JPH06324312A - Field effect liquid crystal composition - Google Patents

Field effect liquid crystal composition

Info

Publication number
JPH06324312A
JPH06324312A JP13295193A JP13295193A JPH06324312A JP H06324312 A JPH06324312 A JP H06324312A JP 13295193 A JP13295193 A JP 13295193A JP 13295193 A JP13295193 A JP 13295193A JP H06324312 A JPH06324312 A JP H06324312A
Authority
JP
Japan
Prior art keywords
liquid crystal
elastomer
low mol
low molecular
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13295193A
Other languages
Japanese (ja)
Other versions
JP2644665B2 (en
Inventor
Ryoichi Kishi
良一 岸
Yasuzo Suzuki
靖三 鈴木
Hisao Ichijo
久夫 一條
Okihiko Hirasa
興彦 平佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5132951A priority Critical patent/JP2644665B2/en
Publication of JPH06324312A publication Critical patent/JPH06324312A/en
Application granted granted Critical
Publication of JP2644665B2 publication Critical patent/JP2644665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain such a polymer gel system free from diffusion without causing by-reaction which consumes energy such as electrolysis of water and to improve responsibility for the electric field applied, by using a liquid crystal elastomer as a gellating material having compatibility with a low mol.wt. liquid crystal material. CONSTITUTION:This compsn. consists of a low mol.wt. liquid crystal material 3 and a liquid crystal elastomer 1 swollen with the low mol.wt. liquid crystal material 3. The liquid crystal elastomer 1 used has both properties of liquid crystal and rubber and is obtd. by polymn. of a polymerizable low mol.wt. liquid crystal material in the presence of a crosslinking agent. Before voltage is applied, the liquid crystal elastomer 1 is swollen in the low mol.wt. liquid crystal material having orientation of molecules shown in the figure (a). When voltage is applied under a condition of the mesogen 2 of the liquid crystal elastomer and dielectric anisotropy of the low mol.wt. liquid crystal molecules 3 positive, the compsn. is oriented as shown in the figure (b) in such a manner that the direction of the major axis of the liquid crystal molecules is parallel to the electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電場において迅速に応
答する、新規な液晶組成物に関するものである。さらに
詳しくいえば本発明は、低分子液晶の電場における変形
を高分子液晶により増幅し、わずかな電圧の印加によっ
ても迅速に応答しうるように改良した電界効果型液晶組
成物に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel liquid crystal composition which responds rapidly in an electric field. More specifically, the present invention relates to a field-effect liquid crystal composition improved so that deformation of a low-molecular liquid crystal in an electric field can be amplified by a high-molecular liquid crystal and can respond quickly even when a slight voltage is applied.

【0002】[0002]

【従来の技術】液晶物質例えばネマチック液晶物質を2
枚の導電ガラスの間隙に満たし、液晶領域の温度に維持
して直流電圧を印加すると、液晶膜による光の散乱を生
じ、液晶膜はすりガラスのように曇り、直流電圧をカッ
トすると元へ戻るといういわゆる電気光学効果を示すの
で、各種ディスプレイに利用されている。
2. Description of the Related Art Liquid crystal materials such as nematic liquid crystal materials
When a direct current voltage is applied while maintaining the temperature in the liquid crystal region by filling the gap between the conductive glass sheets, light is scattered by the liquid crystal film, the liquid crystal film becomes cloudy like ground glass, and when the direct current voltage is cut, it returns to the original state. Since it exhibits a so-called electro-optical effect, it is used in various displays.

【0003】ところで、この液晶物質としては、脂肪族
及び芳香族カルボン酸誘導体、エーテル及びケトン誘導
体、アゾメチン化合物、アジン及びグリオキザル誘導
体、アゾ化合物などの低分子有機化合物が用いられ、こ
れらは数ボルトないし数十ボルトの電圧の印加により、
数十ミリ秒ないし数百ミリ秒のオーダーで応答するが、
使用目的によっては、数ミリ秒オーダーのより迅速な応
答が要求されている。
By the way, as the liquid crystal substance, low molecular weight organic compounds such as aliphatic and aromatic carboxylic acid derivatives, ether and ketone derivatives, azomethine compounds, azine and glyoxal derivatives and azo compounds are used. By applying a voltage of several tens of volts,
Responds on the order of tens of milliseconds or hundreds of milliseconds,
Depending on the purpose of use, a quicker response on the order of a few milliseconds is required.

