by the material removal rate Z (mm 3 / min). That is, material removal rate Z = cut depth a
(Mm) x workpiece speed Vw (mm / min) x feed amount per revolution of the workpiece f (mm / rev). The processing conditions for cutting with a cemented carbide bit are a = 2, Vw =
With 100000 and f = 0.5, Z = 100000. When grinding with an alumina grindstone, a = 0.02, Vw = 15000, f = 10,
Z = 3000, that is, the grinding process was only about 1/30 the efficiency of the cutting process, and it was difficult to substitute the cutting process for the grinding process using the conventional grindstone. In order to improve the efficiency of the grinding process, a method of using a superabrasive grain wheel such as a diamond wheel or a CBN wheel having a significantly excellent grinding ability as a grindstone can be considered. However, in the conventional grinding technology, when soft metal is ground with a super-abrasive grain wheel, when trying to increase the machining efficiency, clogging occurs and the required machining accuracy and quality cannot be obtained, or even with a low machining efficiency It has been impossible to apply the superabrasive wheel to the grinding of soft metal, because it cannot be economically processed due to its large wear.

【0005】[0005]

【課題を解決するための手段】軟質金属を自動加工ライ
ンで高能率、高精度に加工するためには、加工能率が切
削加工に匹敵する研削加工法を開発する必要がある。硬
度がHRC35以下の軟質金属の加工においてこれら目
的を達成するために、超砥粒ホイール特にCBNホイー
ルを用いて80m/s以上のホイール周速度で使用する技
術を開発した。CBNホイールは砥粒に高い硬度と強度
および熱安定性を持ったCBN砥粒を用いているために
高速加工で良好な研削性能を有すると共に高強度なホイ
ール構造を持ち80m/sをはるかに超える高周速度域で
も安全に使用できる特性を持っている。80m/s以上の
ホイール周速度のCBNホイールで研削加工することに
より、切削加工に匹敵する加工能率で、高精度な研削加
工をすることができる。また、高性能なCBN砥粒を高
速で切れ刃として使用するため、ホイール摩耗も極めて
小さく、十分長いホイール寿命が得られる。
[Means for Solving the Problems] In order to process soft metal with high efficiency and high precision on an automatic processing line, it is necessary to develop a grinding method having a processing efficiency comparable to that of cutting. In order to achieve these objects in the processing of soft metals having a hardness of HRC 35 or less, a technique for using a superabrasive wheel, particularly a CBN wheel, at a wheel peripheral speed of 80 m / s or more was developed. The CBN wheel uses CBN abrasive grains with high hardness, strength and thermal stability as abrasive grains, so it has good grinding performance at high speed machining and has a high strength wheel structure that far exceeds 80 m / s. It has the characteristic that it can be used safely even in the high circumferential speed range. By grinding with a CBN wheel having a wheel peripheral speed of 80 m / s or more, it is possible to perform highly accurate grinding with a machining efficiency comparable to that of cutting. Further, since high-performance CBN abrasive grains are used as cutting edges at high speed, wheel wear is extremely small and a sufficiently long wheel life can be obtained.

【0006】図1は、粒度#60/80、集中度100 で、直
径250mm 幅5mmのメタルボンドCBNホイールで、炭素
軟鋼(S25C,HRC22)を種々のホイール周速度
で研削試験を行った結果を示すものである。加工能力は
比材料除去率Z'(工具単位当りの材料除去率)=切込み
深さa(mm)×被加工材速度Vw(mm/s )で表わされ、
ホイール周速度と目ずまりなく良好に加工できる加工能
力の関係は、図よりホイール周速度が80m/s以上で驚
異的に大となることが明かである。尚上記研削試験にお
ける研削方式は円筒プランジ研削、使用研削液はエマル
ジョン10%溶液である。
FIG. 1 shows the results of grinding tests of carbon mild steel (S25C, HRC22) at various wheel peripheral speeds with a metal bond CBN wheel having a grain size of # 60/80, a concentration of 100, a diameter of 250 mm and a width of 5 mm. It is shown. Machining capacity is expressed by specific material removal rate Z '(material removal rate per tool unit) = depth of cut a (mm) x workpiece speed Vw (mm / s),
From the figure, it is clear that the relationship between the wheel peripheral speed and the processing capacity that allows good processing without squeezing becomes surprisingly large when the wheel peripheral speed is 80 m / s or more. The grinding method used in the above grinding test was cylindrical plunge grinding, and the grinding fluid used was a 10% emulsion solution.

