JPH06326522A - Analog signal processing integrated circuit - Google Patents

Analog signal processing integrated circuit

Info

Publication number
JPH06326522A
JPH06326522A JP5110237A JP11023793A JPH06326522A JP H06326522 A JPH06326522 A JP H06326522A JP 5110237 A JP5110237 A JP 5110237A JP 11023793 A JP11023793 A JP 11023793A JP H06326522 A JPH06326522 A JP H06326522A
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
bias
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5110237A
Other languages
Japanese (ja)
Inventor
Seiji Okamoto
清治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5110237A priority Critical patent/JPH06326522A/en
Publication of JPH06326522A publication Critical patent/JPH06326522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To reduce the power consumption change against the fluctuation of the power voltage and to prolong the service life of a battery by building a switching circuit into a bias voltage generating circuit in order to change the bias voltage level in response to the bias control signal. CONSTITUTION:The power voltage level is monitored by a power voltage monitoring circuit 8. Then the circuit 8 outputs a control signal when the power voltage exceeds a prescribed level. A bias voltage generating circuit 9 contains a switching circuit which receives the control signal from the circuit 8 and changes the bias voltage level. Thus the bias voltage level is changed and the voltage of a level lower than the normal bias voltage is generated if the power voltage exceeds a prescribed level. As a result, no extra power is consumed and the increase of the power consumption can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は広い電源電圧範囲に渡っ
て消費電流の変動の少ないアナログ信号処理用集積回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit for analog signal processing, which consumes less current consumption over a wide power supply voltage range.

【0002】[0002]

【従来の技術】図8は従来のアナログ信号処理用集積回
路の構成を示すブロック図で、フィルタ内蔵形のAD変
換用集積回路の構成を示したものである。アナログ信号
入力端子3から入力されたアナログ信号はフィルタ4を
介してAD変換器5に入力されディジタル信号に変換さ
れる。変換されたディジタル信号は制御回路6を介して
ディジタル信号出力端子10に出力される。AD変換器
5には基準電圧発生回路7からの基準電圧が供給され
る。またフィルタ4とAD変換器5にはバイアス電圧発
生回路9からの所定バイアス電圧が供給される。
2. Description of the Related Art FIG. 8 is a block diagram showing the structure of a conventional analog signal processing integrated circuit, and shows the structure of a filter-contained AD converting integrated circuit. The analog signal input from the analog signal input terminal 3 is input to the AD converter 5 via the filter 4 and converted into a digital signal. The converted digital signal is output to the digital signal output terminal 10 via the control circuit 6. A reference voltage from the reference voltage generating circuit 7 is supplied to the AD converter 5. Further, a predetermined bias voltage from the bias voltage generation circuit 9 is supplied to the filter 4 and the AD converter 5.

【0003】図9はフィルタ4やAD変換器5中に使用
される代表的なA級のCMOS演算増幅器の回路図を示
したものである。1は正電源端子、2は負電源端子、9
01は逆相入力端子、902は正相入力端子、903は
出力端子、904はバイアス電圧入力端子である。この
演算増幅器はフィルタ4やAD変換器5中に数十個の単
位で用いられ、集積回路の消費電流の大半を占めてい
る。
FIG. 9 is a circuit diagram of a typical class A CMOS operational amplifier used in the filter 4 and the AD converter 5. 1 is a positive power supply terminal, 2 is a negative power supply terminal, 9
Reference numeral 01 is a negative phase input terminal, 902 is a positive phase input terminal, 903 is an output terminal, and 904 is a bias voltage input terminal. This operational amplifier is used in units of several tens in the filter 4 and the AD converter 5, and occupies most of the current consumption of the integrated circuit.

【0004】図10は従来のCMOSによるバイアス電
圧発生回路9の一例を示した回路図である。1aは正電
源入力端子(Vp)、2aは負電源入力端子(Vn)、
101はバイアス電圧出力端子である。なお図中Nで示
すトランジスタはNチャネルトランジスタを、Pで示す
トランジスタはPチャネルトランジスタをそれぞれ表わ
し、以下PチャネルMOSトランジスタをPMOS,N
チャネルMOSトランジスタをNMOSという。
FIG. 10 is a circuit diagram showing one example of a conventional CMOS bias voltage generating circuit 9. 1a is a positive power supply input terminal (Vp), 2a is a negative power supply input terminal (Vn),
101 is a bias voltage output terminal. In the figure, a transistor N is an N-channel transistor, and a transistor P is a P-channel transistor.
The channel MOS transistor is called NMOS.

