JPH06326674A - Composite sound signal generation circuit - Google Patents

Composite sound signal generation circuit

Info

Publication number
JPH06326674A
JPH06326674A JP11019593A JP11019593A JPH06326674A JP H06326674 A JPH06326674 A JP H06326674A JP 11019593 A JP11019593 A JP 11019593A JP 11019593 A JP11019593 A JP 11019593A JP H06326674 A JPH06326674 A JP H06326674A
Authority
JP
Japan
Prior art keywords
signal
sampling frequency
audio signal
frequency
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11019593A
Other languages
Japanese (ja)
Inventor
Makoto Onishi
誠 大西
Masaaki Ota
正明 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Hitachi Ltd
Original Assignee
Hitachi Denshi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK, Hitachi Ltd filed Critical Hitachi Denshi KK
Priority to JP11019593A priority Critical patent/JPH06326674A/en
Publication of JPH06326674A publication Critical patent/JPH06326674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereo-Broadcasting Methods (AREA)

Abstract

PURPOSE:To improve the performance of a circuit and to provide simple circuit constitution with less processing amount by constituting a composite sound signal generation circuit by a digital signal processing. CONSTITUTION:The operation sampling frequency of the circuit is set at a sub carrier wave frequency or the power of two and balanced modulation and sub carrier wave signal generation, etc., are realized by the simple processings of a high-pass filter 74, polarity inversion and signal changeover, etc. Further, by using a digital interpolation device, the sampling frequency of input signals is converted and the signals of the optional sampling frequency are made inputtable. Since the circuit scale of the composite sound generation circuit by the digital signal processing can be substantially reduced, the device can be miniaturized, power consumption can be lowered and circuit operations can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合音声信号生成回路に
係り、特に、FMステレオ放送で用いられるステレオ音
声信号を合成する複合音声信号生成回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite audio signal generation circuit, and more particularly to a composite audio signal generation circuit for synthesizing stereo audio signals used in FM stereo broadcasting.

【0002】[0002]

【従来の技術】ステレオ音声信号を伝送するためには、
何等かの方法で左右2チャネルの音声信号を多重し、一
つの搬送波に載せて送ることが必要となる。さらにステ
レオ信号を受信再生しない受信者も居るため、在来のモ
ノラル信号との両立性が有ることが望まれる。この様な
信号処理を行う装置が複合音声信号生成回路である。こ
の方式には色々有るが、日本では搬送波抑圧AM−FM
方式が採用されている。この方式は図1に示す様に、L
(左)信号とR(右)信号からL+R信号とL−R信号
を作り、L+R信号を主信号として、これに38kHz
の副搬送波信号をL−R信号で搬送波抑圧AM変調した
副信号と、19kHzのパイロット信号(受信機側で3
8kHz副搬送波信号の再生に用いる。)を多重したも
のである。最終的には、この複合音声信号で送信搬送波
にFM変調を行う。こうして在来FM放送波と両立性の
あるステレオFM放送が実現できる。
2. Description of the Related Art In order to transmit a stereo audio signal,
It is necessary to multiplex the left and right two-channel audio signals by some method, and carry them on one carrier. Furthermore, since some receivers do not receive and reproduce stereo signals, it is desired that they be compatible with conventional monaural signals. A device for performing such signal processing is a composite voice signal generation circuit. There are various types of this method, but carrier suppression AM-FM is used in Japan.
The method is adopted. This method, as shown in FIG.
The L + R signal and the L-R signal are created from the (left) signal and the R (right) signal, and the L + R signal is used as the main signal, and 38 kHz
Sub-carrier signal of the carrier suppression AM modulation by the L-R signal and a pilot signal of 19 kHz (3 at the receiver side)
Used to reproduce the 8 kHz subcarrier signal. ) Is a multiplex. Finally, FM modulation is performed on the transmission carrier with this composite audio signal. Thus, stereo FM broadcasting compatible with conventional FM broadcasting waves can be realized.

【0003】図2に複合音声信号生成回路の従来例を示
す。図で21,22は低域通過フィルタ、23,24は
加減算器、25は平衡変調器、26は信号加算器、27
は副搬送波発生器、28は1/2分周器である。二系統
の音声入力L,R信号は低域通過フィルタ21,22に
より帯域制限される。低域通過フィルタ21,22はプ
リエンファシスの機能も持っており、FM変調に伴い雑
音の高周波信号成分が強調され、高域でS/Nが劣化す
るのを防ぐため、音声信号の高域成分を強調する。低域
通過フィルタを通った音声信号は加減算器23,24か
らなるマトリックス回路でL+R信号,L−R信号に変
換される。L−R信号は搬送波抑圧AM変調するため平
衡変調器25に入力し、副搬送波発生器27から得られ
る38kHzの副搬送波信号を平衡変調して、副信号を
得る。副搬送波信号は1/2分周器28で周波数を半分
にして、19kHzのパイロット信号を作る。L+R主
信号と、L−R副信号,パイロット信号を信号加算器2
6で合成し、複合音声信号が生成される。
FIG. 2 shows a conventional example of a composite voice signal generation circuit. In the figure, 21 and 22 are low-pass filters, 23 and 24 are adders / subtractors, 25 is a balanced modulator, 26 is a signal adder, and 27.
Is a subcarrier generator, and 28 is a 1/2 frequency divider. The two systems of audio input L and R signals are band-limited by the low-pass filters 21 and 22. The low-pass filters 21 and 22 also have a pre-emphasis function, and in order to prevent the high-frequency signal component of noise from being emphasized due to FM modulation and preventing the S / N from deteriorating in the high band, the high-frequency component of the audio signal Emphasize. The audio signal that has passed through the low-pass filter is converted into an L + R signal and an LR signal by a matrix circuit including adders / subtractors 23 and 24. The L-R signal is input to the balanced modulator 25 for carrier suppression AM modulation, and the 38 kHz subcarrier signal obtained from the subcarrier generator 27 is balanced-modulated to obtain a subsignal. The frequency of the subcarrier signal is halved by the 1/2 frequency divider 28 to generate a pilot signal of 19 kHz. Signal adder 2 for L + R main signal, LR sub signal, and pilot signal
6, and a composite voice signal is generated.