【0004】他方、近年刺激応答性高分子ゲルの研究が
盛んに行われた結果、高分子ハイドロゲルが、温度、p
H、塩濃度、溶媒、電場、光などの周囲条件によって可
逆的に伸縮することが知られるようになった。この伸縮
は高分子ネットワークの溶媒への拡散によって起るた
め、応答速度は拡散定数に支配され、高分子ゲルが小さ
くなるほど伸縮に要する時間が短くなる傾向がある。
On the other hand, as a result of active research on stimuli-responsive polymer gels in recent years, polymer hydrogels are
It has become known that it expands and contracts reversibly depending on ambient conditions such as H, salt concentration, solvent, electric field, and light. Since this expansion and contraction is caused by diffusion of the polymer network into the solvent, the response rate is governed by the diffusion constant, and the smaller the polymer gel, the shorter the time required for expansion and contraction.

【0005】したがって、拡散に支配されない新しい高
分子ゲル系を形成できればゲルの大きさに関係なく、伸
縮、変形の迅速な応答が得られる筈であり、この基本的
な考え方を、液晶に適用すれば、応答性の改善されたア
クチュエータが得られることになる。
Therefore, if a new polymer gel system which is not controlled by diffusion can be formed, a rapid response of expansion and contraction and deformation should be obtained regardless of the size of the gel. Applying this basic idea to liquid crystals. Thus, an actuator with improved responsiveness can be obtained.

【0006】しかしながら、近年開発されたポリスチレ
ンゲルのような一般的な高分子網目構造物質は、低分子
液晶物質との相容性を欠くため、液晶の応答性改善には
利用できず、これまで前記の考え方に従って応答性を改
善した液晶はまだ実現していない。
However, a general polymer network structure substance such as polystyrene gel, which has been developed in recent years, is not compatible with a low molecular weight liquid crystal substance and cannot be used for improving the response of liquid crystal. A liquid crystal having improved response according to the above concept has not been realized yet.

【0007】また、電圧印加による変形については、高
分子ハイドロゲルを用いた系においても知られている
が、このハイドロゲルの変形は水の電界電位よりも高い
電位で起るため、エネルギーのほとんどが水の電気分解
に消費され、効率が悪く、これをアクチュエータとして
利用することは不適当である。
Deformation due to voltage application is also known in a system using a polymer hydrogel, but since the deformation of this hydrogel occurs at a potential higher than the electric field potential of water, most of the energy is consumed. Is consumed in the electrolysis of water and is inefficient, and it is inappropriate to use it as an actuator.

【0008】[0008]

【発明が解決とようとする課題】本発明は、液晶につい
て、水の電気分解のようなエネルギーを消費する副反応
を伴わないで、拡散に支配されない高分子ゲル系を実現
し、その電場における応答性を改善することを目的とし
てなされたものである。
DISCLOSURE OF THE INVENTION The present invention realizes a polymer gel system which is not governed by diffusion, and which does not involve energy-consuming side reactions such as electrolysis of water for liquid crystals. The purpose is to improve responsiveness.

【0009】[0009]

【課題を解決するための手段】本発明者らは、拡散に支
配されない液晶の高分子ゲル系を形成させ、その応答性
を向上させるべく種々研究を重ねた結果、ゲル化させる
物質として、低分子液晶物質と相容性を有する液晶エラ
ストマーを用いることにより、その目的を達成しうるこ
とを見出し、この知見に基づいて本発明をなすに至っ
た。
Means for Solving the Problems The present inventors have conducted various studies to form a polymer gel system of liquid crystal that is not controlled by diffusion and improve its responsiveness. It was found that the object can be achieved by using a liquid crystal elastomer having compatibility with a molecular liquid crystal substance, and the present invention has been completed based on this finding.

【0010】すなわち、本発明は、低分子液晶物質と、
その低分子液晶物質により膨潤された液晶エラストマー
から成る電界効果型液晶組成物を提供するものである。
That is, the present invention relates to a low molecular weight liquid crystal substance,
A field effect type liquid crystal composition comprising a liquid crystal elastomer swollen by the low molecular weight liquid crystal substance is provided.