【0007】図2は、CBNホイールの周速度とホイー
ルの寿命を示す研削比の関係を比較試験した結果を示す
もので、図よりホイール周速度が80m/s以上で高い研
削比が得られることがわかる。尚この試験の条件は下記
である。CBNホイール(直径150mm 、幅1.5mm 、粒度
#80/100、ボンド電着)被加工材(SUJ2,HRC2
8)研削方式(平面溝研削)研削液(エマルジョン15%
溶液)比材料除去率Z'は下記である。 ホイール周速度20〜60m/s:5mm3 /mm・s ホイール周速度80m/s以上:100mm3/mm・s
FIG. 2 shows the results of a comparative test of the relationship between the peripheral speed of the CBN wheel and the grinding ratio indicating the life of the wheel. As shown in the drawing, a high grinding ratio can be obtained at a wheel peripheral speed of 80 m / s or more. I understand. The conditions of this test are as follows. CBN wheel (diameter 150 mm, width 1.5 mm, grain size # 80/100, bond electrodeposition) Work material (SUJ2, HRC2
8) Grinding method (plane groove grinding) Grinding liquid (emulsion 15%
Solution) Specific material removal rate Z'is as follows. Wheel peripheral speed 20 to 60 m / s: 5 mm 3 / mm ・ s Wheel peripheral speed 80 m / s or more: 100 mm 3 / mm ・ s

【0008】[0008]

【作用】前述したように、従来の研削技術では使用でき
なかったCBNホイールが高速化することにより使用で
きるようになった理由は次の通りである。軟質金属を従
来の研削技術でCBNホイールを用い加工して、目ずま
りが発生して所期の加工結果が得られなかったりホイー
ル摩耗が極めて大きくなったりするのは、この加工で発
生する研削加工としては比較的長い流れ型切れ屑を排出
できなかったり、この切り屑によりボンド材料が削り取
られたりするためである。ところで、一般的にホイール
周速度を高くすると研削熱の発生量も多くなることが知
られている。特に本発明のように極めて高周速度の領域
では発熱量も極めて多くなっている。発生した研削熱は
切り屑、被加工材、研削液、ホイールに分配されるが、
切り屑への流入割合が最も大きいとされている。CBN
ホイールを用いた80m/s以上の高速研削では研削熱の
増加分の内、切り屑への流入割合が極めて大きくなると
考えられる。それは高速研削で加工した被加工材の加工
後の表面品位は極めて良好で、何等の熱損傷も受けてい
なかったことからも推察できる。すなわち、高速で発生
する軟質の長い切り屑が、流入した熱により高温とな
る。それが研削液で急激に冷されることにより極めて脆
弱となり切り屑が細かく分断されやすくなる。このため
切り屑は排出され易くなり、目ずまりもポンド材料の摩
耗も発生しなくなる、すなわち、良好な加工性と長いホ
イール寿命が得られるものと考えられる。
As described above, the reason why the CBN wheel, which cannot be used in the conventional grinding technique, can be used by increasing the speed is as follows. Grinding caused by this processing is because soft metal is processed by a conventional grinding technique using a CBN wheel, and the result is that the desired processing result is not obtained and the wheel wear becomes extremely large. This is because a relatively long flow type chip cannot be discharged as a process, and the bond material is scraped off by this chip. By the way, it is generally known that the amount of grinding heat generated increases as the wheel peripheral speed increases. Particularly, as in the present invention, the amount of heat generation is extremely large in the region of extremely high peripheral speed. The generated grinding heat is distributed to chips, workpieces, grinding fluid, and wheels.
It is said that the rate of inflow into the chips is the largest. CBN
It is considered that the rate of inflow into the chips becomes extremely large in the increase in grinding heat in high-speed grinding of 80 m / s or more using a wheel. It can be inferred from the fact that the surface quality of the processed material processed by high speed grinding was extremely good and no heat damage was received. That is, the long, soft chips generated at high speed become high temperature due to the inflowing heat. When it is rapidly cooled by the grinding fluid, it becomes extremely brittle, and the chips tend to be finely divided. Therefore, it is considered that the chips are easily discharged and neither clogging nor abrasion of the pond material occurs, that is, good workability and long wheel life can be obtained.