【0005】図10に示すバイアス電圧発生回路の出力
101はフィルタ4やAD変換器5に使われている図9
に示す演算増幅器のバイアス入力端子904に接続され
る。図10に示すバイアス電圧発生回路の出力電圧は図
から解るように各々のMOSトランジスタのゲート−ド
レイン間が接続されている為各々のMOSトランジスタ
は飽和領域に動作点があり、各々のトランジスタのドレ
イン電流は下記の(1)式で表わされる。
The output 101 of the bias voltage generating circuit shown in FIG. 10 is used in the filter 4 and the AD converter 5.
Is connected to the bias input terminal 904 of the operational amplifier shown in FIG. As can be seen from the figure, the output voltage of the bias voltage generating circuit shown in FIG. 10 is connected between the gate and drain of each MOS transistor, so that each MOS transistor has an operating point in the saturation region and the drain of each transistor. The current is expressed by the following equation (1).

【0006】 Id=1/2*β*W/L*(Vgs−Vt)2 …(1) ここで、β=μ*Co μ:易動度、Co:単位面積当たりのゲート容量 W:ゲート幅、L:ゲート長 Vgs:ゲート−ソース間電圧 今、各トランジスタのβ,Vt値が等しいとしてMOS
トランジスタP3,N5,N6のゲート−ソース間電圧
(=ソース−ドレイン間電圧)をVgs1 ,Vgs2 ,Vgs
3 とすれば、次の(2)式が成立する。
Id = 1/2 * β * W / L * (Vgs-Vt) 2 (1) where β = μ * Co μ: mobility, Co: gate capacitance per unit area W: gate Width, L: Gate length Vgs: Gate-source voltage Now, assuming that the β and Vt values of each transistor are equal, MOS
The gate-source voltage (= source-drain voltage) of the transistors P3, N5, N6 is Vgs1, Vgs2, Vgs
Assuming 3, the following equation (2) is established.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここで上記(2)式を満足するVgs3 の値
がバイアス電圧出力となる。これは、電源電圧が大きく
なるとバイアス電圧が大きくなり、電源電圧が小さくな
るとバイアス電圧も小さくなることを意味する。
Here, the value of Vgs3 that satisfies the above equation (2) becomes the bias voltage output. This means that the bias voltage increases as the power supply voltage increases, and the bias voltage decreases as the power supply voltage decreases.

【0009】演算増幅器の消費電流は図9のNMOSト
ランジスタN7,N8のゲート幅Wとチャネル長Lの比
W/Lの値とバイアス回路から入力されるバイアス電圧
の大きさで定まる。トランジスタN7,N8も飽和領域
となるようにバイアス設定されるのでそのドレイン電流
は上述した式(1)で表わされ、バイアス電圧変動の二
乗に比例して変化する。
The current consumption of the operational amplifier is determined by the value of the ratio W / L of the gate width W and the channel length L of the NMOS transistors N7 and N8 shown in FIG. 9 and the magnitude of the bias voltage input from the bias circuit. Since the transistors N7 and N8 are also biased so as to be in the saturation region, the drain current thereof is represented by the above-described equation (1) and changes in proportion to the square of the bias voltage fluctuation.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように従来
のアナログ信号処理用集積回路では使用電源電圧が高く
なると演算増幅器のバイアス電圧が大きくなり演算増幅
器の消費電流も大きくなり、電源電圧が低くなると演算
増幅器のバイアス電圧が小さくなり演算増幅器の消費電
流も小さくなる。演算増幅器の消費電流はその演算増幅
器で加算等の信号処理を行う信号の周波数により、周波
数が高ければ演算増幅器の電流値も大きく周波数が低け
れば演算増幅器の電流値も小さく設定される。
As described above, in the conventional integrated circuit for analog signal processing, when the power supply voltage used increases, the bias voltage of the operational amplifier increases, the consumption current of the operational amplifier increases, and the power supply voltage decreases. Then, the bias voltage of the operational amplifier is reduced and the current consumption of the operational amplifier is also reduced. The current consumption of the operational amplifier is set according to the frequency of the signal for which signal processing such as addition is performed by the operational amplifier. If the frequency is high, the current value of the operational amplifier is large, and if the frequency is low, the current value of the operational amplifier is set small.

【0011】携帯用機器においてはその電源として電池
が使用される。この電池の発生電圧は使用初期と終期と
ではその電圧値が大きく変化する。この電池による電圧
をそのまま従来のアナログ信号処理用集積回路の電源電
圧として使用すると、使用初期において必要以上の電源
電流が流れて電池の寿命を短くしてしまう。これを避け
るために電池出力に電圧を安定化するためのレギュレー
タを入れるのが一般的であるが、レギュレータの使用は
小型化を指向する携帯機器では小型化の妨げになるとい
う問題がある。
A battery is used as a power source in a portable device. The generated voltage of this battery varies greatly between the initial stage and the final stage of use. If this voltage from the battery is used as it is as the power supply voltage of the conventional analog signal processing integrated circuit, a power supply current more than necessary flows in the initial stage of use and the life of the battery is shortened. In order to avoid this, it is general to insert a regulator for stabilizing the voltage in the battery output, but the use of the regulator has a problem that it hinders miniaturization in a portable device that is aimed at miniaturization.

【0012】本発明は上述した問題点を解消する為にな
されたものでアナログ信号処理用集積回路の電源電圧変
動に対する消費電流変化を小さくし、電池寿命を長くす
る携帯機器に適したアナログ信号処理用集積回路を提供
することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the analog signal processing suitable for a portable device for extending the battery life by reducing the change in current consumption with respect to the fluctuation of the power supply voltage of the analog signal processing integrated circuit. It is an object of the present invention to provide an integrated circuit for use.

【0013】[0013]

【課題を解決するための手段】本発明は、一定範囲の電
源電圧の変動にかかわらず、ほぼ一定の基準電圧を出力
する基準電圧発生回路と、前記電源電圧の大きさに依存
するバイアス電圧を出力するバイアス電圧発生回路と、
前記基準電圧又は/及びバイアス電圧の供給を受けて動
作するアナログ信号処理回路とを有するアナログ信号処
理用集積回路において、前記電源電圧を一方の入力とし
前記基準電圧を他方の入力とし、前記電源電圧の大きさ
が前記基準電圧に基づいて定める所定の値より大きい場
合にはバイアス制御信号を出力する電源電圧監視回路
と、前記バイアス電圧発生回路内に、前記バイアス制御
信号に応答して前記バイアス電圧の大きさを切り替えて
出力する切り替え回路手段とを設けたものである。
SUMMARY OF THE INVENTION The present invention provides a reference voltage generating circuit that outputs a substantially constant reference voltage regardless of fluctuations in the power supply voltage in a certain range, and a bias voltage that depends on the magnitude of the power supply voltage. Bias voltage generating circuit to output,
An analog signal processing integrated circuit having an analog signal processing circuit which operates by receiving the supply of the reference voltage or / and a bias voltage, wherein the power supply voltage is one input and the reference voltage is the other input, and the power supply voltage is Is larger than a predetermined value determined based on the reference voltage, a power supply voltage monitoring circuit that outputs a bias control signal, and the bias voltage generating circuit in the bias voltage generating circuit in response to the bias control signal. And switching circuit means for switching and outputting the size of the.

【0014】[0014]

【作用】本発明では電源電圧監視回路により電源電圧の
大きさを監視しており、電源電圧の大きさが所定の電圧
よりも大きい範囲にある場合にはこの電源電圧監視回路
から制御信号が出力される。バイアス電圧発生回路はこ
の制御信号を受けバイアス電圧の大きさを変更させる切
り替え回路を内蔵している。したがって電源電圧が所定
の値よりも大きいとバイアス電圧が変更され通常のバイ
アス電圧よりも低い電圧が出力される。このため余分な
電流消費がなくなり消費電流の増加が抑制される。
In the present invention, the magnitude of the power supply voltage is monitored by the power supply voltage monitoring circuit, and when the magnitude of the power supply voltage is in a range larger than a predetermined voltage, the power supply voltage monitoring circuit outputs a control signal. To be done. The bias voltage generation circuit has a built-in switching circuit that receives the control signal and changes the magnitude of the bias voltage. Therefore, when the power supply voltage is higher than a predetermined value, the bias voltage is changed and a voltage lower than the normal bias voltage is output. For this reason, extra current consumption is eliminated and an increase in current consumption is suppressed.

【0015】[0015]

【実施例】図1は本発明の一実施例に係るアナログ信号
処理用集積回路の構成図を示したものである。図1では
フィルタ内蔵形AD変換器が実施例として示されてい
る。なお図中に示す符号は従来の回路構成と同一部分に
は同一符号を付しその詳細説明は省略する。
1 is a block diagram of an analog signal processing integrated circuit according to an embodiment of the present invention. In FIG. 1, a filter built-in type AD converter is shown as an embodiment. It should be noted that the same reference numerals as those in the conventional circuit configuration are given the same reference numerals in the drawings, and detailed description thereof will be omitted.

【0016】本発明では電源電圧監視回路8を設けその
制御信号8cによって制御されるバイアス電圧発生回路
9を設けた点が従来と異なっている。なお基準電圧発生
回路7の出力は電源電圧監視回路8の第2の入力端子8
aに接続されると共にAD変換器5の基準電圧入力端子
5aに接続される。電源電圧監視回路8の第1の入力端
子8bには正電源電圧端子1が接続される。電源電圧監
視回路8の出力端子8cはバイアス電圧発生回路9の制
御入力端子9aに接続される。バイアス電圧発生回路9
の出力端子9bはフィルタ4、AD変換器5に使用され
る演算増幅器のバイアス電圧入力端子へ接続される。
The present invention is different from the prior art in that the power supply voltage monitoring circuit 8 is provided and the bias voltage generating circuit 9 controlled by the control signal 8c is provided. The output of the reference voltage generation circuit 7 is the second input terminal 8 of the power supply voltage monitoring circuit 8.
It is connected to the reference voltage input terminal 5a of the AD converter 5 as well as connected to a. The positive power supply voltage terminal 1 is connected to the first input terminal 8b of the power supply voltage monitoring circuit 8. The output terminal 8c of the power supply voltage monitoring circuit 8 is connected to the control input terminal 9a of the bias voltage generating circuit 9. Bias voltage generation circuit 9
9b is connected to the bias voltage input terminal of the operational amplifier used for the filter 4 and the AD converter 5.

【0017】図2は図1に示す基準電圧発生回路の一例
を示した回路図である。201は基準電圧出力端子であ
り、バイポーラ・トランジスタQ1,Q2、抵抗器R
1,R2,R3、バイアス回路内蔵形演算増幅器A1に
より構成されたいわゆるNPNトランジスタのバンドギ
ャップ電圧を利用した基準電圧発生回路と、抵抗器R
4,R5、バイアス回路内蔵形演算増幅器A2で構成さ
れる電圧調整回路とで構成されており電源電圧が変化し
ても出力電圧変化が小さい。
FIG. 2 is a circuit diagram showing an example of the reference voltage generating circuit shown in FIG. 201 is a reference voltage output terminal, which includes bipolar transistors Q1 and Q2 and a resistor R
1, R2, R3, a reference voltage generating circuit using a bandgap voltage of a so-called NPN transistor composed of a bias circuit built-in operational amplifier A1, and a resistor R
4, R5, and a voltage adjusting circuit composed of a bias circuit built-in operational amplifier A2, the output voltage change is small even if the power supply voltage changes.

【0018】図3は図1の電源電圧監視回路8の一例を
示す回路図で、301が出力端子であり第一の入力端子
302に接続された第一の電圧分割器303、第二の入
力端子304に接続された第二の電圧分割器305、コ
ンパレータ306とで構成される。電圧分割器の一例と
して抵抗器による電圧分割器が示されている。第一の電
圧分割器303の出力307はコンパータ306の逆相
入力端子に接続され、第二の電圧分割器305の出力端
子308はコンパレータ306の正相入力端子にそれぞ
れ接続される。コンパレータの正相入力端子の電圧に対
し逆相入力端子の電圧が低いときコンパレータ306の
出力は略正電源電圧を出力し、正相入力端子の電圧に対
して逆相入力端子の電圧が高いときコンパレータ306
の出力は略負電源電圧を出力する。
FIG. 3 is a circuit diagram showing an example of the power supply voltage monitoring circuit 8 of FIG. 1, in which 301 is an output terminal, a first voltage divider 303 connected to the first input terminal 302, and a second input. It is composed of a second voltage divider 305 and a comparator 306 connected to the terminal 304. A resistor voltage divider is shown as an example of the voltage divider. The output 307 of the first voltage divider 303 is connected to the negative phase input terminal of the comparator 306, and the output terminal 308 of the second voltage divider 305 is connected to the positive phase input terminal of the comparator 306. When the voltage of the negative phase input terminal is lower than the voltage of the positive phase input terminal of the comparator, the output of the comparator 306 outputs a substantially positive power supply voltage, and when the voltage of the negative phase input terminal is higher than the voltage of the positive phase input terminal. Comparator 306
The output of is a substantially negative power supply voltage.

【0019】図4はコンパレータの回路図を示したもの
である。401が逆相入力端子、402が正相入力端
子、403が出力端子をそれぞれ表わす。ここで図3に
示す電源電圧監視回路の第一の入力端子302へは正電
源電圧を与え、第二の入力端子304へは基準電圧発生
回路の出力電圧を与える。
FIG. 4 shows a circuit diagram of the comparator. Reference numeral 401 represents a negative phase input terminal, 402 represents a positive phase input terminal, and 403 represents an output terminal. Here, the positive power supply voltage is applied to the first input terminal 302 of the power supply voltage monitoring circuit shown in FIG. 3, and the output voltage of the reference voltage generating circuit is applied to the second input terminal 304.

【0020】図5は図1に示すバイアス電圧発生回路9
の具体的な回路構成の一例で501は制御入力端子、5
02はバイアス電圧出力端子でありPMOSトランジス
タP1のソース端子は正電源に接続されゲートとドレイ
ンとは共通に接続されてNMOSトランジスタN1のド
レインとゲートとに接続される。トランジスタN1のソ
ースはNMOS−N2のドレイン、ゲート、NMOS−
N3のドレイン、PMOS−P2のソースにそれぞれ接
続される。トランジスタN3のゲートはトランジスタP
2のドレイン、NMOS−N4のドレインに接続され
る。トランジスタP2,N4のゲートは共通に接続され
制御入力端子501に接続される。トランジスタN2,
N3,N4のソースは負電源端子に接続される。
FIG. 5 shows the bias voltage generating circuit 9 shown in FIG.
In an example of a specific circuit configuration of 501, 501 is a control input terminal,
Reference numeral 02 denotes a bias voltage output terminal. The source terminal of the PMOS transistor P1 is connected to the positive power supply, the gate and the drain are commonly connected, and the drain and the gate of the NMOS transistor N1 are connected. The source of the transistor N1 is the drain and gate of the NMOS-N2, and the NMOS-
It is connected to the drain of N3 and the source of PMOS-P2, respectively. The gate of the transistor N3 is the transistor P
2 drain and NMOS-N4 drain. The gates of the transistors P2 and N4 are commonly connected and connected to the control input terminal 501. Transistor N2
The sources of N3 and N4 are connected to the negative power supply terminal.

【0021】制御入力端子501には電源電圧監視回路
8からの出力が入力され、この制御入力端子501の電
圧が略負電源電圧の時トランジスタP2はON状態、ト
ランジスタN4はOFF状態となり、トランジスタN3
はN2と並列に接続された状態となって、第一のバイア
ス電圧を出力する。制御入力端子501の電圧が略正電
源電圧の時トランジスタP2はOFFし、トランジスタ
N4はON状態となるためトランジスタN3はOFFと
なり、第二のバイアス電圧が出力される。
The output from the power supply voltage monitoring circuit 8 is input to the control input terminal 501, and when the voltage of the control input terminal 501 is substantially a negative power supply voltage, the transistor P2 is turned on, the transistor N4 is turned off, and the transistor N3 is turned on.
Is connected in parallel with N2 and outputs the first bias voltage. When the voltage of the control input terminal 501 is substantially positive power supply voltage, the transistor P2 is turned off and the transistor N4 is turned on, so that the transistor N3 is turned off and the second bias voltage is output.

【0022】今、電源電圧が同一条件とすれば第一のバ
イアス電圧は第二のバイアス電圧よりも小さい値とな
る。このように構成されたアナログ信号処理用集積回路
において動作の説明のため負電源電圧が0V、正電源電
圧の範囲が3.6Vから2.7Vまで変化するものと
し、図3に示す電源電圧監視回路の電圧分割比の一例を
示す。第一の電圧分割器303の分割比を1/2とし第
二の電圧分割器305の分割比を電源電圧監視回路のコ
ンパレータの正相入力端子電圧が1.5Vになるように
する。例えば基準電圧出力が2Vとすれば第二の電圧分
割器305の分割比は3/4となる。
Now, if the power supply voltage is the same, the first bias voltage is smaller than the second bias voltage. In order to explain the operation of the analog signal processing integrated circuit configured as described above, it is assumed that the negative power supply voltage changes to 0V and the range of the positive power supply voltage changes from 3.6V to 2.7V. An example of the voltage division ratio of a circuit is shown. The division ratio of the first voltage divider 303 is set to 1/2, and the division ratio of the second voltage divider 305 is set so that the positive phase input terminal voltage of the comparator of the power supply voltage monitoring circuit becomes 1.5V. For example, if the reference voltage output is 2V, the division ratio of the second voltage divider 305 is 3/4.

【0023】このように設定された電圧監視回路は電源
電圧が3Vより大きいとき電源電圧監視回路は“0”
(略負電源電圧)を出力し、これを制御入力とするバイ
アス回路は第1のバイアス電圧を出力する。電源電圧が
3Vより小さいとき電源電圧監視回路は“1”(略正電
源電圧)を出力し、これを制御入力とするバイアス回路
は第二のバイアス電圧を出力する。この第一のバイアス
電圧値、第2のバイアス電圧値は電源電圧変動時におい
ても演算増幅器に必要とされる消費電流の値の最小値を
満足するように前記バイアス回路の各トランジスタのW
/Lの値を決定する。
In the voltage monitoring circuit set in this way, when the power supply voltage is higher than 3V, the power supply voltage monitoring circuit is "0".
A bias circuit that outputs (substantially negative power supply voltage) and uses this as a control input outputs a first bias voltage. When the power supply voltage is lower than 3V, the power supply voltage monitoring circuit outputs "1" (substantially positive power supply voltage), and the bias circuit having this as a control input outputs the second bias voltage. The first bias voltage value and the second bias voltage value satisfy the W of each transistor of the bias circuit so as to satisfy the minimum value of the current consumption required for the operational amplifier even when the power supply voltage changes.
Determine the value of / L.

【0024】図6は電源電圧対消費電流変化の状態を示
した特性図である。図中に点線で延ばした部分はバイア
スを切り替えない場合の消費電流の様子を示している。
次に、電源電圧監視回路の他の構成例を説明する。
FIG. 6 is a characteristic diagram showing a state of change in power consumption with respect to power supply voltage. The portion extended by the dotted line in the figure shows the state of current consumption when the bias is not switched.
Next, another configuration example of the power supply voltage monitoring circuit will be described.

【0025】上述した実施例では監視回路の比較電圧を
1.5Vの1点として説明したが、短時間における微小
な電源電圧変動による電源電圧監視回路出力のバタつき
(バイアス電圧のバタつき)を防止するため電源電圧監
視回路のコンパレータにヒステリシス幅を持たせること
もできる。図7はこのようなヒステリシス特性を有する
電源電圧監視回路の構成例を示した回路図である。70
1が第一の入力端子、702が第二の入力端子、703
が出力端子である。第一の入力端子701に接続された
第一の電圧分割器704、第二の入力端子702に接続
され2つの分割出力Va,Vb(Va>Vb)を持つ第
二の電圧分割器705の2つの出力のいずれかを選択出
力するMOSトランジスタで構成されるスイッチ70
7、第一の電圧分割器704の出力を逆相入力に、前記
スイッチ707の出力を正相入力に接続したコンパレー
タ706で構成される。ここでスイッチ707はコンパ
レータ出力703が“0”のときVbを選択し、コンパ
レータ出力が“1”の時Vaを選択するように構成され
る。
In the above-mentioned embodiment, the comparison voltage of the monitoring circuit is explained as one point of 1.5V, but the fluttering of the output of the power supply voltage monitoring circuit (the fluttering of the bias voltage) due to a minute fluctuation of the power supply voltage in a short time is explained. To prevent this, the comparator of the power supply voltage monitoring circuit can have a hysteresis width. FIG. 7 is a circuit diagram showing a configuration example of a power supply voltage monitoring circuit having such a hysteresis characteristic. 70
1 is a first input terminal, 702 is a second input terminal, 703
Is the output terminal. Two of the first voltage divider 704 connected to the first input terminal 701 and the second voltage divider 705 connected to the second input terminal 702 and having two divided outputs Va and Vb (Va> Vb). Switch 70 composed of MOS transistors for selectively outputting any one of the two outputs
7. A comparator 706 in which the output of the first voltage divider 704 is connected to the negative phase input and the output of the switch 707 is connected to the positive phase input. Here, the switch 707 is configured to select Vb when the comparator output 703 is “0” and select Va when the comparator output 703 is “1”.

【0026】このように構成した図7に示す電源電圧監
視回路において動作を説明するため負電源電圧が0V、
正電源電圧範囲が3.6Vから2.7Vまで変化するも
のとして第一の電圧分割器704の分割比を1/2と
し、第二の電圧分割器705の分割比をVaが1.6
V、Vbが1.5Vとなるよう設定する。このようにす
ることにより電源電圧が3Vより大きい時にはコンパレ
ータ706の出力703は“0”となりスイッチ707
はVbを選択する。電源電圧が3Vより小さくなるとコ
ンパレータ706の出力707は“1”となってスイッ
チ707はVaを選択する。コンパレータ706の比較
電圧がVbからVaに替わることにより電源電圧が3.
2Vより大きい電圧にならない限りコンパレータ706
は状態を替えない。つまり図7の電源電圧監視回路が電
源電圧の低下を検出した後に電源電圧が0.2Vより小
さい範囲で高い方に変動しても監視出力は状態を替え
ず、この監視出力で制御されるバイアス電圧も切り替え
られない。
In order to explain the operation of the power supply voltage monitoring circuit shown in FIG. 7 configured as described above, the negative power supply voltage is 0V,
Assuming that the positive power supply voltage range changes from 3.6V to 2.7V, the division ratio of the first voltage divider 704 is set to 1/2, and the division ratio of the second voltage divider 705 is 1.6 when Va is 1.6.
V and Vb are set to be 1.5V. By doing so, when the power supply voltage is higher than 3V, the output 703 of the comparator 706 becomes "0" and the switch 707 is turned on.
Selects Vb. When the power supply voltage becomes lower than 3V, the output 707 of the comparator 706 becomes "1" and the switch 707 selects Va. When the comparison voltage of the comparator 706 is changed from Vb to Va, the power supply voltage becomes 3.
Comparator 706 unless the voltage exceeds 2V
Does not change state. That is, even if the power supply voltage monitoring circuit in FIG. 7 detects a decrease in the power supply voltage and the power supply voltage fluctuates to a higher value within a range smaller than 0.2 V, the monitoring output does not change the state and the bias controlled by this monitoring output is used. The voltage cannot be switched.

【0027】以上の説明においては電源電圧の監視電圧
が1つの場合について説明したが、監視回路を複数設け
この複数の監視回路の制御出力により複数設けた図5に
示すようなトランジスタN3に相当するNMOSトラン
ジスタを制御してバイアス電圧を細かく制御することも
できる。
In the above description, the case where there is one monitor voltage of the power supply voltage has been described, but it corresponds to the transistor N3 as shown in FIG. 5 in which a plurality of monitor circuits are provided and a plurality of them are provided by the control output of the plurality of monitor circuits. The bias voltage can be finely controlled by controlling the NMOS transistor.

【0028】[0028]

【発明の効果】以上実施例に基づいて詳細に説明したよ
うに、本発明に係るアナログ信号処理用集積回路では電
源電圧監視回路を設けこの電源電圧監視回路の出力によ
りバイアス電圧を切り替えられるようにしているため電
源電圧の広い範囲に渡って消費電流の変化を小さくする
ようにすることができる。さらに、電源電圧監視回路に
ヒステリシス幅を持たせるようにすれば短時間における
電源電圧変動に対してもバイアス電圧の切り替えが実行
されず、安定した消費電流のアナログ信号処理用集積回
路を実現することが可能となる。
As described above in detail with reference to the embodiments, the integrated circuit for analog signal processing according to the present invention is provided with the power supply voltage monitor circuit so that the bias voltage can be switched by the output of the power supply voltage monitor circuit. Therefore, it is possible to reduce the change in consumption current over a wide range of the power supply voltage. Further, if the power supply voltage monitoring circuit has a hysteresis width, the bias voltage is not switched even if the power supply voltage fluctuates in a short time, and an integrated circuit for analog signal processing with stable current consumption can be realized. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るアナログ信号処理用集
積回路の構成ブロック図
FIG. 1 is a configuration block diagram of an analog signal processing integrated circuit according to an embodiment of the present invention.

【図2】本発明に用いられる基準電圧発生回路のブロッ
ク構成図
FIG. 2 is a block configuration diagram of a reference voltage generation circuit used in the present invention.

【図3】本発明に用いられる電源電圧監視回路の構成を
示すブロック回路図
FIG. 3 is a block circuit diagram showing a configuration of a power supply voltage monitoring circuit used in the present invention.

【図4】本発明に用いられるコンパレータの回路図FIG. 4 is a circuit diagram of a comparator used in the present invention.

【図5】本発明に用いられるバイアス電圧発生回路の回
路図
FIG. 5 is a circuit diagram of a bias voltage generation circuit used in the present invention.

【図6】本発明の動作を説明した電源電圧と消費電流と
の関係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the power supply voltage and the consumption current, which explains the operation of the present invention.

【図7】本発明の他の実施例に用いられる電源電圧監視
回路の構成を示すブロック図
FIG. 7 is a block diagram showing the configuration of a power supply voltage monitoring circuit used in another embodiment of the present invention.

【図8】従来のアナログ信号処理用集積回路の一例を示
すブロック図
FIG. 8 is a block diagram showing an example of a conventional integrated circuit for analog signal processing.

【図9】従来の演算増幅器の構成を示す回路図FIG. 9 is a circuit diagram showing a configuration of a conventional operational amplifier.

【図10】従来のバイアス電圧発生回路の構成を示す回
路図
FIG. 10 is a circuit diagram showing a configuration of a conventional bias voltage generation circuit.

【符号の説明】[Explanation of symbols]

1 正電源端子 2 負電源端子 3 アナログ信号入力 4 フィルタ 5 AD変換器 6 制御回路 7 基準電圧発生回路 8 電源電圧監視回路 9 バイアス電圧発生回路 1 Positive Power Supply Terminal 2 Negative Power Supply Terminal 3 Analog Signal Input 4 Filter 5 AD Converter 6 Control Circuit 7 Reference Voltage Generation Circuit 8 Power Supply Voltage Monitoring Circuit 9 Bias Voltage Generation Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一定範囲の電源電圧の変動にかかわら
ず、ほぼ一定の基準電圧を出力する基準電圧発生回路
と、前記電源電圧の大きさに依存するバイアス電圧を出
力するバイアス電圧発生回路と、前記基準電圧又は/及
びバイアス電圧の供給を受けて動作するアナログ信号処
理回路とを有するアナログ信号処理用集積回路におい
て、 前記電源電圧を一方の入力とし前記基準電圧を他方の入
力とし、前記電源電圧の大きさが前記基準電圧に基づい
て定める所定の値より大きい場合にはバイアス制御信号
を出力する電源電圧監視回路と、 前記バイアス電圧発生回路内に、前記バイアス制御信号
に応答して前記バイアス電圧の大きさを切り替えて出力
する切り替え回路手段とを設けた事を特徴とするアナロ
グ信号処理用集積回路。
1. A reference voltage generation circuit that outputs a substantially constant reference voltage regardless of fluctuations in the power supply voltage within a certain range, and a bias voltage generation circuit that outputs a bias voltage that depends on the magnitude of the power supply voltage. An analog signal processing integrated circuit having an analog signal processing circuit which operates by receiving the supply of the reference voltage or / and a bias voltage, wherein the power supply voltage is one input and the reference voltage is the other input, and the power supply voltage is A power supply voltage monitoring circuit that outputs a bias control signal when the magnitude of the bias voltage is greater than a predetermined value determined based on the reference voltage; and the bias voltage in the bias voltage generation circuit in response to the bias control signal. An integrated circuit for analog signal processing, comprising switching circuit means for switching and outputting the size of the signal.
【請求項2】 前記電源電圧監視回路は、第1の電圧分
割回路、第2の電圧分割回路及び比較回路で構成され、
前記第1の分割回路で前記電源電圧を、前記第2の電圧
分割回路で前記基準電圧をそれぞれ分割して前記比較回
路のそれぞれの入力端子に入力し、出力端子より前記バ
イアス制御電圧を取り出す事を特徴とする請求項1記載
のアナログ信号処理用集積回路。
2. The power supply voltage monitoring circuit includes a first voltage division circuit, a second voltage division circuit, and a comparison circuit,
The power supply voltage is divided by the first division circuit, the reference voltage is divided by the second voltage division circuit, and the divided voltage is input to each input terminal of the comparison circuit, and the bias control voltage is taken out from the output terminal. An integrated circuit for analog signal processing according to claim 1.
【請求項3】 前記切り替え回路手段は、前記バイアス
電圧発生回路を構成するMOSトランジスタの並列接続
の切り替えによって行う事を特徴とする請求項1記載の
アナログ信号処理用集積回路。
3. The analog signal processing integrated circuit according to claim 1, wherein the switching circuit means performs switching by switching parallel connection of MOS transistors forming the bias voltage generating circuit.
JP5110237A 1993-05-12 1993-05-12 Analog signal processing integrated circuit Pending JPH06326522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5110237A JPH06326522A (en) 1993-05-12 1993-05-12 Analog signal processing integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5110237A JPH06326522A (en) 1993-05-12 1993-05-12 Analog signal processing integrated circuit

Publications (1)

Publication Number Publication Date
JPH06326522A true JPH06326522A (en) 1994-11-25

Family

ID=14530587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5110237A Pending JPH06326522A (en) 1993-05-12 1993-05-12 Analog signal processing integrated circuit

Country Status (1)

Country Link
JP (1) JPH06326522A (en)

Similar Documents

Publication Publication Date Title
US7193399B2 (en) Voltage regulator
US7002329B2 (en) Voltage regulator using two operational amplifiers in current consumption
US6677735B2 (en) Low drop-out voltage regulator having split power device
US8866341B2 (en) Voltage regulator
JP3185698B2 (en) Reference voltage generation circuit
US5640084A (en) Integrated switch for selecting a fixed and an adjustable voltage reference at a low supply voltage
US6570367B2 (en) Voltage generator with standby operating mode
US7304458B2 (en) Regulator circuit
US10175707B1 (en) Voltage regulator having feedback path
JPH0727424B2 (en) Constant current source circuit
US7353124B2 (en) Device and method for voltage regulator with low standby current
US20030218454A1 (en) Voltage mode voltage regulator with current mode start-up
CN111625043B (en) Adjustable ultra-low power consumption full CMOS reference voltage current generation circuit
US20060170403A1 (en) Voltage regulator with reduced power consumption in standby operating mode
US20230229182A1 (en) Low-dropout regulator for low voltage applications
US6909320B2 (en) Method and apparatus for dual output voltage regulation
JPH04229313A (en) Buffer circuit
US7843183B2 (en) Real time clock (RTC) voltage regulator and method of regulating an RTC voltage
US6919757B2 (en) Voltage regulator with turn-off assist
US5506495A (en) Step-down circuit with stabilized internal power-supply
JP7173915B2 (en) power circuit
US6028458A (en) Differential amplifier with input signal determined standby state
US10606293B2 (en) On-chip voltage regulator providing extended range of voltage supplies
JPH06326522A (en) Analog signal processing integrated circuit
US7196505B2 (en) Device and method for low-power fast-response voltage regulator with improved power supply range