【0011】本発明で用いられる液晶エラストマーは、
重合性低分子液晶物質を、架橋剤の存在下で重合させる
ことにより得られる、ゴムと液晶の両方の性質を備えた
物質である。
The liquid crystal elastomer used in the present invention is
It is a substance having both properties of rubber and liquid crystal, which is obtained by polymerizing a polymerizable low-molecular liquid crystal substance in the presence of a crosslinking agent.

【0012】このようなものとしては、例えば一般式Examples of such a structure include the general formula

【化1】 (式中のR1は水素原子又はメチル基、nは2〜12の
整数)で表わされるアクリル酸又はメタクリル酸エステ
ルを、一般式
[Chemical 1] (Wherein R1 is a hydrogen atom or a methyl group, n is an integer of 2 to 12) is represented by the general formula

【化2】 (式中のR2は水素原子又はメチル基、mは2〜12の
整数)で表わされるビス(アクリル酸又はメタクリル
酸)エステルの存在下で、ラジカル重合開始剤例えばア
ゾビス化合物や過酸化物を用いて重合させることにより
得られたものを挙げることができる。
[Chemical 2] In the presence of a bis (acrylic acid or methacrylic acid) ester represented by the formula (R2 is a hydrogen atom or a methyl group, m is an integer of 2 to 12), a radical polymerization initiator such as an azobis compound or a peroxide is used. Examples thereof include those obtained by polymerization.

【0013】本発明の液晶組成物は、この液晶エラスト
マーを、低分子液晶物質例えば一般式
In the liquid crystal composition of the present invention, the liquid crystal elastomer is prepared by using a low molecular weight liquid crystal substance such as a compound represented by the general formula:

【化3】 (式中のR3はアルキル基)で表わされるビフェニル化
合物中に加え、十分に膨潤させることによって調製され
る。通常この膨潤倍率は2〜20倍程度になるので、低
分子液晶物質は、液晶エラストマーの2倍容量以上、好
ましくは10倍容量以上の割合で用いられる。
[Chemical 3] It is prepared by adding it to the biphenyl compound represented by the formula (R3 in the formula is an alkyl group) and allowing it to swell sufficiently. Since this swelling ratio is usually about 2 to 20 times, the low molecular weight liquid crystal substance is used in a ratio of 2 times or more, preferably 10 times or more that of the liquid crystal elastomer.

【0014】[0014]

【作用】次に添付図面に従って、本発明の液晶組成物の
作用を模式的に説明する。図1は側鎖型液晶エラストマ
ーを用いた場合の電圧を印加する前後における液晶分子
の配向状態の変化を示す模式図であって、図中白の長円
2,2…は液晶エラストマー1のメソゲンであり、黒の
長円3,3…は低分子液晶物質の分子を示す。
Next, the operation of the liquid crystal composition of the present invention will be schematically described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing changes in the alignment state of liquid crystal molecules before and after applying a voltage when a side chain type liquid crystal elastomer is used, and the white ellipses 2, 2 ... In the figure are mesogens of the liquid crystal elastomer 1. , And the black ellipses 3, 3 ... Show the molecules of the low-molecular liquid crystal substance.

【0015】電圧を印加する前では、液晶エラストマー
1は低分子液晶物質3の中で膨潤しており、そのときの
分子配向は(a)のようになっている。そして、液晶エ
ラストマーのメソゲン及び低分子液晶物質分子の誘導異
方性が負の場合に電圧を印加すると、(b)に示すよう
に液晶分子の長軸方向と電場の向きが平行になるように
配向する。図2は、主鎖型液晶エラストマーを用いた場
合の模式図であり、やはり(a)の状態から(b)の状
態に配向する。
Before the voltage is applied, the liquid crystal elastomer 1 is swollen in the low molecular weight liquid crystal substance 3, and the molecular orientation at that time is as shown in (a). When a voltage is applied when the mesogen of the liquid crystal elastomer and the induced anisotropy of the low molecular weight liquid crystal substance molecules are negative, the long axis direction of the liquid crystal molecules and the direction of the electric field become parallel as shown in (b). Orient. FIG. 2 is a schematic diagram in the case of using the main chain type liquid crystal elastomer, and the state is also oriented from the state of (a) to the state of (b).

【0016】そして、この配向変化が液晶エラストマー
の高分子網目構造の変化として伝達され、全体の構造が
変化する。次に電圧をオフにすると各液晶分子は電圧印
加前の状態(a)に復元するため、全体の構造も元の状
態に戻る。
This change in orientation is transmitted as a change in the polymer network structure of the liquid crystal elastomer, and the entire structure changes. Next, when the voltage is turned off, each liquid crystal molecule is restored to the state (a) before the voltage is applied, and the entire structure returns to the original state.

【0017】他方、低分子液晶物質で膨潤していない液
晶エラストマーに電圧を印加しても、この液晶エラスト
マーは流動性を有しないため変形を生じない。
On the other hand, even if a voltage is applied to the liquid crystal elastomer that is not swollen with the low molecular weight liquid crystal substance, the liquid crystal elastomer does not have fluidity and thus does not deform.

【0018】なお、ここでは液晶エラストマー及び低分
子液晶の誘導異方性が両方とも負の場合の例を示した
が、本発明においては両方とも正の場合や、一方が正で
他方が負の場合も包含される。そして、このように組合
せを変化させることによって異なった応答挙動を生じさ
せることが可能である。
Here, an example in which the induced anisotropy of the liquid crystal elastomer and the low molecular weight liquid crystal is both negative is shown, but in the present invention, both are positive, or one is positive and the other is negative. The case is also included. Then, it is possible to generate different response behaviors by changing the combination in this way.

【0019】[0019]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0020】実施例 4′‐シアノ‐4‐ビフェニルオキシヘキシルアクリレ
ート1.00g(2.86mmol)、架橋剤1,6‐
ジアクリレートヘキサン66.0mg(0.292mm
ol)、重合開始剤2,2′‐アゾビス(イソブチロニ
トリル)5.2mg(0.032mmol)をトルエン
‐ジメチルスルホキシド(DMSO)混合溶媒3.5m
l(トルエン:2ml、DMSO:1.5ml)に溶解
し、減圧下で脱気した。この反応溶液を60℃で30時
間保ち、ラジカル共重合させた。転移温度などの熱的特
性の比較のために架橋剤を加えないで架橋していない液
晶ポリマーも製造した。トルエン‐DMSO混合液中で
重合反応は効率良く起こり、比較的高分子量の液晶ポリ
マー及び均質なゲル状の液晶エラストマーが得られた。
得られたエラストマーは塩化メチレン中で繰り返し洗浄
した後、減圧乾燥した。
Example 4'-Cyano-4-biphenyloxyhexyl acrylate 1.00 g (2.86 mmol), crosslinking agent 1,6-
Diacrylate hexane 66.0 mg (0.292 mm
ol) and 5.2 mg (0.032 mmol) of the polymerization initiator 2,2′-azobis (isobutyronitrile) are mixed with toluene-dimethyl sulfoxide (DMSO) mixed solvent 3.5 m.
It was dissolved in 1 (toluene: 2 ml, DMSO: 1.5 ml) and degassed under reduced pressure. This reaction solution was kept at 60 ° C. for 30 hours for radical copolymerization. An uncrosslinked liquid crystal polymer was also prepared without adding a crosslinking agent for comparison of thermal properties such as transition temperature. The polymerization reaction occurred efficiently in the toluene-DMSO mixed liquid, and a relatively high molecular weight liquid crystal polymer and a homogeneous gel liquid crystal elastomer were obtained.
The obtained elastomer was repeatedly washed in methylene chloride and then dried under reduced pressure.

【0021】ここで用いた液晶ポリマー、液晶エラスト
マー、低分子液晶物質4‐シアノ‐4′‐ヘキシルオキ
シビフェニルの液晶相はすべてネマチック相を示した。
表1にDSC測定及び偏光顕微鏡観察から求めた液晶ポ
リマー(LCP)、液晶エラストマー(LCE)及び低
分子液晶物質[LLC(III)]の転移温度を示し
た。液晶ポリマーに比べ液晶エラストマーの液晶相形成
温度領域は減少した。架橋によってTg(ガラス転移
点)は上昇し、TN→I(ネマチック相‐等方相転移温
度)は減少したと考えられる。
The liquid crystal polymer, liquid crystal elastomer, and low molecular weight liquid crystal material 4-cyano-4'-hexyloxybiphenyl used herein all showed a nematic phase.
Table 1 shows the transition temperatures of the liquid crystal polymer (LCP), the liquid crystal elastomer (LCE), and the low molecular weight liquid crystal substance [LLC (III)] determined by DSC measurement and polarization microscope observation. The liquid crystal phase formation temperature range of the liquid crystal elastomer was reduced compared to the liquid crystal polymer. It is considered that Tg (glass transition point) increased and TN → I (nematic phase-isotropic phase transition temperature) decreased due to crosslinking.

【0022】次に、このようにして得た液晶エラストマ
ーを20倍容量の低分子液晶物質4‐シアノ‐4′‐ヘ
キシルオキシビフェニルに浸せきし膨潤させた。これに
より76.0℃で乾燥時の重量に対して約8.8倍ほど
に膨潤した。ゲル状態の液晶エラストマー[LCE+
(III)]のTN→Iは低分子液晶(III)のTN→I
よりも若干高い77.8℃となった。
Next, the liquid crystal elastomer thus obtained was dipped in a 20-fold volume of a low-molecular liquid crystal substance 4-cyano-4'-hexyloxybiphenyl to be swollen. As a result, it swelled at 76.0 ° C. about 8.8 times the dry weight. Liquid crystalline elastomer in gel state [LCE +
(III)] TN → I is low molecular liquid crystal (III) TN → I
77.8 ° C, which is slightly higher than the above.

【0023】[0023]

【表1】 [Table 1]

【0024】表中の記号gはガラス状態、Kは結晶状
態、Nはネマチック状態、Iは等方相を意味する。
The symbol g in the table means a glass state, K means a crystalline state, N means a nematic state, and I means an isotropic phase.

【0025】参考例 透明ガラス電極を用いて作製したサンドイッチ型セルに
50〜200μm程度に切った液晶エラストマーを低分
子液晶物質と共に充填した。このセルを76.0℃で数
時間保ち、液晶エラストマーを膨潤させた後、セルに5
0〜100Vの直流電圧を印加した。電圧印加に伴い液
晶エラストマーのミリ秒オーダーでの変形が認められた
が、電圧を取り除くともとの形状に速やかに復元した。
変形の際、液晶分子の配向変化が観察された。
Reference Example A sandwich type cell prepared by using a transparent glass electrode was filled with a low molecular weight liquid crystal substance together with a liquid crystal elastomer cut to about 50 to 200 μm. The cell was kept at 76.0 ° C for several hours to allow the liquid crystal elastomer to swell, and
A direct current voltage of 0 to 100 V was applied. Although the liquid crystal elastomer was deformed in the order of milliseconds with the application of voltage, the original shape was quickly restored when the voltage was removed.
Upon deformation, a change in orientation of liquid crystal molecules was observed.

【0026】[0026]

【発明の効果】本発明によれば、低分子液晶の電場にお
ける変形を高分子液晶の変形に増幅することができ、わ
ずかな電圧の印加に対しても迅速に応答しうる電界効果
型液晶組成物が提供され、これは各種アクチュエータ及
びディスプレイなどとして好適に利用できる。
According to the present invention, the deformation of a low molecular weight liquid crystal in an electric field can be amplified to the deformation of a high molecular weight liquid crystal, and a field effect type liquid crystal composition capable of responding quickly to a slight voltage application. A thing is provided and this can be used conveniently as various actuators, a display, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】 側鎖型液晶エラストマーを用いた場合の電圧
を印加する前後における配列状態の変化及び変形を示す
模式図。
FIG. 1 is a schematic diagram showing changes and deformations of an array state before and after applying a voltage when a side chain type liquid crystal elastomer is used.

【図2】 主鎖型液晶エラストマーを用いた場合の電圧
を印加する前後における配列状態の変化及び変形を示す
模式図。
FIG. 2 is a schematic diagram showing a change and deformation of an array state before and after applying a voltage when a main chain type liquid crystal elastomer is used.