【0009】[0009]

【実施例】【Example】

(実施例1) 図3に示す形状寸法の取り代が直径で0.
3mm のHRC28のベアリング鋼鍛造材を、ビトリファ
イドCBNホイールAにより下記条件で1パスで研削加
工した。この時の加工サイクルタイム(ローディングツ
ーローディング)は24sで切削加工に比べ遜色がなく、
得られた加工精度は表面粗さ 1.6μmRz、真円度、円筒
度とも1μmで秀れたものであった。
(Example 1) The machining allowance of the geometry shown in FIG. 3 is 0.
A 3 mm HRC28 bearing steel forging was ground with a vitrified CBN wheel A in one pass under the following conditions. The processing cycle time (loading to loading) at this time is 24 s, which is comparable to cutting processing,
The obtained processing precision was excellent with a surface roughness of 1.6 μmRz, roundness and cylindricity of 1 μm.

【0010】実施例1の研削条件及び研削結果 ホイール:砥粒 CBN 粒度 #80/100 集中度 200 ボンド ビトリファイドボンド 被加工材:SUJ2,HRC28,取り代φ0.3mm 加工条件:ホイール周速度 140m/s 被加工材回転数 3000rpm 切り込み深さ φ0.3mm 研削液 エマルジョン、10%溶液 加工結果:サイクルタイム 24s 表面粗さ 1.6μmRz 真円度 1μm 円筒度 1μmGrinding conditions and grinding results of Example 1 Wheel: Abrasive grain CBN Grain size # 80/100 Concentration degree 200 Bond Vitrified bond Work material: SUJ2, HRC28, machining allowance φ0.3 mm Processing condition: Wheel peripheral speed 140 m / s Workpiece material Rotation speed 3000rpm Depth of cut φ0.3mm Grinding fluid Emulsion, 10% solution Processing result: Cycle time 24s Surface roughness 1.6μm Rz Roundness 1μm Cylindricity 1μm

【0011】また本実施例における加工能率を示す材料
除去率Z、および加工能力を示す比材料除去率Z'は表1
に示す通りで、従来の加工法に充分に対抗し得る。
Table 1 shows the material removal rate Z indicating the processing efficiency and the specific material removal rate Z'indicating the processing capacity in this embodiment.
As shown in, the conventional processing method can be sufficiently countered.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2) 図4に示す形状、寸法の取
り代が直径で0.5mm でHRC23の炭素鋼(S48C)
をメタルボンドCBNホイールBにより下記条件で研削
加工した。加工精度等は下記の通り秀れており、加工能
率等は表2の通りで、従来のものよりむしろ勝ってい
る。
(Embodiment 2) Carbon steel (S48C) of HRC23 having a diameter and a machining allowance of 0.5 mm shown in FIG.
Was ground with a metal bond CBN wheel B under the following conditions. The processing accuracy and the like are excellent as follows, and the processing efficiency and the like are shown in Table 2, which is superior to the conventional one.

