JPH06325957A - Superconducting current limiter - Google Patents

Superconducting current limiter

Info

Publication number
JPH06325957A
JPH06325957A JP5109585A JP10958593A JPH06325957A JP H06325957 A JPH06325957 A JP H06325957A JP 5109585 A JP5109585 A JP 5109585A JP 10958593 A JP10958593 A JP 10958593A JP H06325957 A JPH06325957 A JP H06325957A
Authority
JP
Japan
Prior art keywords
coil
superconductor
superconducting
current limiter
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5109585A
Other languages
Japanese (ja)
Other versions
JP2607822B2 (en
Inventor
Masamichi Ishihara
正道 石原
Shuichiro Motoyama
修一郎 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5109585A priority Critical patent/JP2607822B2/en
Priority to DE69401722T priority patent/DE69401722T2/en
Priority to EP94302178A priority patent/EP0620570B1/en
Priority to US08/218,809 priority patent/US5546261A/en
Publication of JPH06325957A publication Critical patent/JPH06325957A/en
Application granted granted Critical
Publication of JP2607822B2 publication Critical patent/JP2607822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To realize a superconducting current limiter having a large cooling efficiency of its superconductor, by disposing its superconductor on the outer peripheral side of a coil which is connected in series with a power system to cover the coil. CONSTITUTION:A superconducting current limiter comprises a solid oval supporting body 2 made of iron wherein cores 1 are provided left and right and a pair of cylindrical parts 3 provided respectively near the upper and lower ends of the supporting body 2. A coil 4 is wound around the upper cylindrical part 3, and both the ends of the coil 4 are subjected to a series connection with a power transmission system. A superconducting cylindrical body 5 is disposed on the outer peripheral side of the coil 4. It is formed in the form of a cylinder out of a bismuth based high-temperature superconductor. The superconducting cylindrical body 5 is not supported especially by external supportors, but through the outer peripheral side of the coil 4 it is engaged with the cylindrical part 3 while a clearance is left between them. Thereby, the cooling efficiency of the superconductor can be improved in comparison with the case wherein the superconductor is provided on the inner peripheral side of the coil 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導体が臨界電流
値を超えることによって超電導状態から常電導状態へと
クエンチ(転移)する性質を利用した超電導限流器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting fault current limiter which utilizes the property that a superconductor is quenched (transitioned) from a superconducting state to a normal conducting state when it exceeds a critical current value.

【0002】[0002]

【従来の技術】従来より、送電系統においては事故電流
を限流する限流器を配置することが提案されている。限
流器は過電流が流れた場合に抵抗となってその過電流を
抑制し、遮断器及び変圧器にかかる負荷を所定レベル以
下に抑制する働きをする。限流器の方式としては種々の
技術が提案されているが、近年、限流器として例えば特
開平2−105402号公報に開示されるような超電導
体を用いて限流する限流器が提案されている。
2. Description of the Related Art Conventionally, it has been proposed to arrange a fault current limiter for limiting a fault current in a power transmission system. The current limiter serves as a resistance when an overcurrent flows, and suppresses the overcurrent, and functions to suppress the load applied to the breaker and the transformer to a predetermined level or less. Although various techniques have been proposed as a method of a current limiting device, in recent years, as a current limiting device, for example, a current limiting device that uses a superconductor as disclosed in Japanese Patent Laid-Open No. 2-105402 has been proposed. Has been done.

【0003】この超電導限流器の基本原理は次のごとく
である。まず、送電系統に直列に接続したコイルを超電
導体の外周に巻回し、超電導体内に鉄心を同心円状に配
置して超電導限流器を構成する。コイルは通電されると
自己インダクタンスによりインピーダンスが生ずる。し
かし、超電導体が超電導状態にある場合は磁束が遮断さ
れるためコイルによって発生する磁場は鉄心から完全に
シールド(マイスナー効果)し、理論上コイルの自己イ
ンダクタンスは消失する。即ち、インピーダンスが極め
て小さくなるため定常時の送電電流の損失は少い。
The basic principle of this superconducting fault current limiter is as follows. First, a coil connected in series to a power transmission system is wound around the outer circumference of a superconductor, and iron cores are arranged concentrically in the superconductor to form a superconducting fault current limiter. When the coil is energized, self-inductance causes impedance. However, when the superconductor is in the superconducting state, the magnetic flux is cut off, so the magnetic field generated by the coil is completely shielded from the iron core (Meissner effect), and theoretically the self-inductance of the coil disappears. That is, since the impedance is extremely small, the loss of the transmission current in the steady state is small.

【0004】ところが、一旦、短絡や落雷等によりコイ
ルに過電流が流れると、超電導体の臨界磁場を超えてし
まうため、超電導体は超電導状態から常電導状態へとク
エンチ(転移)してしまう。すると通常の物質と同様に
磁束が超電導体に鎖交するため(磁束スイッチング効
果)改めてコイルに自己インダクタンスが発生して過電
流を限流することができるようにしたものである。
However, once an overcurrent flows through the coil due to a short circuit, a lightning strike, or the like, the critical magnetic field of the superconductor is exceeded, so that the superconductor is quenched from the superconducting state to the normal conducting state. Then, the magnetic flux is linked to the superconductor like a normal substance (flux switching effect), so that self-inductance is again generated in the coil and the overcurrent can be limited.

【0005】[0005]

【発明が解決しようとする課題】ところで、現状の超電
導体においては超電導体を超電導状態とするために冷却
状態を維持する必要がある。そのため超電導体を利用し
た超電導限流器では限流器全体を液体窒素等の冷却液に
浸漬して冷却している。しかし、従来では超電導体の外
周にコイルが巻回されていたため冷却効率が十分ではな
かった。即ち、この従来タイプにおいては超電導体は冷
却液に対してその内周面側のみで接触することとなり、
特に肉厚に形成された場合では冷却効率が十分ではなか
った。更に、特開平2−105402号公報に開示され
るように超電導体がコアたる鉄心とコイルとに挟まれた
ものにあっては、更に冷却液と超電導体との接触面積が
少なく、冷却効率もより低くなる。その上、鉄心に発生
するうず電流損及びコイルの抵抗分により発生するジュ
ール損に挟まれ、クエンチする電流が小さくなってしま
うという問題があった。
By the way, in the current superconductor, it is necessary to maintain the cooling state in order to bring the superconductor into the superconducting state. Therefore, in a superconducting fault current limiter using a superconductor, the entire fault current limiter is immersed in a cooling liquid such as liquid nitrogen for cooling. However, in the past, the coil was wound around the outer periphery of the superconductor, so that the cooling efficiency was not sufficient. That is, in this conventional type, the superconductor comes into contact with the cooling liquid only on the inner peripheral surface side,
In particular, when formed to be thick, the cooling efficiency was not sufficient. Further, as disclosed in Japanese Patent Application Laid-Open No. 2-105402, in the case where the superconductor is sandwiched between the iron core as the core and the coil, the contact area between the cooling liquid and the superconductor is further reduced, and the cooling efficiency is also improved. Will be lower. In addition, there is a problem that the quenching current becomes small due to being sandwiched by the eddy current loss generated in the iron core and the Joule loss generated by the resistance component of the coil.

【0006】本発明の目的は、超電導体に対する冷却効
率の大きな超電導限流器を提供することである。
An object of the present invention is to provide a superconducting fault current limiter having a large cooling efficiency for a superconductor.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の発明者は、請求項1の発明においては電力系
統に直列に接続されるコイルの外周側に、同コイルに対
して超電導体を被覆状に配置した。また、請求項2の発
明においては送電系に直列に接続されるコイルの外周側
に、同コイルに対して超電導体を被覆状に配置し、少な
くとも超電導体を保冷手段にて保冷する構成とした。請
求項3の発明においては前記超電導体は筒状とし、前記
コイル全体に対して被覆状に配置するようにした。また
請求項4の発明においては前記超電導体をコイル状と
し、前記内側のコイルに対して被覆状に配置するような
構成とした。
In order to solve the above-mentioned problems, the inventor of the present invention proposes that, in the invention of claim 1, superconductivity is provided on the outer peripheral side of the coil connected in series to the power system. The body was placed in a cover. Further, in the invention of claim 2, a superconductor is arranged on the outer peripheral side of the coil connected in series to the power transmission system so as to cover the coil, and at least the superconductor is kept cold by a cooler. . In the invention of claim 3, the superconductor has a tubular shape and is arranged so as to cover the entire coil. Further, in the invention of claim 4, the superconductor is formed in a coil shape, and is arranged so as to cover the inner coil.

【0008】[0008]

【作用】上記のような構成によれば、請求項1の発明に
おいては超電導体はコイルの外周側に被覆状に配置され
ているため冷却効果がコイルの内周側に配置された場合
に比べ大きくなるとともに、超電導体は内側からコイル
の抵抗分によって発生するジュール損にさられるのみ
で、外周は常に開放状態となっているのでクエンチする
電流を大きくすることができる。請求項2の発明におい
ては少なくとも超電導体が保冷手段により保冷されるに
あたって、超電導体はコイルの外周側に被覆状に配置さ
れているため冷却効果がコイルの内周側に配置された場
合に比べ大きくなるとともに、超電導体は内側からコイ
ルの抵抗分によって発生するジュール損にさられるのみ
で、外周は常に冷却液に接触しているのでクエンチする
電流を大きくすることができる。また、請求項3の発明
においては筒状の超電導体により完全にコイルが包囲さ
れるため漏れ電流が少なくなる。また請求項4の発明に
おいてはコイル状としたことにより超電導体の隙間にも
冷却液が浸入するので、一層冷却効率が良くなる。
According to the above-mentioned structure, in the invention of claim 1, the superconductor is arranged on the outer peripheral side of the coil in a covering shape, so that the cooling effect is higher than that in the case of being arranged on the inner peripheral side of the coil. As the size of the superconductor increases, only the Joule loss generated from the inside due to the resistance of the coil causes the outer circumference to be open, so that the quenching current can be increased. In the invention of claim 2, when at least the superconductor is kept cool by the cold insulation means, the superconductor is arranged on the outer peripheral side of the coil in a covering state, so that the cooling effect is compared to the case where it is arranged on the inner peripheral side of the coil. As the size of the superconductor increases, only the Joule loss generated by the resistance of the coil from the inside causes the outer periphery to be in contact with the cooling liquid at all times, so that the quenching current can be increased. Further, in the invention of claim 3, since the coil is completely surrounded by the cylindrical superconductor, the leakage current is reduced. Further, in the invention of claim 4, since the cooling liquid is introduced into the gap between the superconductors by adopting the coil shape, the cooling efficiency is further improved.

【0009】[0009]

【実施例】以下、この発明の一試作例である超電導限流
器10について、図1〜図3に基づいて詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A superconducting fault current limiter 10 which is one prototype of the present invention will be described in detail below with reference to FIGS.

【0010】図1に示すようにコア1は図上左右に配設
された中実軟鉄製の小判状の支持体2と、同支持体2の
上下寄りに配設された一対の円柱部3とより構成されて
いる。円柱部3は直径は38mm、長さ60mmの中密
軟鉄製とされ、図示しないネジにて支持体2に固着され
ている。上側の円柱部3にはコイル4が巻回されてお
り、コイル4両端は本来は送電系統に接続されるもので
ある。コイル4は直径0.3mmのエナメル線を1層巻
き120ターンとしたものである。
As shown in FIG. 1, a core 1 is an oval support 2 made of solid soft iron arranged on the left and right in the figure, and a pair of columnar parts 3 provided on the upper and lower sides of the support 2. It is composed of The cylindrical portion 3 is made of medium-density soft iron having a diameter of 38 mm and a length of 60 mm, and is fixed to the support body 2 with a screw (not shown). A coil 4 is wound around the upper cylindrical portion 3, and both ends of the coil 4 are originally connected to the power transmission system. The coil 4 is formed by winding one layer of an enameled wire having a diameter of 0.3 mm for 120 turns.

【0011】コイル4の外周側には超電導筒体5が配置
されている。超電導筒体5はビスマス系の高温超電導体
を筒状に形成したものであり、超電導筒体5は内径40
mmφ,外径50mmφ,長さ50mmとされている。
この値より計算すると、超電導筒体5の内周面積は約6
280mm2 となり外周面積は約7850mm2 とな
る。超電導筒体5は特に外方より支持されることなく、
コイル4の外周側より円柱部3に遊嵌されている。
A superconducting cylinder 5 is arranged on the outer peripheral side of the coil 4. The superconducting cylinder 5 is a bismuth-based high-temperature superconductor formed in a cylindrical shape, and the superconducting cylinder 5 has an inner diameter of 40 mm.
The diameter is 50 mm, the outer diameter is 50 mm, and the length is 50 mm.
When calculated from this value, the inner peripheral area of the superconducting cylinder 5 is about 6
280 mm 2 next outer circumferential area is about 7850mm 2. The superconducting cylinder 5 is not particularly supported from the outside,
The coil 4 is loosely fitted in the columnar portion 3 from the outer peripheral side.

【0012】本実施例の超電導筒体5を構成するビスマ
ス系の高温超電導体としてはBi−Sr−Ca−Cu−
O系を使用した。Bi:Sr:Ca:Cu=2:2:
1:2となるようにBi2 3 ,CuO,SrCO3
各粉末を調合した。本実施例におけるビスマス系の高温
超電導体の臨界電流密度(Jc)=1000A/c
2,臨界磁場(Bc)=50ガウスであった。
Bi-Sr-Ca-Cu-as a bismuth-based high-temperature superconductor which constitutes the superconducting cylinder 5 of this embodiment.
O system was used. Bi: Sr: Ca: Cu = 2: 2:
Each powder of Bi 2 O 3 , CuO and SrCO 3 was prepared so as to be 1: 2. Critical current density (Jc) of the bismuth-based high-temperature superconductor in this embodiment (Jc) = 1000 A / c
m 2 , critical magnetic field (Bc) = 50 gauss.

【0013】本発明の超電導限流器10は保冷手段たる
冷却槽6に浸漬されている。実施例ではビスマス系の高
温超電導体を使用するため保冷手段たる冷却液は液体窒
素を用いた。
The superconducting fault current limiter 10 of the present invention is immersed in a cooling tank 6 which is a cooling means. In the embodiment, since a bismuth-based high temperature superconductor is used, liquid nitrogen is used as a cooling liquid as a cooling means.

【0014】かかる超電導限流器10の作用についてよ
り詳しい原理を加えて説明する。コイル4に対して外周
より被覆状に配置された筒状の超電導筒体5は超電導状
態において抵抗値0Ωのコイル4と同様の作用を有す
る。即ち、超電導筒体5にはコイル4により発生する磁
束により誘導起電力が発生する。すると超電導筒体5内
部にはコイル4とは逆方向の電流の流れができるため、
コイル4により発生する磁束は超電導筒体5により発生
する磁束と相殺される。従って、超電導状態にある超電
導筒体5では、コイル4のインダクタンスは極めて抑制
されることとなり、超電導限流器10は定常電流がコイ
ルに流れている間は送電電流は限流されることはない。
The operation of the superconducting fault current limiter 10 will be described by adding a more detailed principle. The cylindrical superconducting cylinder 5 arranged to cover the coil 4 from the outer periphery has the same action as the coil 4 having a resistance value of 0Ω in the superconducting state. That is, induced electromotive force is generated in the superconducting cylinder 5 by the magnetic flux generated by the coil 4. Then, a current flows in the opposite direction to the coil 4 inside the superconducting cylinder 5,
The magnetic flux generated by the coil 4 is offset by the magnetic flux generated by the superconducting cylinder 5. Therefore, in the superconducting cylinder 5 in the superconducting state, the inductance of the coil 4 is extremely suppressed, and the superconducting fault current limiter 10 does not limit the transmission current while the steady current flows through the coil.

【0015】一方、短絡事故等によりコイル4に過電流
が流れると、超電導体に流れる誘導起電力に伴う電流量
も一挙に増大し、超電導体の臨界電流値を超える。する
と、超電導筒体5は超電導状態から常電導状態にクエン
チする。そして、コイルに改めて自己インダクタンスが
発生して過電流を限流するようになる。
On the other hand, when an overcurrent flows through the coil 4 due to a short-circuit accident or the like, the amount of current accompanying the induced electromotive force flowing through the superconductor also increases at once and exceeds the critical current value of the superconductor. Then, the superconducting cylinder 5 is quenched from the superconducting state to the normal conducting state. Then, the self-inductance is generated again in the coil to limit the overcurrent.

【0016】以上のような構成とすれば、本実施例の超
電導限流器10は次のような効果を奏する。すなわち、
コイル4の外周側に超電導筒体5を配置したとしても、
超電導筒体5の超電導状態においてはコイル4のインダ
クタンスは消失する。一方、事故時には超電導体が常電
導体にクエンチし、コイル4のインダクタンスが生じ、
短絡電流を限流するという超電導限流器10の限流機能
は保持される。更に、コイル4の外周側に超電導筒体5
を配置したため液体窒素に対して超電導筒体5はその外
周面で接触する。外周面は上記計算によれば内周面より
1600mm2(内周面に対して約25.5パーセント
増)も接触面積が大きくなる。また熱源としてはコイル
4が超電導体の内部にあるのみで外周は常に冷却液に接
触している。従って、冷却効率が上昇するとともにクエ
ンチする電流を大きくすることができる。
With the above structure, the superconducting fault current limiter 10 of the present embodiment has the following effects. That is,
Even if the superconducting cylinder 5 is arranged on the outer peripheral side of the coil 4,
In the superconducting state of the superconducting cylinder 5, the inductance of the coil 4 disappears. On the other hand, in the event of an accident, the superconductor quenches to the normal conductor, causing inductance in the coil 4,
The current limiting function of the superconducting fault current limiter 10 of limiting the short-circuit current is maintained. Further, the superconducting cylinder 5 is provided on the outer circumference of the coil 4.
Since the superconducting cylinder 5 is arranged, the superconducting cylinder 5 comes into contact with liquid nitrogen on its outer peripheral surface. According to the above calculation, the contact area of the outer peripheral surface is larger than that of the inner peripheral surface by 1600 mm 2 (about 25.5% increase from the inner peripheral surface). Further, as the heat source, the coil 4 is only inside the superconductor, and the outer periphery is always in contact with the cooling liquid. Therefore, the cooling efficiency can be increased and the quenching current can be increased.

【0017】また、従来の超電導体の外周にコイルを巻
回するタイプでは超電導体の交換をする場合コイルが邪
魔であったが、本実施例ではネジを緩めて支持体2より
円柱部3を外せば簡単に超電導筒体5を取り替えること
ができる。また、直接コイル4を超電導体5に巻回しな
いため超電導筒体5に対する機械的ストレスが少なくな
る。
Further, in the conventional type in which the coil is wound around the outer periphery of the superconductor, the coil is a hindrance when replacing the superconductor. If removed, the superconducting cylinder 5 can be easily replaced. Further, since the coil 4 is not directly wound around the superconductor 5, mechanical stress on the superconducting cylinder 5 is reduced.

【0018】次に、上記実施例に基づいて行った実験の
データについて図3に示すグラフに基づいて説明する。
本グラフは超電導限流器10を1つの回路として見た場
合の電流−コイル特性(I−L特性)を示すものであ
る。縦軸に回路全体のインダクタンスを取り、横軸に電
流値を取った。A〜Gはそれぞれ測定した値である。
Next, the data of the experiment conducted based on the above-mentioned embodiment will be explained based on the graph shown in FIG.
This graph shows current-coil characteristics (IL characteristics) when the superconducting fault current limiter 10 is viewed as one circuit. The vertical axis represents the inductance of the entire circuit, and the horizontal axis represents the current value. A to G are measured values.

【0019】その結果、6〜7アンペアにおいて臨界電
流に達することが確認された。この値は臨界磁場及び臨
界温度により変動するものである。尚、一般にコイル巻
き数に対してクエンチする電流値は反比例し、インダク
タンスはコイル巻き数の2乗に正比例する。
As a result, it was confirmed that the critical current was reached at 6 to 7 amps. This value varies depending on the critical magnetic field and the critical temperature. In general, the quenching current value is inversely proportional to the number of coil turns, and the inductance is directly proportional to the square of the number of coil turns.

【0020】以上、本発明の一実施例について詳述した
が、本発明は次のような態様に変更して実施することも
可能である。 1)超電導筒体5の外周にフランジ部を形成すること。
例えば筒体5両端部等である。
Although one embodiment of the present invention has been described in detail above, the present invention can be modified and implemented in the following modes. 1) To form a flange portion on the outer circumference of the superconducting cylinder 5.
For example, both ends of the tubular body 5 and the like.

【0021】2)図3に示すように超電導筒体15を研
削してコイル状とし、コイル4の外方より被覆状に配置
すること。このように構成すればコイル4周辺に発生し
た液体窒素由来の窒素ガスをスムーズに排出することが
できる。
2) As shown in FIG. 3, the superconducting cylinder 15 is ground into a coil shape, and the coil 4 is arranged so as to be covered from the outside. With this configuration, the nitrogen gas derived from the liquid nitrogen generated around the coil 4 can be smoothly discharged.

【0022】3)冷却液として液体ヘリウムを用いるこ
と。液体ヘリウムはより低温であるためNbTi系超電
導体等を使用することできる。また、他の冷却剤を用い
ることも自由である。また、逆に現状のビスマス系の高
温超電導体を上回る高温超電導体に応用した場合、必ず
しも冷却液中に浸漬せずともよい。
3) Use liquid helium as the cooling liquid. Since liquid helium has a lower temperature, a NbTi-based superconductor or the like can be used. It is also free to use other coolants. On the contrary, when it is applied to a high-temperature superconductor exceeding the current bismuth-based high-temperature superconductor, it does not necessarily have to be immersed in the cooling liquid.

【0023】4)超電導筒体5の厚みを変更することは
自由である。厚くなるほど内周面と外周面の面積差が生
じ発明の効果は大である。また、コイル4自体を超電導
体で構成することも可能である。
4) It is free to change the thickness of the superconducting cylinder 5. As the thickness increases, the area difference between the inner peripheral surface and the outer peripheral surface occurs, and the effect of the invention is greater. Also, the coil 4 itself can be made of a superconductor.

【0024】5)コイル4と超電導筒体5との間に断熱
材を挿入するようにしてもよい。そうすれば、ジュール
損によるコイル4のジュール熱がより伝わりにくくな
る。 6)コイル4と超電導筒体5との間隔はぴったりと密着
状態とすることも、本実施例のように隙間を有するよう
にしても良い。理論的には密着するほどコイル4には漏
れ磁束がなくなり定常送電時の電流の損失が減ることと
なる。
5) A heat insulating material may be inserted between the coil 4 and the superconducting cylinder 5. Then, the Joule heat of the coil 4 due to the Joule loss becomes harder to be transmitted. 6) The coil 4 and the superconducting cylinder 5 may be closely fitted to each other or may have a gap as in this embodiment. Theoretically, the closer the coils are to each other, the more the magnetic flux leaks in the coil 4 and the less the current loss during steady power transmission.

【0025】7)超電導筒体5は一体成形したものでな
く、リング状の薄板を積層して構成してもよい。 8)コアは中実軟鉄製であったが、薄板を積層して構成
するようにしてもよい。また軟鉄製とはフェライト、ア
モルファス合金製をも含む概念である。
7) The superconducting cylinder 5 is not integrally molded and may be formed by laminating ring-shaped thin plates. 8) Although the core is made of solid soft iron, it may be formed by laminating thin plates. In addition, soft iron is a concept including ferrite and amorphous alloy.

【0026】9)ビスマス系の高温超電導体としてはB
i:Sr:Ca:Cu=2:2:1:2以外の配合で実
施してもよい。また、ビスマス系以外の例えばイットリ
ウム系の超電導体を使用することも可能である。
9) B as a high temperature bismuth superconductor
It may be carried out with a composition other than i: Sr: Ca: Cu = 2: 2: 1: 2. It is also possible to use, for example, a yttrium-based superconductor other than bismuth-based one.

【0027】その他本発明はその主旨を逸脱しない範囲
で変更して実施することは自由である。
Others The present invention can be freely modified and implemented without departing from the spirit of the invention.

【0028】[0028]

【発明の効果】以上説明したようにこの発明では、コイ
ルの外周側に超電導体を配置したためコイルの内周側に
配置する場合と比較して、超電導体の冷却効率が向上す
る。
As described above, according to the present invention, since the superconductor is arranged on the outer peripheral side of the coil, the cooling efficiency of the superconductor is improved as compared with the case where the superconductor is arranged on the inner peripheral side of the coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる超電導限流器の概要を説明する
斜視図である。
FIG. 1 is a perspective view illustrating an outline of a superconducting fault current limiter according to the present invention.

【図2】同じ実施例における超電導限流器のI−L特性
のグラフである。
FIG. 2 is a graph of the IL characteristic of the superconducting fault current limiter in the same example.

【図3】他の実施例における超電導限流器を説明する斜
視図である。
FIG. 3 is a perspective view illustrating a superconducting fault current limiter according to another embodiment.

【符号の説明】[Explanation of symbols]

4…コイル、5…超電導体たる超電導筒体、10…超電
導限流器。
4 ... Coil, 5 ... Superconducting cylinder which is a superconductor, 10 ... Superconducting fault current limiter.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に直列に接続されるコイルの外
周側に、同コイルに対して超電導体を被覆状に配置した
ことを特徴とする超電導限流器。
1. A superconducting fault current limiter, characterized in that a superconductor is arranged on the outer peripheral side of a coil connected in series to an electric power system so as to cover the coil.
【請求項2】 電力系統に直列に接続されるコイルの外
周側に、同コイルに対して超電導体を被覆状に配置し、
少なくとも超電導体を保冷手段にて保冷したことを特徴
とする超電導限流器。
2. A superconductor is arranged on the outer periphery of a coil connected in series to an electric power system so as to cover the coil,
A superconducting fault current limiter characterized in that at least a superconductor is kept cold by a cold keeping means.
【請求項3】 前記超電導体は筒状とされ、前記コイル
全体に対して被覆状に配置されていることを特徴とする
請求項1に記載の超電導限流器。
3. The superconducting fault current limiter according to claim 1, wherein the superconductor has a tubular shape and is arranged so as to cover the entire coil.
【請求項4】 前記超電導体はコイル状とされ、前記内
側のコイルに対して被覆状に配置されていることを特徴
とする請求項1に記載の超電導限流器。
4. The superconducting fault current limiter according to claim 1, wherein the superconductor has a coil shape, and is arranged in a cover shape with respect to the inner coil.
JP5109585A 1993-03-26 1993-05-11 Superconducting current limiter Expired - Lifetime JP2607822B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5109585A JP2607822B2 (en) 1993-05-11 1993-05-11 Superconducting current limiter
DE69401722T DE69401722T2 (en) 1993-03-26 1994-03-25 Superconducting device for residual current limitation
EP94302178A EP0620570B1 (en) 1993-03-26 1994-03-25 Superconducting fault current limiter
US08/218,809 US5546261A (en) 1993-03-26 1994-03-28 Superconducting fault current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5109585A JP2607822B2 (en) 1993-05-11 1993-05-11 Superconducting current limiter

Publications (2)

Publication Number Publication Date
JPH06325957A true JPH06325957A (en) 1994-11-25
JP2607822B2 JP2607822B2 (en) 1997-05-07

Family

ID=14514000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5109585A Expired - Lifetime JP2607822B2 (en) 1993-03-26 1993-05-11 Superconducting current limiter

Country Status (1)

Country Link
JP (1) JP2607822B2 (en)

Also Published As

Publication number Publication date
JP2607822B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
EP0877395B1 (en) Superconducting coil
US5892644A (en) Passive fault current limiting device
US5379020A (en) High-temperature superconductor and its use
Kado et al. Performance of a high-Tc superconducting fault current limiter-design of a 6.6 kV magnetic shielding type superconducting fault current limiter
US5694279A (en) Superconductive fault current limiters
JP2007158292A (en) Resistive superconducting fault current limiter
US6795282B2 (en) Superconducting device with inductive current limiter using a high-tc superconducting material
JPH0523485B2 (en)
US5334964A (en) Current limiting choke coil
US5394130A (en) Persistent superconducting switch for conduction-cooled superconducting magnet
US5355275A (en) Current limiting device for electromagnetic coil employing gap containing superconductive shield
JP2607822B2 (en) Superconducting current limiter
JPH04237105A (en) Superconducting electromagnet
EP3553839B1 (en) Superconducting fault current limiter
JPH06314625A (en) Superconducting current limiter
Kuriyama et al. Cryocooler directly cooled 6 T NbTi superconducting magnet system with 180 mmroom temperature bore
US7023673B2 (en) Superconducting shielded core reactor with reduced AC losses
JP3861263B2 (en) Superconducting current limiter and superconducting current limiter system
JPH0779020A (en) Superconducting current limiter
JP2533119B2 (en) Superconducting device for short circuit suppression
JPH0714493A (en) Superconductivity current limiter
JPH0730158A (en) Superconducting current limiter
JPH06334229A (en) Magnetically shielded superconductive current limiter
JPH076683A (en) Superconducting current limiter
JPH07272958A (en) Superconducting current limiter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

EXPY Cancellation because of completion of term