【0004】複合音声信号生成装置に関する公知例には
特開平1−291536号や、特開平2−189038号公報がある。
Known examples of the composite audio signal generating device include Japanese Patent Application Laid-Open No. 1-291536 and Japanese Patent Application Laid-Open No. 2-189038.

【0005】[0005]

【発明が解決しようとする課題】上記、複合音声信号生
成回路を具体的に実現する場合、アナログ回路で構成す
ると、回路素子の精度に限度があるため、高精度なマト
リックス回路,平衡変調器,プリエンファシス回路等を
得ることが難しかった。また温度,電圧,経年変動など
物理的変動要因の影響を避けることも困難で、初期調
整,定期保守などが繁雑になる欠点があった。これらの
問題点はディジタル信号処理技術を導入することにより
回避できるが、平衡変調をそのままディジタル化するこ
とは、副搬送波発生器や、急峻な遮断特性のフィルタが
必要で、回路規模が大きくなる困難さがあった。また最
近、音声信号のディジタル化により、複合音声信号生成
回路の入力信号として、ディジタル音声信号を用いる様
になっているが、これらの信号の標本化周波数は簡単な
整数比でないので、何等かの手段で標本化周波数を変換
する必要がある。
When the above-mentioned composite audio signal generating circuit is specifically realized, if it is configured by an analog circuit, the precision of the circuit elements is limited, so that a highly accurate matrix circuit, balanced modulator, It was difficult to obtain the pre-emphasis circuit. In addition, it is difficult to avoid the influence of physical fluctuation factors such as temperature, voltage, and aging fluctuation, and there is a drawback that initial adjustment and regular maintenance become complicated. Although these problems can be avoided by introducing digital signal processing technology, digitizing balanced modulation as it is requires a subcarrier generator and a filter with a sharp cutoff characteristic, which makes it difficult to increase the circuit scale. There was Recently, digital audio signals have been digitized to use digital audio signals as input signals to a composite audio signal generation circuit. However, since the sampling frequency of these signals is not a simple integer ratio, some kind of It is necessary to transform the sampling frequency by means.

【0006】本発明の目的は、ディジタル信号処理技術
を用いた複合音声信号生成回路において、これらの問題
点を避けることの出来る回路構成を提供することにあ
る。
It is an object of the present invention to provide a circuit configuration which can avoid these problems in a composite voice signal generation circuit using a digital signal processing technique.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、複合音声信号生成回路の動作標本化周波数を副搬送
波周波数38kHzの2のべき乗倍に選ぶ。またディジ
タル入力音声信号の標本化周波数変換のため、時変係数
フィルタを用いるディジタル補間回路を用いる。
In order to achieve the above object, the operation sampling frequency of the composite audio signal generation circuit is selected to be a power of 2 of the subcarrier frequency 38 kHz. A digital interpolation circuit using a time-varying coefficient filter is used to convert the sampling frequency of the digital input voice signal.

【0008】まず、平衡変調器,副搬送波信号発生器の
簡単化のため、ディジタル信号の標本化による高調波の
関係を利用する。
First, in order to simplify the balanced modulator and the subcarrier signal generator, the relationship of harmonics by sampling a digital signal is used.

【0009】本発明の原理を図3を用いて説明する。図
において、31は低域通過フィルタ、32は高域通過フ
ィルタ、33は極性反転器である。ディジタルフィルタ
31,32の動作標本化周波数は2fs 、極性反転器3
3は一標本毎に信号の極性を正負に反転する動作をす
る。
The principle of the present invention will be described with reference to FIG. In the figure, 31 is a low pass filter, 32 is a high pass filter, and 33 is a polarity inverter. The operation sampling frequency of the digital filters 31 and 32 is 2 fs, and the polarity inverter 3
3 operates to invert the polarity of the signal into positive and negative for each sample.