【0014】実施例2における研削条件及び結果 ホイール:砥粒 CBN 粒度 #60/80 集中度 150 ボンド メタルボンド 被加工材:S48C、HRC23、取り代φ0.5mm 加工条件:ホイール周速度 160m/s 被加工材回転数 1400rpm 切り込み深さ φ0.5mm 研削液 エマルジョン、10%溶液 加工結果:サイクルタイム 43s 表面粗さ 3μmRz 真円度 1μmGrinding conditions and results in Example 2 Wheel: Abrasive grain CBN Grain size # 60/80 Concentration 150 bond Metal bond Workpiece material: S48C, HRC23, machining allowance φ0.5 mm Processing condition: Wheel peripheral speed 160 m / s Material rotation speed 1400 rpm Depth of cut φ0.5 mm Grinding fluid emulsion, 10% solution Processing result: Cycle time 43 s Surface roughness 3 μm Rz Roundness 1 μm

【0015】[0015]

【表2】 [Table 2]

【0016】(実施例3) 代表的なチタン合金である
Ti−6Al−4Vをダイヤモンドホイールにて加工し
た場合の切削比を表3に示す。従来のホイール周速度
(20〜40m/s)では9〜31であった切削比がホ
イール周速度を100m/sとすることにより切削比が
290と9〜32倍の切削比が得られ、十分経済的なコ
ストで加工できるようになった。即ち、非鉄金属の切削
加工においては、ダイヤモンドホイールの使用により同
様な加工結果を得ることもできる。
Example 3 Table 3 shows the cutting ratio when Ti-6Al-4V, which is a typical titanium alloy, is processed with a diamond wheel. The cutting ratio was 9 to 31 at the conventional wheel peripheral speed (20 to 40 m / s), but by setting the wheel peripheral speed to 100 m / s, a cutting ratio of 290 and a cutting ratio of 9 to 32 times can be obtained, which is sufficient. It can be processed at an economical cost. That is, in the cutting of non-ferrous metal, the same processing result can be obtained by using the diamond wheel.

【0017】実施例3における切削条件 ホイール:砥粒 ダイヤモンド 粒度 #140/170 集中度 100 ボンド レジンボンド 被加工材:Ti−6Al−4V、HRC33 加工方式:平面トラバース研削 加工条件:ホイール周速度 100 m/s テーブル速度 12m/min 切り込み深さ 0.01mm/pass 研削液 エマルジョン、5%溶液Cutting Conditions in Example 3 Wheel: Abrasive Grain Diamond Grain # 140/170 Concentration 100 Bond Resin Bond Work Material: Ti-6Al-4V, HRC33 Machining Method: Flat Traverse Grinding Machining Condition: Wheel peripheral speed 100 m / S table speed 12m / min depth of cut 0.01mm / pass grinding fluid emulsion, 5% solution

【0018】[0018]

【表3】 [Table 3]