【符号の説明】[Explanation of symbols]

1 液晶エラストマー分子 2 液晶エラストマー分子のメソゲン 3 低分子液晶物質分子 1 Liquid crystal elastomer molecule 2 Mesogen of liquid crystal elastomer molecule 3 Low molecular liquid crystal substance molecule

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月10日[Submission date] March 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】また、電圧印加による変形については、高
分子ハイドロゲルを用いた系においても知られている
が、このハイドロゲルの変形は水の電電位よりも高い
電位で起るため、エネルギーのほとんどが水の電気分解
に消費され、効率が悪く、これをアクチュエータとして
利用することは不適当である。
[0007] Also, the deformation due to voltage application, but are also known in the system using a polymer hydrogel, deformation of the hydrogel for occurring at a higher potential than the electrolytic potential of water, energy Most of it is consumed in the electrolysis of water, which is inefficient, and it is inappropriate to use it as an actuator.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】本発明の液晶組成物は、この液晶エラスト
マーを、低分子液晶物質例えば一般式
In the liquid crystal composition of the present invention, the liquid crystal elastomer is prepared by using a low molecular weight liquid crystal substance such as a compound represented by the general formula:

【化3】 で表わされるビフェニル化合物中に加え、十分に膨潤さ
せることによって調製される。通常この膨潤倍率は2〜
20倍程度になるので、低分子液晶物質は、液晶エラス
トマーの2倍量以上、好ましくは10倍量以上の割
合で用いられる。
[Chemical 3] It is prepared by adding it to the biphenyl compound represented by and allowing it to swell sufficiently. Usually this swelling factor is 2
Since approximately 20 times, the low molecular weight liquid crystal material, the liquid crystal elastomer twice Weight above, preferably used in a ratio of more than 10 times Weight.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】電圧を印加する前では、液晶エラストマー
1は低分子液晶物質3の中で膨潤しており、そのときの
分子配向は(a)のようになっている。そして、液晶エ
ラストマーのメソゲン及び低分子液晶物質分子の誘
方性がの場合に電圧を印加すると、(b)に示すよう
に液晶分子の長軸方向と電場の向きが平行になるように
配向する。図2は、主鎖型液晶エラストマーを用いた場
合の模式図であり、やはり(a)の状態から(b)の状
態に配向する。
Before the voltage is applied, the liquid crystal elastomer 1 is swollen in the low molecular weight liquid crystal substance 3, and the molecular orientation at that time is as shown in (a). When Yuden anisotropy of the mesogen and a low molecular liquid crystal material molecules of the liquid crystal elastomer applies a voltage for positive, so that the parallel axial direction and the electric field orientation of liquid crystal molecules as shown in (b) Orient to. FIG. 2 is a schematic diagram in the case of using the main chain type liquid crystal elastomer, and the state is also oriented from the state of (a) to the state of (b).

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】なお、ここでは液晶エラストマー及び低分
子液晶の誘異方性が両方ともの場合の例を示した
が、本発明においては両方ともの場合や、一方が正で
他方が負の場合も包含される。そして、このように組合
せを変化させることによって異なった応答挙動を生じさ
せることが可能である。
[0018] Here, although an example where Yuden anisotropy of the liquid crystal elastomer and a low molecular liquid crystal are both positive, when both the negative and in the present invention, the other one is a positive negative The case of is also included. Then, it is possible to generate different response behaviors by changing the combination in this way.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】次に、このようにして得た液晶エラストマ
ーを20倍量の低分子液晶物質4−シアノ−4′−ヘ
キシルオキシビフェニルに浸せきし膨潤させた。これに
より76.0℃で乾燥時の重量に対して約8.8倍ほど
に膨潤した。ゲル状態の液晶エラストマー[LCE+
(III)]のTN→Iは低分子液晶(III)のTN
→Iよりも若干高い77.8℃となった。
[0022] Next, this way the liquid crystal elastomer obtained by immersing swelled 20 times weight of the low molecular weight liquid crystal material 4-cyano-4'-hexyloxy biphenyl. As a result, it swelled at 76.0 ° C. about 8.8 times the dry weight. Liquid crystalline elastomer in gel state [LCE +
(III)] TN → I is TN of low-molecular liquid crystal (III)
→ It was 77.8 ° C, which was slightly higher than I.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平佐 興彦 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirohiko Hirasa 1-1, Higashi 1-1 Tsukuba, Ibaraki Prefecture Institute of Industrial Science and Technology

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低分子液晶物質と、その低分子液晶物質
により膨潤された液晶エラストマーから成る電界効果型
液晶組成物。
1. A field effect liquid crystal composition comprising a low molecular weight liquid crystal substance and a liquid crystal elastomer swollen with the low molecular weight liquid crystal substance.
【請求項2】 低分子液晶物質及び液晶エラストマーが
ネマチック相を示す請求項1記載の液晶組成物。
2. The liquid crystal composition according to claim 1, wherein the low molecular weight liquid crystal substance and the liquid crystal elastomer exhibit a nematic phase.
JP5132951A 1993-05-11 1993-05-11 Field effect type liquid crystal composition Expired - Lifetime JP2644665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132951A JP2644665B2 (en) 1993-05-11 1993-05-11 Field effect type liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132951A JP2644665B2 (en) 1993-05-11 1993-05-11 Field effect type liquid crystal composition