【0010】図3の回路に標本化周波数fs の信号を入
力したときの動作を図4の動作スペクトル図で説明す
る。標本化周波数fs の信号は図4の(a)に示すよう
に、0(直流)からfs/2までのスペクトル周波数成
分がfs/2(これをNyquist 周波数と言う)で折り返
す様なスペクトル構造を持っている。さらに図3に示す
ように標本化周波数fs の信号を動作標本化周波数2f
s のディジタル信号処理装置に入力した場合、標本化周
波数2fs で考えると、信号スペクトルは0からfs ま
での成分がfs から2fs に繰り返して現れる。そこ
で、標本化周波数fs の信号を動作標本化周波数が2f
s の低域通過フィルタ31及び高域通過フィルタ32
(各々の周波数特性は図4の(b),(c)の破線で示す
特性とする)に入力すると、各々のフィルタ出力は図4
の(b),(c)の実線で示したように、低域通過フィル
タ出力は入力信号を2fs で標本化し直した信号が、高
域通過フィルタには、それをfs の搬送波信号で平衡変
調したのと同じスペクトルの信号が得られる。
The operation when a signal of sampling frequency fs is input to the circuit of FIG. 3 will be described with reference to the operation spectrum diagram of FIG. As shown in FIG. 4 (a), the signal of the sampling frequency fs has a spectral structure in which the spectral frequency components from 0 (DC) to fs / 2 are folded at fs / 2 (this is called Nyquist frequency). have. Further, as shown in FIG. 3, the signal of the sampling frequency fs is converted into the operation sampling frequency 2f.
When input to the digital signal processing device of s, when the sampling frequency is 2fs, the signal spectrum has components 0 to fs repeatedly appearing from fs to 2fs. Therefore, the signal of the sampling frequency fs has the operation sampling frequency of 2f.
s low-pass filter 31 and high-pass filter 32
(Each frequency characteristic is the characteristic shown by the broken line in (b) and (c) of FIG. 4), each filter output is shown in FIG.
As shown by the solid lines in (b) and (c), the output of the low-pass filter is the signal obtained by re-sampling the input signal at 2fs, but the high-pass filter is balanced-modulated with the carrier signal of fs. A signal with the same spectrum as that obtained is obtained.

【0011】すなわち、fs を複合音声信号の副搬送波
周波数と同じ値に設定し、入力信号の標本化周波数をf
s ,信号処理装置の動作標本化周波数をその二倍にする
と、高域通過フィルタ処理を施し高調波成分を取り出す
ことで、(搬送波抑圧)平衡変調が行えることが分か
る。
That is, fs is set to the same value as the subcarrier frequency of the composite voice signal, and the sampling frequency of the input signal is f.
s, if the operation sampling frequency of the signal processing device is doubled, it can be seen that (carrier suppression) balanced modulation can be performed by performing high-pass filtering and extracting harmonic components.

【0012】さらに、低域通過フィルタ31の出力信号
を極性反転器33に入力する。極性反転器33は標本化
周波数2fs の信号の極性をfs 周期で正負反転する。
すなわち+1,−1,+1,−1,…を掛ける。この操
作は
Further, the output signal of the low pass filter 31 is input to the polarity inverter 33. The polarity inverter 33 inverts the polarity of the signal having the sampling frequency of 2fs in the period of fs.
That is, +1, -1, +1, -1, ... Are multiplied. This operation

【0013】[0013]

【数1】cos(2πnfs T)=cos(2πnfs/2fs)=
cos(πn)=+1,−1,+1,−1,… を掛けることに相当する。数1でT=1/2fs は動作
標本化周期、nは正の整数0,1,2,…である。すな
わち、極性反転は、低域通過フィルタ出力に周波数fs
の余弦波を掛けることになり、やはり平衡変調が可能で
あることが分かる。
## EQU1 ## cos (2πnfs T) = cos (2πnfs / 2fs) =
It is equivalent to multiplying cos (πn) = + 1, −1, +1, −1, ... In Equation 1, T = 1 / 2fs is the motion sampling period, and n is a positive integer 0, 1, 2, .... That is, the polarity reversal causes the low-pass filter output to have a frequency fs
It means that the cosine wave of is multiplied and the balanced modulation is possible.

【0014】このように、入力の標本化周波数を副搬送
波周波数(あるいは、その2のべき乗倍)と等しく取る
ことにより、平衡変調が極簡単な信号処理操作で可能と
なる。入力音声信号がアナログ信号の場合には、AD変
換器の標本化周波数をfs に選べばよい。しかし、近
年、音声信号のディジタル化が盛んに行われ、しかもそ
の標本化周波数は48kHz,44.1kHz,32k
Hz 等で、複合音声信号の副搬送波周波数38kHz
と簡単な整数比でない。そこで標本化周波数を任意の変
換比で変換できる装置が必要となる。そのため、時変係
数FIR(非巡回型Finite Impulse Response)フィルタ
によるディジタル補間装置を用いる。
Thus, by taking the sampling frequency of the input equal to the subcarrier frequency (or its power of 2), balanced modulation is possible with a very simple signal processing operation. When the input audio signal is an analog signal, the sampling frequency of the AD converter may be selected as fs. However, in recent years, digitization of audio signals has been actively carried out, and the sampling frequencies thereof are 48 kHz, 44.1 kHz, and 32 kHz.
Hz, etc., 38 kHz subcarrier frequency of composite audio signal
And not a simple integer ratio. Therefore, a device capable of converting the sampling frequency with an arbitrary conversion ratio is required. Therefore, a digital interpolation device using a time-varying coefficient FIR (non-cyclic Finite Impulse Response) filter is used.

【0015】時変係数フィルタを用いる補間装置につい
ては、例えば、特願平3−102474 号明細書に詳述されて
いる。
An interpolator using a time-varying coefficient filter is described in detail in, for example, Japanese Patent Application No. 3-102474.

【0016】標本化定理によれば、図5に示したよう
に、周期T1 で標本化されたデータ列f(nT1)から、
元の時間関数f(t)は、Sinc(t)=sint/tを用い
て、
According to the sampling theorem, as shown in FIG. 5, from the data string f (nT 1 ) sampled at the period T 1 ,
The original time function f (t) uses Sinc (t) = sint / t,

【0017】[0017]

【数2】 f(t)=Σf(nT)Sinc{π(t−nT1)/T1} =Σf(nT1)Sc(n,τ) と表すことができる。ここでτ=t/Tは出力時刻
tをT1 周期で計るときの端数である。数1は離散デー
タf(nT1)の一次結合で時刻tのデータ値を予測する
とき、結合係数Sc(n,τ)はtの関数となることを示し
ている。時変係数Sc(n,τ)はt=nT1 で1,t=m
1(m≠n,m,nは整数)で0となる性質を持つ関数
であり、数2のSinc(t)や、数値解析で用いられるLagr
angeの補間多項式など、いろいろな関数を用いることが
出来る。
[Number 2] f (t) = Σf (nT ) Sinc {π (t-nT 1) / T 1} = Σf (nT 1) can be represented as Sc (n, τ). Here, τ = t / T 1 is a fraction when the output time t is measured in the T 1 cycle. Equation 1 indicates that the coupling coefficient Sc (n, τ) is a function of t when a data value at time t is predicted by linear combination of discrete data f (nT 1 ). The time-varying coefficient Sc (n, τ) is t = nT 1 and t = m
It is a function that has the property that it becomes 0 at T 1 (m ≠ n, m, n is an integer), and it is Sinc (t) in Equation 2 or Lagr used in numerical analysis.
Various functions such as ange's interpolation polynomial can be used.

【0018】また数2は、有限個のデータNで近似する
と、補間値f(t)は、時変係数Sc(n,τ)を持つFIR
フィルタの出力として得られることを示している。この
ことから補間(あるいは標本化周波数変換)は、時変係
数フィルタによりハードウェアとして実現できることが
分かる。時変係数Sc(n,τ)を定めるパラメータn,τ
は、出力データ系列の標本化周期T2 によって与えられ
るデータ出力時刻tにより、数3と表される。
Mathematical Expression 2 is approximated by a finite number of data N, the interpolated value f (t) is FIR having a time varying coefficient Sc (n, τ).
It is shown that it can be obtained as the output of the filter. From this, it is understood that the interpolation (or sampling frequency conversion) can be realized as hardware by the time-varying coefficient filter. Parameters n, τ that determine the time-varying coefficient Sc (n, τ)
Is expressed by Equation 3 by the data output time t given by the sampling period T 2 of the output data series.

【0019】[0019]

【数3】t=nT1+τ=mT2 補間装置全体のハードウェア構成を図6に示す。図にお
いて、611,612,〜,61Nは遅延素子、620,6
1,622,〜,62N-1,62Nは係数掛算器、6
1,632,〜,63N-1,63Nは加減算器、64はR
OM、65は計時装置、66はカウンタ、67はラッチ
である。数3における補間時刻tを決めるτを求める計
時装置65は、T1 よりも充分高速なクロックパルスを
カウンタ66に入力し、T1 周期でリセットし、計数値
をT2 周期でラッチ67に読み出すことで実現できる。
時変係数Sc(n,τ)を前もってROM64に書き込んで
おき、求めたτによりこれを読み出し、FIRフィルタ
の係数として与えれば、時変係数フィルタによる補間装
置が実現される。
[Equation 3] t = nT 1 + τ = mT 2 FIG. 6 shows the overall hardware configuration of the interpolator. In the figure, 61 1 , 61 2 , ..., 61 N are delay elements, and 62 0 , 6
2 1 , 62 2 , ~, 62 N-1 , 62 N are coefficient multipliers, 6
3 1 , 63 2 , ~, 63 N-1 , 63 N is an adder / subtractor, 64 is R
OM, 65 is a clock device, 66 is a counter, and 67 is a latch. The time measuring device 65 for obtaining τ that determines the interpolation time t in the equation 3 inputs a clock pulse sufficiently faster than T 1 to the counter 66, resets it in the T 1 cycle, and reads the count value to the latch 67 in the T 2 cycle. It can be realized.
If the time-varying coefficient Sc (n, τ) is written in the ROM 64 in advance, and the τ obtained is read out and given as the coefficient of the FIR filter, an interpolating device using the time-varying coefficient filter is realized.

【0020】[0020]

【作用】この様に、本発明の複合音声信号生成回路で
は、入力信号の標本化周波数,装置の動作標本化周波数
を複合音声信号の副搬送波周波数あるいはその2のべき
乗倍に取ることにより、平衡変調器や、副搬送波信号発
生器などの複雑な回路を簡単な回路に置き換えることが
出来、構成が非常に簡素化される。平衡変調のためには
フィルタが必要になるが、これはFM信号のプリエンフ
ァシス用フィルタと併用する事が出来、特に構成量が増
加することはない。
As described above, in the composite voice signal generation circuit of the present invention, the sampling frequency of the input signal and the operation sampling frequency of the device are balanced by taking the subcarrier frequency of the composite voice signal or its power of two. A complicated circuit such as a modulator or a subcarrier signal generator can be replaced with a simple circuit, which greatly simplifies the configuration. A filter is required for the balanced modulation, but this can be used together with the pre-emphasis filter for the FM signal, and the amount of components does not increase particularly.

【0021】また、装置の動作標本化周波数が副搬送波
信号周波数の2のべき乗であるから、パイロット信号の
周波数も同じ関係となり、この場合にはパイロット信号
発生器の構成が簡素化される。例えば、標本化周波数7
6kHzでパイロット信号(19kHz)を発生するに
は、
Further, since the operation sampling frequency of the device is a power of 2 of the subcarrier signal frequency, the frequency of the pilot signal has the same relationship, and in this case, the configuration of the pilot signal generator is simplified. For example, sampling frequency 7
To generate a pilot signal (19 kHz) at 6 kHz,

【0022】[0022]

【数4】cos(2πn19/76)=cos(nπ/2)=1,
0,−1,0,1,… であるから、極性反転器と切換スイッチの極簡単な回路
で構成することが可能である。
## EQU00004 ## cos (2.pi.n19 / 76) = cos (n.pi./2) = 1,
Since it is 0, -1, 0, 1, ..., It can be configured by a very simple circuit of the polarity reversing device and the changeover switch.

【0023】入力信号にディジタル音声信号を用いると
きは、標本化周波数の変換が必要となる。従来の標本化
周波数変換では入出力標本化周波数の最小公倍数の動作
標本化周波数を持つディジタルフィルタを構成しなけれ
ばならなかったが、本発明のようにディジタル標本化周
波数変換器を用いることにより、装置の動作標本化周波
数を高くすることなく、構成することが可能となる。
When a digital audio signal is used as the input signal, it is necessary to convert the sampling frequency. In the conventional sampling frequency conversion, a digital filter having an operation sampling frequency of the least common multiple of the input / output sampling frequency had to be configured, but by using the digital sampling frequency converter as in the present invention, It can be configured without increasing the operation sampling frequency of the device.

【0024】[0024]

【実施例】図7は本発明による第1の実施例のブロック
図である。図において71,72は加減算器、73,7
6は低域通過フィルタ、74は高域通過フィルタ、75
は信号加算器である。図8は図7の動作スペクトル図で
ある。図8を参照しながら、図7の実施例の動作を説明
する。
FIG. 7 is a block diagram of a first embodiment according to the present invention. In the figure, 71 and 72 are adders and subtractors, and 73 and 7
6 is a low pass filter, 74 is a high pass filter, 75
Is a signal adder. FIG. 8 is an operation spectrum diagram of FIG. The operation of the embodiment of FIG. 7 will be described with reference to FIG.

【0025】標本化周波数fs の二系統の音声入力L,
R信号は、加減算器71,72からなるマトリックス回
路でL+R信号,L−R信号に変換される。L+R信号
は動作標本化周波数2fs の低域通過フィルタ31によ
って、補間され図8に示すような標本化周波数2fs の
信号となる。一方、L−R信号は高域通過フィルタ32
に入力され、標本化周波数を2fs に変換すると同時
に、fs 回りのスペクトル成分を取り出し、搬送波抑圧
平衡変調処理を行う。低域通過フィルタ31と高域通過
フィルタ32は標本化周波数変換と同時に、プリエンフ
ァシスの機能も持たせることが出来る。低域通過フィル
タ出力と、高域通過フィルタ出力は信号加算器75で合
成し、さらに周波数fs /2のパイロット信号を加え、
低域通過フィルタ76で、2fs 周辺のL+R信号の高
調波成分を除去すれば、複合音声信号が得られる。図7
の実施例から分かるように、本実施例によれば副搬送波
信号発生器,平衡変調器などの複雑な回路を用いずに、
複合音声信号生成回路が構成できる。
Two-system voice input L of sampling frequency fs,
The R signal is converted into an L + R signal and an L-R signal by a matrix circuit including adders / subtractors 71 and 72. The L + R signal is interpolated by the low-pass filter 31 having the operation sampling frequency 2fs to be a signal having the sampling frequency 2fs as shown in FIG. On the other hand, the L-R signal is passed through the high pass filter 32.
, The sampling frequency is converted to 2fs, and at the same time, the spectrum component around fs is extracted and carrier suppression balanced modulation processing is performed. The low pass filter 31 and the high pass filter 32 can have a pre-emphasis function at the same time as the sampling frequency conversion. The low-pass filter output and the high-pass filter output are combined by the signal adder 75, and a pilot signal of frequency fs / 2 is added,
By removing the harmonic component of the L + R signal around 2fs with the low-pass filter 76, a composite voice signal can be obtained. Figure 7
As can be seen from the above embodiment, according to this embodiment, without using a complicated circuit such as a subcarrier signal generator and a balanced modulator,
A composite audio signal generation circuit can be configured.

【0026】本発明による第2の実施例を図9に、その
動作スペクトル図を図10に示す。図9において、9
1,92,95は低域通過フィルタ、93,94は加減
算器、96は極性反転器、97は信号加算器である。図
9の実施例の動作を図10を参照しながら説明する。標
本化周波数fs あるいは2fs の二系統のL,R信号は
低域通過フィルタ21,22に入力され、プリエンファ
シスされる。入力信号の標本化周波数がfs の場合に
は、低域通過フィルタ21,22は標本化周波数変換機
能も兼ねている。低域通過フィルタ21,22の出力
は、加減算器93,94からなるマトリックス回路でL
+R信号,L−R信号に変換される。L+R信号は動作
標本化周波数4fs の低域通過フィルタ95で、2fs
周辺の高調波成分を除去する。L−R信号は極性反転器
96でfs 毎に信号の極性を正負反転し、平衡変調す
る。変調されたL−R信号,L+R信号、および周波数
fs /2のパイロット信号を信号加算器97で合成し、
複合音声信号が得られる。図9の実施例では、低域通過
フィルタ95の周波数特性が図7の低域通過フィルタ7
6より緩くて済む利点がある。
A second embodiment of the present invention is shown in FIG. 9 and its operation spectrum diagram is shown in FIG. In FIG. 9, 9
1, 92 and 95 are low-pass filters, 93 and 94 are adders and subtractors, 96 is a polarity inverter, and 97 is a signal adder. The operation of the embodiment shown in FIG. 9 will be described with reference to FIG. The two systems of L and R signals of sampling frequency fs or 2fs are input to low pass filters 21 and 22 and pre-emphasized. When the sampling frequency of the input signal is fs, the low pass filters 21 and 22 also have a sampling frequency conversion function. The outputs of the low-pass filters 21 and 22 are L by a matrix circuit including adders / subtractors 93 and 94.
It is converted into + R signal and LR signal. The L + R signal is passed through the low-pass filter 95 with the operation sampling frequency of 4fs for 2fs.
Remove the surrounding harmonic components. The polarity of the L-R signal is inverted by the polarity inverter 96 every fs to perform balanced modulation. The modulated LR signal, L + R signal, and pilot signal of frequency fs / 2 are combined by the signal adder 97,
A composite audio signal is obtained. In the embodiment of FIG. 9, the frequency characteristic of the low pass filter 95 is the low pass filter 7 of FIG.
There is an advantage that it can be looser than 6.

【0027】本発明による第3の実施例を図11に示
す。図で110はディジタル補間器、111,112は
低域通過フィルタ、113,114は加減算器、115
は極性反転器、116は切換スイッチ、117は信号加
算器である。入力信号はディジタルのステレオ音声信号
で、標本化周波数fs′ のL,R二系統の信号が多重化
されている。ディジタル補間器110により、音声信号
の標本化周波数を4fsに変換する。
FIG. 11 shows a third embodiment according to the present invention. In the figure, 110 is a digital interpolator, 111 and 112 are low-pass filters, 113 and 114 are adders and subtractors, and 115.
Is a polarity inverter, 116 is a changeover switch, and 117 is a signal adder. The input signal is a digital stereo audio signal, and signals of two systems of L and R having a sampling frequency fs' are multiplexed. The sampling frequency of the audio signal is converted into 4fs by the digital interpolator 110.

【0028】ディジタル補間器110は図6の構成例と
異なり、二多重されているので、図6の遅延素子列61
1,〜,61Nが二つの信号分あり、2個おきに係数掛算
器に接続されている。ディジタル補間器110から出力
されるL,R信号は、動作標本化周波数4fs の低域通
過フィルタ111,112に入力され、プリエンファシ
ス周波数特性が掛けられる。さらに加減算器113,1
14からなるマトリックス回路によりL+R信号,L−
R信号に変換し、L−R信号は極性反転器115,切換スイ
ッチ116を通す。極性反転器115はfs 周期で信号
の極性を切換え、切換スイッチ116は2fs 毎に極性
反転器出力と、接地(論理0)を切換える。L−R信号
xの標本化周波数は4fs であるから、この操作により
L−R信号はx,0,−x,0,x,…なる系列に変換
される。この系列は元のL−R信号系列xに数4に示し
た1,0,−1,0,1,…を掛けたものであり、動作
標本化周波数4fs の1/4(すなわちfs )の余弦波
信号を掛けることに相当する。こうして切換スイッチ1
16の出力に変調L−R信号が得られる。信号加算器1
17で、L+R信号,変調L−R信号,パイロット信号
を合成し、複合音声信号が得られる。
Unlike the configuration example of FIG. 6, the digital interpolator 110 is multiplexed twice, so that the delay element array 61 of FIG.
There are two signals, 1 to 61 N , and every two signals are connected to the coefficient multiplier. The L and R signals output from the digital interpolator 110 are input to the low pass filters 111 and 112 having a motion sampling frequency of 4fs and are subjected to pre-emphasis frequency characteristics. Further, adder / subtractor 113, 1
L + R signal, L- by a matrix circuit consisting of 14
The R-R signal is converted into the R signal and the L-R signal is passed through the polarity inverter 115 and the changeover switch 116. The polarity inverter 115 switches the polarity of the signal in the fs cycle, and the changeover switch 116 switches between the polarity inverter output and the ground (logic 0) every 2fs. Since the sampling frequency of the L-R signal x is 4fs, the L-R signal is converted into a sequence of x, 0, -x, 0, x, ... By this operation. This sequence is obtained by multiplying the original L-R signal sequence x by 1,0, -1,0,1, ... Shown in Equation 4, and has a 1/4 (ie, fs) of the operation sampling frequency 4fs. It is equivalent to multiplying a cosine wave signal. In this way, changeover switch 1
A modulated L-R signal is obtained at the output of 16. Signal adder 1
At 17, the L + R signal, the modulated L-R signal, and the pilot signal are combined to obtain a composite voice signal.

【0029】ディジタル補間器の適用は図11の実施例
のように、入力信号の標本化周波数が4fs に限ること
はなく、図7,図9の実施例のようにfs でも2fs で
あっても実施することが可能である。いずれにしても、
簡単な整数比でない信号間の標本化周波数を任意に変換
できるので、本発明による複合音声信号生成回路の動作
標本化周波数を、副搬送波周波数の2のべき乗倍に設定
しても、任意の標本化周波数の信号の入力が可能とな
る。
The application of the digital interpolator is not limited to the sampling frequency of the input signal of 4 fs as in the embodiment of FIG. 11, and it can be either fs or 2fs as in the embodiments of FIGS. It can be carried out. In any case,
Since the sampling frequency between signals that is not a simple integer ratio can be converted arbitrarily, even if the operation sampling frequency of the composite audio signal generation circuit according to the present invention is set to a power of 2 of the subcarrier frequency, any sampling can be performed. It is possible to input a signal having a digitized frequency.

【0030】以上、本発明をディジタル処理により複合
音声信号を生成する装置に適用した実施例に付いて説明
した。実際の構成では、汎用のディジタル信号処理技術
で実現が可能であり、特殊な機能は要らないので、論理
回路によるハードウェアでも、汎用のディジタル信号処
理プロセッサによるソフトウェアでも実現することが出
来る。
The embodiments of the present invention applied to an apparatus for generating a composite audio signal by digital processing have been described above. In an actual configuration, it can be realized by a general-purpose digital signal processing technique and does not require a special function. Therefore, it can be realized by hardware by a logic circuit or software by a general-purpose digital signal processor.

【0031】[0031]

【発明の効果】本発明によれば、信号の標本化周波数と
副搬送波信号の標本化周波数との関係を、2のべき乗比
とすることで構成の複雑な平衡変調器,副搬送波信号発
生器,パイロット信号発生器等を簡単な回路で実現で
き、装置の大幅な規模縮小が図れる。また、ディジタル
入力信号標本化周波数が副搬送波標本化周波数と異なる
場合には、ディジタル補間器を用いて標本化周波数変換
を容易に行うことが出来るため、動作標本化周波数の設
定条件は装置構成上の制約とはならない。さらにディジ
タル処理であるので、種々の物理的変動要因に対して安
定に動作し、初期調整,定期保守等が省力化でき、回路
定数の変更等も容易に対処できる。
According to the present invention, a balanced modulator and a sub-carrier signal generator having a complicated structure by setting the relationship between the sampling frequency of the signal and the sampling frequency of the sub-carrier signal to be a power of two. , The pilot signal generator can be realized with a simple circuit, and the scale of the device can be greatly reduced. Also, when the digital input signal sampling frequency is different from the subcarrier sampling frequency, the sampling frequency conversion can be easily performed using a digital interpolator. Is not a constraint. Further, since it is digital processing, it operates stably against various physical fluctuation factors, labor saving in initial adjustment, periodic maintenance, etc., and change in circuit constants can be easily dealt with.

【図面の簡単な説明】[Brief description of drawings]

【図1】FM放送で用いられる複合音声信号の説明図。FIG. 1 is an explanatory diagram of a composite audio signal used in FM broadcasting.

【図2】従来の複合音声信号生成回路図。FIG. 2 is a conventional composite voice signal generation circuit diagram.

【図3】本発明による平衡変調の原理の説明図。FIG. 3 is an explanatory diagram of the principle of balanced modulation according to the present invention.

【図4】図3の動作を説明する動作スペクトル図。FIG. 4 is an operation spectrum diagram illustrating the operation of FIG.

【図5】本発明に用いるディジタル補間の原理の説明
図。
FIG. 5 is an explanatory diagram of the principle of digital interpolation used in the present invention.

【図6】ディジタル補間器のブロック図。FIG. 6 is a block diagram of a digital interpolator.

【図7】本発明の第1の実施例のブロック図。FIG. 7 is a block diagram of the first embodiment of the present invention.

【図8】図7の実施例の動作スペクトル図。FIG. 8 is an operation spectrum diagram of the embodiment of FIG.

【図9】本発明の第2の実施例の回路図。FIG. 9 is a circuit diagram of a second embodiment of the present invention.

【図10】図9の実施例の動作スペクトル図。FIG. 10 is an operation spectrum diagram of the embodiment of FIG.

【図11】本発明の第3の実施例の回路図。FIG. 11 is a circuit diagram of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

71,72…加減算器、73,76…低域通過フィル
タ、74…高域通過フィルタ、75…信号加算器。
71, 72 ... Adder / subtractor, 73, 76 ... Low-pass filter, 74 ... High-pass filter, 75 ... Signal adder.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】左音声信号,右音声信号の二系統の音声信
号を多重し、複合音声信号に変換する複合音声信号生成
回路において、回路の動作標本化周波数を前記複合音声
信号生成回路の副搬送波信号の周波数fs と同一か、あ
るいは2のべき乗倍の値とすることを特徴とする複合音
声信号生成回路。
1. In a composite audio signal generation circuit for multiplexing two systems of audio signals, a left audio signal and a right audio signal, and converting into a composite audio signal, the operation sampling frequency of the circuit is a sub-signal of the composite audio signal generation circuit. A composite audio signal generation circuit, which has the same frequency as a frequency fs of a carrier signal or a power of 2.
【請求項2】請求項1において、前記副搬送波周波数と
等しい標本化周波数を持つ入力信号を、前記副搬送波周
波数の二倍の動作標本化周波数で動作する高域通過フィ
ルタで処理する複合音声信号生成回路。
2. The composite audio signal according to claim 1, wherein an input signal having a sampling frequency equal to the subcarrier frequency is processed by a high-pass filter operating at an operating sampling frequency twice the subcarrier frequency. Generation circuit.
【請求項3】請求項1において、前記副搬送波周波数の
二倍の標本化周波数で標本化された音声信号の極性を1
/fs の周期で反転する複合音声信号生成回路。
3. The polarity of an audio signal sampled at a sampling frequency twice the subcarrier frequency as defined in claim 1.
A composite audio signal generation circuit that inverts at a cycle of / fs.
【請求項4】請求項1において、前記副搬送波周波数の
四倍の標本化周波数で標本化された音声信号の極性を1
/fs の周期で反転し、さらに1/2fs の周期で
“0”データ挿入する複合音声信号生成回路。
4. The polarity of an audio signal sampled at a sampling frequency which is four times as high as the subcarrier frequency, according to claim 1.
A composite audio signal generation circuit which inverts at a cycle of / fs and further inserts "0" data at a cycle of 1/2 fs.
【請求項5】請求項1,2,3または4において、ディ
ジタル標本化周波数変換回路を用いて入力信号の標本化
周波数を前記複合音声信号生成回路の動作標本化周波数
と同一の周波数に変換する複合音声信号生成回路。
5. The digital sampling frequency conversion circuit according to claim 1, 2, 3 or 4, wherein the sampling frequency of the input signal is converted to the same frequency as the operation sampling frequency of the composite audio signal generation circuit. Complex audio signal generation circuit.
【請求項6】請求項5におけるディジタル標本化周波数
変換回路として、第一の標本化周波数の標本化パルス信
号によって周期的に初期設定される計時装置によって、
第二の標本化周波数の標本化パルスの時刻を計測し、前
記第二標本化時刻によって定まるフィルタ係数を持つ時
変係数フィルタを用いて、前記第一の標本化周期で標本
化された入力信号系列を、第二の標本化周期で標本化し
直した出力信号系列に変換する標本化周波数変換回路を
用いる複合音声信号生成回路。
6. The digital sampling frequency conversion circuit according to claim 5, wherein a timekeeping device that is periodically initialized by a sampling pulse signal of a first sampling frequency,
An input signal sampled at the first sampling period is measured by measuring the time of a sampling pulse having a second sampling frequency and using a time-varying coefficient filter having a filter coefficient determined by the second sampling time. A composite audio signal generation circuit using a sampling frequency conversion circuit for converting a sequence into an output signal sequence resampled at a second sampling period.
JP11019593A 1993-05-12 1993-05-12 Composite sound signal generation circuit Pending JPH06326674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019593A JPH06326674A (en) 1993-05-12 1993-05-12 Composite sound signal generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019593A JPH06326674A (en) 1993-05-12 1993-05-12 Composite sound signal generation circuit

Publications (1)

Publication Number Publication Date
JPH06326674A true JPH06326674A (en) 1994-11-25

Family

ID=14529463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019593A Pending JPH06326674A (en) 1993-05-12 1993-05-12 Composite sound signal generation circuit

Country Status (1)

Country Link
JP (1) JPH06326674A (en)

Similar Documents

Publication Publication Date Title
US5075880A (en) Method and apparatus for time domain interpolation of digital audio signals
KR950701470A (en) METHOD AND APPARATUS FOR DIGITIZING A WIDE FREQUENCY BANDWIDTH SIGINAL
JPH0642619B2 (en) Interpolative time-discrete filter device
Zschorlich Digital filtering of EMG-signals
KR900015447A (en) Sampling Rate Inverter
JPH07162383A (en) Fm stereo broadcasting equipment
JPS60501486A (en) Filter and data transmission system using it
JPH06326674A (en) Composite sound signal generation circuit
Critchley et al. Design methods for periodically time varying digital filters
JPH071850B2 (en) Digital processing FM modulator
JPH06311134A (en) Orthogonal frequency division multiplex signal generator
JPH05218992A (en) Digital fm stereo modulation method
JPS63200635A (en) Transmultiplexer
JP2001518273A (en) Time discrete filter
WO2014021666A1 (en) Single filter bank and method for designing same
JPS6035845A (en) Digital/analog conversion system
JPS6336170B2 (en)
GB2159014A (en) Switched capacitor filter
JPS5948577B2 (en) FDM/TDM conversion device
JPS6242609A (en) Thinning and interpolating device
Antill et al. DSP-based FM stereo generator for digital studio-to-transmitter link
JP5466054B2 (en) D / A converter
JPS5858625B2 (en) signal processing device
JPH06169289A (en) Compressed data reproduction device
JPH0823262A (en) Sampling frequency converter