【0019】本発明に用いる超砥粒ホイールとしては、
粒度が#16/18〜 325/400 、集中度が50〜250 、ボン
ドがメタルボンド、ビトリファイドボンド、電着、レジ
ンボンドのものを用いることが望ましい。超砥粒ホイー
ルでは従来、粒度はメッシュサイズは#30/40〜 325/
400 、ミクロンサイズは36・54〜0・1/2μmまでの
広い範囲で、集中度は25〜230 の範囲が使用されてき
た。本加工方法は高能率加工を伴うものであることは前
述した通りで、良好な表面粗さを求めるために用いられ
るミクロンサイズは必要としない。もしミクロンサイズ
を用いた場合、切り屑の収容が不可能となり高能率加工
ができなくなるばかりかホイール摩耗が増大し研削比が
極端に低くなる。従来表面粗さが粗くなることや研削抵
抗が増大するために用いられなかった#16/18〜20/30
の粗粒がこの技術を用いることにより研削抵抗の低減、
砥粒切り込み深さの低減による表面粗さの改善により可
能となる。50未満の集中度は砥粒一個にかかる応力が大
きくなりすぎ大破砕型の砥粒摩耗を引き起こす。その結
果、結合材と被加工材との接触が起こり、研削抵抗の増
大、被加工材の研削焼け発生などにより良好に加工でき
ない。
As the superabrasive wheel used in the present invention,
It is desirable to use those having a grain size of # 16/18 to 325/400, a concentration of 50 to 250, and a metal bond, vitrified bond, electrodeposition, or resin bond. In the conventional superabrasive wheel, the grain size is mesh size # 30/40 to 325 /
A wide range of 400 and micron size of 36.54 to 0.1 / 2 .mu.m and a concentration of 25 to 230 have been used. As described above, this processing method involves high-efficiency processing, and does not require the micron size used for obtaining good surface roughness. If the micron size is used, it will not be possible to store chips, and high efficiency machining will not be possible, and wheel wear will increase and the grinding ratio will be extremely low. Conventionally not used due to rough surface and increased grinding resistance # 16 / 18-20 / 30
The use of this technology for the coarse particles reduces the grinding resistance,
It becomes possible by improving the surface roughness by reducing the cutting depth of the abrasive grains. If the degree of concentration is less than 50, the stress applied to one abrasive grain becomes too large, causing large-scale abrasive grain wear. As a result, the bonding material comes into contact with the work material, and the work cannot be satisfactorily processed due to an increase in grinding resistance and the occurrence of grinding burn of the work material.

【0020】[0020]

【効果】以上説明したように、本発明によれば超砥粒を
用いたホイールにより、80m/s以上の高周速でHRC
35以下の軟鋼、軟鋳鋼、ステンレス鋼、非鉄金属材料
などの軟質金属を研削することができる。この研削はこ
の種材料に対する新しい除去加工法であり、在来の方法
に比らべ高能率、高精度でかつホイールの摩耗も少なく
て、低コストとなる特長を有する。したがって、自動車
産業、電気産業、造船重機産業などの多くの分野におけ
るこの種材料部品の加工の自動化無人化を促進し、産業
の発達に寄与する。
[Effect] As described above, according to the present invention, the wheel using the superabrasive grains enables the HRC at a high peripheral speed of 80 m / s or more.
It is possible to grind soft metals such as 35 or less of mild steel, mild cast steel, stainless steel, and non-ferrous metal materials. This grinding is a new removal processing method for this kind of material, and has the features of higher efficiency, higher accuracy, less wheel wear, and lower cost than conventional methods. Therefore, in many fields such as the automobile industry, the electrical industry, the shipbuilding heavy machinery industry, etc., it promotes automation of unmanned processing of the material parts of this kind and contributes to the development of the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】CBNホイールの周速度と比材料除去率の関係
を試験した結果を示す図。
FIG. 1 is a view showing a result of testing a relationship between a peripheral speed of a CBN wheel and a specific material removal rate.

【図2】CBNホイールの周速度と研削比の関係を試験
した結果を示す図。
FIG. 2 is a view showing a result of testing a relationship between a peripheral speed of a CBN wheel and a grinding ratio.

【図3】実施例1における被削材の形状、寸法とCBN
ホイールの位置を示す模式図。
3] Shape, size and CBN of work material in Example 1.
The schematic diagram which shows the position of a wheel.

【図4】実施例2における被削材の形状、寸法とCBN
ホイールの位置を示す模式図。
4] Shape and size of work material and CBN in Example 2 [FIG.
The schematic diagram which shows the position of a wheel.