Publications (2)

Publication Number Publication Date
JPH06324312A true JPH06324312A (en) 1994-11-25
JP2644665B2 JP2644665B2 (en) 1997-08-25

Family

ID=15093313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132951A Expired - Lifetime JP2644665B2 (en) 1993-05-11 1993-05-11 Field effect type liquid crystal composition

Country Status (1)

Country Link
JP (1) JP2644665B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519946A (en) * 2007-03-01 2010-06-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Adjustable intraocular implant
CN111725269A (en) * 2020-06-02 2020-09-29 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009469A1 (en) * 2014-07-14 2016-01-21 株式会社日立製作所 Actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116824A (en) * 1988-10-27 1990-05-01 Dainippon Ink & Chem Inc Liquid crystal device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116824A (en) * 1988-10-27 1990-05-01 Dainippon Ink & Chem Inc Liquid crystal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519946A (en) * 2007-03-01 2010-06-10 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Adjustable intraocular implant
CN111725269A (en) * 2020-06-02 2020-09-29 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof
CN111725269B (en) * 2020-06-02 2022-09-09 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Also Published As

Publication number Publication date
JP2644665B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
Kawasaki et al. Effect of pH on the volume phase transition of copolymer gels of N-isopropylacrylamide and sodium acrylate
Wang et al. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds
Wu et al. Hydrogels with self-assembling ordered structures and their functions
Antonietti et al. Fine-tuning of phase structures and thermoplasticity of polyelectrolyte− surfactant complexes: Copolymers of ionic monomers with N-alkylacrylamides
JP2000330113A (en) Liquid crystal display device
KR102167466B1 (en) Liquid crystal composition
Inoue et al. Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone
Yamamoto et al. Synthesis and Thermosensitive Properties of Poly [(N‐vinylamide)‐co‐(vinyl acetate)] s and Their Hydrogels
Ida et al. End-crosslinking of controlled telechelic poly (N-isopropylacrylamide) toward a homogeneous gel network with photo-induced self-healing
JP5701289B2 (en) Maleimide-N-vinyllactam side group polymer for LCD alignment film
JPWO2003062286A1 (en) Polymerizable ion-conducting liquid crystal composite, anisotropic ion-conducting polymer liquid crystal composite, and method for producing the same
Li et al. Rheology of hydrophobically modified polyacrylamide-co-poly (acrylic acid) on addition of surfactant and variation of solution pH
JP2016105127A (en) Alignment layer, laminate, optical film, method for producing optical film, polarizing plate, liquid crystal display device and alignment layer forming composition
Karbarz et al. pH and temperature-sensitive N-isopropylacrylamide ampholytic networks incorporating L-lysine
Ma et al. Photo-induced actuator using temperature and light dual responsive azobenzene containing ion gel in ionic liquid
JPH06324312A (en) Field effect liquid crystal composition
Lupi et al. Dithiols as Liquid Crystalline Building Blocks for Smart Polymers via Thiol–yne Click Chemistry
Ding et al. Highly ionic conductive and transparent self-healing lithium salt elastomers based on eutectic strategy
Tamate et al. Adaptive Ion‐Gel: Stimuli‐Responsive, and Self‐Healing Ion Gels
Tatsuma et al. Electrochemical polymerization and depolymerization of 2, 5-dimercapto-1, 3, 4-thiadiazole. QCM and spectroscopic analysis
Zhang et al. High-performance double-network ionogels enabled by electrostatic interaction
Ueki et al. Protic ionic liquids for the Belousov–Zhabotinsky reaction: aspects of the BZ reaction in protic ionic liquids and its use for the autonomous coil–globule oscillation of a linear polymer
JP2005290073A (en) Method for producing polymer hydrogel
US20180112652A1 (en) Actuator, liquid-crystalline elastomer, and method for fabricating the same
JP2003306531A (en) Method for electrolytic asymmetric polymerization of conjugated polymer and optically active conjugated polymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term