【符号の説明】[Explanation of symbols]

黒丸、目づまりなく良好に加工可能であった点を示す。 白丸、目づまりのため加工不能であった点を示す。 A:ビトリファイドボンドCBNホイールを示す。 B:メタルボンドCBNホイールを示す。 The black circles indicate points where good processing was possible without clogging. White circles indicate points that could not be processed due to clogging. A: Shows a vitrified bond CBN wheel. B: Metal bond CBN wheel is shown.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超砥粒ホイールにより、軟質金属を80m
/s以上のホイール周速度で研削することを特徴とする
軟質金属の研削加工法。
1. A soft abrasive grain of 80 m
A grinding method of a soft metal, characterized by grinding at a wheel peripheral speed of not less than / s.
【請求項2】 超砥粒はダイヤモンドまたはCBNであ
り、軟質金属は硬度がHRC35以下の鉄鋼材料または
非鉄材料であることを特徴とする請求項1記載の軟質金
属の研削加工法。
2. The method for grinding a soft metal according to claim 1, wherein the superabrasive grains are diamond or CBN, and the soft metal is a steel material or a non-ferrous material having a hardness of HRC 35 or less.
【請求項3】 メタルボンド、ビトリファイドボンド、
電着、レジンボンドの何れかでボンドされる超砥粒は、
粒度が16/18〜 325/400 、集中度が50〜250 であるこ
とを特徴とする請求項1または2記載の軟質金属の研削
加工法。
3. A metal bond, a vitrified bond,
Super-abrasive grains bonded by either electrodeposition or resin bond are
The method of grinding a soft metal according to claim 1 or 2, wherein the grain size is 16/18 to 325/400 and the degree of concentration is 50 to 250.
JP5145612A 1993-05-24 1993-05-24 Grinding method for soft metal Expired - Fee Related JP2510464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5145612A JP2510464B2 (en) 1993-05-24 1993-05-24 Grinding method for soft metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5145612A JP2510464B2 (en) 1993-05-24 1993-05-24 Grinding method for soft metal

Publications (2)

Publication Number Publication Date
JPH06328353A true JPH06328353A (en) 1994-11-29
JP2510464B2 JP2510464B2 (en) 1996-06-26

Family

ID=15389067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5145612A Expired - Fee Related JP2510464B2 (en) 1993-05-24 1993-05-24 Grinding method for soft metal

Country Status (1)

Country Link
JP (1) JP2510464B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIAMOND AND CBN GRINDING WHEELS STANDARD PROGRAMME *

Also Published As

Publication number Publication date
JP2510464B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
JP3244454B2 (en) Cutting and grinding dual use tool
Pal et al. Development and performance evaluation of monolayer brazed cBN grinding wheel on bearing steel
US6752709B1 (en) High-speed, low-cost, machining of metal matrix composites
US5951378A (en) Method for grinding bimetallic components
JP2005534514A (en) Grinding tool with integrated arbor
US6224473B1 (en) Abrasive inserts for grinding bimetallic components
US3900975A (en) Cryogenic grinding of copper
US7384329B2 (en) Coolant delivery system for grinding tools
JP2005111626A (en) Grinding wheel
JP4688110B2 (en) Single crystal diamond tool and method for manufacturing the same
JP2005246510A (en) Highly smooth grinding method for metal material, and highly smooth grinding device for metal material
US6248003B1 (en) Method of truing grinding wheel and device used in performing such method
JP2510464B2 (en) Grinding method for soft metal
JPH11333730A (en) Diamond lapping surface plate
JP4545100B2 (en) Compound tool
JPH11300620A (en) Grinding wheel with extra-abrasive grain
JP2679509B2 (en) Cutting wheel and cutting method
JP2000198012A (en) Working method of material hard in cutting
JP3043782B2 (en) Tools for drilling hard and brittle materials
US4286568A (en) Tool for trueing and dressing a grinding wheel
US4285324A (en) Tool for trueing and dressing a grinding wheel
JP2510464C (en)
JP2002263937A (en) Milling tool
JP4215415B2 (en) Whetstone with shaft
JP3922900B2 (en) Whetstone with shaft

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees