JPH06324266A - Real image type variable power finder - Google Patents

Real image type variable power finder

Info

Publication number
JPH06324266A
JPH06324266A JP5110614A JP11061493A JPH06324266A JP H06324266 A JPH06324266 A JP H06324266A JP 5110614 A JP5110614 A JP 5110614A JP 11061493 A JP11061493 A JP 11061493A JP H06324266 A JPH06324266 A JP H06324266A
Authority
JP
Japan
Prior art keywords
variable
focal length
objective
optical axis
real image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5110614A
Other languages
Japanese (ja)
Inventor
Chikayuki Iwata
周行 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5110614A priority Critical patent/JPH06324266A/en
Publication of JPH06324266A publication Critical patent/JPH06324266A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To provide a new real image type power variable finder capable of realizing a high variable power without causing the extension of a folding total length and excellently correcting the aberrations by mutually switching objective systems having variable focal length to be combined with a common eyepiece system. CONSTITUTION:This finder is provided with a first objective system having variable focal length (objective system 1), a second objective system having variable focal length (objective system 2), a prism P1, an eyepiece lens L6 of an eyepiece system and a prism P2. The prism P1 and the prism P2 constitutes an image inverting system and the prism P1 constitutes one of the reflection member of an optical axis changeover means. In the objective systems 1, 2, the focal length is varied while keeping an image plane on a fixed position by the movement of a second group as a variator and a fourth group as a compensator. When photographing is performed in a zoom area from a wide angle end to an intermediate focal length in a zoom photographing system, the objective system 1 is combined with the eyepiece system, and when photographing is performed in a zoom area from the intermediate focal length to the telescopic end, the objective system 2 is combined with the eyepiece system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は実像式変倍ファインダ
ーに関する。この発明の実像式変倍ファインダーは、ズ
ーム撮影可能なレンズシャッタカメラ、特にズーム変倍
比の高いレンズシャッタカメラに好適に利用できる。こ
の発明の実像式変倍ファインダーはまた、ビデオカメラ
や電子スチルカメラのファインダーとしても好適に利用
可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type variable power viewfinder. INDUSTRIAL APPLICABILITY The real image type variable magnification viewfinder of the present invention can be suitably used for a lens shutter camera capable of zoom photographing, particularly a lens shutter camera having a high zoom magnification ratio. The real image type variable power viewfinder of the present invention can also be suitably used as a viewfinder for a video camera or an electronic still camera.

【0002】[0002]

【従来の技術】電子スチルカメラ、ビデオカメラ等はも
とより、レンズシャッタカメラも近来はズーム撮影可能
であることが普通になってきており、ズーム撮影におけ
る変倍比も益々高くなる傾向にある。これに応じて、こ
れらカメラに用いられる変倍ファインダーにも高い変倍
比が求められるようになってきている。
2. Description of the Related Art In recent years, not only electronic still cameras, video cameras, etc., but also lens shutter cameras have become capable of zoom photography, and the zoom ratio in zoom photography tends to increase. In response to this, zooming finder used in these cameras is also required to have a high zooming ratio.

【0003】実像式変倍ファインダーで高い変倍比を実
現するには、焦点距離可変対物系におけるバリエータの
移動量を大きくするか、或いは、対物系を構成する群の
屈折力を強くする必要がある。バリエータの移動量を大
きくして変倍比を高めようとするとバリエータの長い移
動スペースを直線上に確保する必要があり、対物系から
接眼系に到る所謂「折り曲げ全長」が大きく成り易く、
コンパクトなカメラへの搭載が困難になる。また群の屈
折力を大きくして変倍比を高めると収差の補正が極めて
困難となる。
In order to realize a high zoom ratio in the real image type zoom finder, it is necessary to increase the amount of movement of the variator in the variable focal length objective system or to increase the refracting power of the group constituting the objective system. is there. In order to increase the variator moving amount to increase the zoom ratio, it is necessary to secure a long moving space for the variator on a straight line, and the so-called "bending total length" from the objective system to the eyepiece system is likely to be large,
It becomes difficult to mount it on a compact camera. If the refractive power of the group is increased to increase the zoom ratio, it becomes extremely difficult to correct aberration.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記事情に
鑑みてなされたものであって、折り曲げ全長の長大化を
招来すること無く高い変倍比を実現でき、しかも収差を
良好に補正できる新規な実像式変倍ファインダーの提供
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to realize a high zoom ratio without causing an increase in the total bending length and to correct aberrations satisfactorily. The objective is to provide a real image type variable magnification viewfinder.

【0005】[0005]

【課題を解決するための手段】この発明の実像式変倍フ
ァインダーは「焦点距離可変な対物系による実像を像反
転系により反転させ接眼系により正立像として観察す
る」実像式変倍ファインダーであって、以下の点を特徴
とする(請求項1)。
The real image type variable power finder of the present invention is a real image type variable power finder which "inverts a real image by an objective system having a variable focal length and observes it as an erected image by an eyepiece system". The following points are characteristic (claim 1).

【0006】「対物系」は、焦点距離の変化領域が互い
に異なるN(≧2)個の焦点距離可変対物系により構成
される。「接眼系」は、N個の焦点距離可変対物系の任
意のものと選択的に組み合わせ可能に設けられる単一の
レンズ系である。N個の焦点距離可変対物系のうちの所
望のものの光軸は「光軸切り換え手段」により接眼系側
の光軸に接合される。
The "objective system" is composed of N (≧ 2) variable-focal-length objective systems having different focal length changing regions. The "eyepiece system" is a single lens system provided so as to be selectively combined with any one of the N variable focal length objective systems. The optical axis of the desired one of the N variable focal length objective systems is joined to the optical axis on the eyepiece system side by the "optical axis switching means".

【0007】N個の焦点距離可変対物系の焦点距離可変
領域は、例えば、1つの焦点距離可変対物系における最
長焦点距離が、別の焦点距離可変対物系の最短焦点距離
に等しいというように、互いに重複することなく「全体
として一続きの焦点距離可変領域」を形成しても良い
し、互いに焦点距離可変領域が一部づつ重複しあって、
所望の焦点距離可変領域を形成しても良い。
The focal length variable regions of the N variable focal length objectives have, for example, the longest focal length in one focal length variable objective equal to the shortest focal length in another focal length variable objective. It is possible to form a "continuous focal length variable region as a whole" without overlapping with each other, or the focal length variable regions overlap each other,
A desired focal length variable region may be formed.

【0008】上記請求項1記載の実像式変倍ファインダ
ーにおいて、「N個の焦点距離可変対物系」は、最大焦
点距離の長い順に長いバックフォーカスを有するように
することができ、光軸を互いに平行に、且つ、空間にお
ける配列順序がバックフォーカスの長さの順となるよう
に配備することができる(請求項2)。
In the variable magnification viewfinder of the real image type according to claim 1, the "N focal length variable objective systems" can have a long back focus in the order of the longest maximum focal length, and the optical axes of the objective lenses can be mutually different. The arrangement can be performed in parallel and so that the arrangement order in space is the order of the length of the back focus (claim 2).

【0009】この場合、光軸の切り換えは、N個の焦点
距離可変対物系を例えばターレットに円環的に配備し、
ターレットの回転により光軸の接合を切り換えるように
しても良いし、N個の焦点距離可変対物系を並列的に配
列してユニット化し、ユニット全体を平行移動して光軸
の接合を切り換えるようにしても良い。
In this case, the optical axes are switched by disposing N focal length variable objective systems, for example, on a turret in a ring shape.
The optical axis junction may be switched by rotating the turret, or the N focal length variable objective systems may be arranged in parallel to form a unit and the entire unit may be moved in parallel to switch the optical axis junction. May be.

【0010】上記請求項2記載の実像式変倍ファインダ
ーにおいてはまた、N個の焦点距離可変対物系を装置空
間に固定して互いに並列的に配備し、光軸切り換え手段
を、「各焦点距離可変対物系の個々に対応して設けら
れ、対応する焦点距離可変対物系の光軸を互いに合流的
に接眼系側の光軸に接合するN個の反射手段と、これら
反射手段のうち、最長バックフォーカスを有する焦点距
離可変対物系に対するもの以外の(N−1)個の反射手
段を光軸接合態位と退避態位とに切り換える態位切り換
え手段とを有する」ように構成することができる(請求
項3) この場合において、「光軸接合態位と退避態位とに切り
換え可能な(N−1)個の反射手段をミラーとし、態位
の切り換えを揺動的に行う」ようにすることができる
(請求項4)。
In the variable magnification finder of the real image type according to the second aspect, N variable focal length objectives are fixed in the apparatus space and are arranged in parallel with each other, and the optical axis switching means is set to "each focal length". N reflecting means which are provided corresponding to the individual variable objective systems and which join the optical axes of the corresponding variable focal length objective systems to the optical axis on the eyepiece system side confluently, and the longest of these reflecting means. And (N-1) reflecting means other than those for the variable focal length objective system having a back focus, and a state switching means for switching between the optical axis bonding state and the retracted state ". (Claim 3) In this case, "(N-1) reflection means capable of switching between the optical axis bonding state and the retracted state are used as mirrors, and the state switching is performed in a swinging manner." It is possible (Claim 4).

【0011】これら請求項2または3または4記載の実
像式変倍ファインダーにおいては、「光軸切り換え時に
おいて、光軸切り換えに関与する2つの焦点距離可変対
物系、即ち、光軸切り換えの前後において接眼系側と組
み合わせられる2つの焦点距離可変対物系の焦点距離を
互いに同じにする」ことができる。
In the real image type variable power viewfinder according to the second, third or fourth aspect, "when the optical axis is switched, two focal length variable objective systems involved in the optical axis switching, that is, before and after the optical axis switching. The focal lengths of the two variable-focal-length objectives that are combined with the eyepiece side can be made the same ”.

【0012】[0012]

【作用】上記のように、この発明に於ては、焦点距離の
変化領域が互いに異なるN(≧2)個の焦点距離可変対
物系により、全体として、所望の変倍比に応じた焦点距
離変化領域が形成され、ズーム撮影の変倍比に応じた焦
点距離可変対物系が選択されて接眼系と組み合わせられ
る。
As described above, according to the present invention, by using N (≧ 2) variable focal length objective systems having different focal length changing regions, as a whole, the focal length corresponding to the desired zoom ratio is obtained. A variable region is formed, and a variable focal length objective system according to the zoom ratio of zoom photographing is selected and combined with the eyepiece system.

【0013】[0013]

【実施例】以下、具体的な実施例を挙げる。EXAMPLES Specific examples will be given below.

【0014】図1は、この発明の実像式変倍ファインダ
ーを、対物系を構成する焦点距離可変対物系の数:Nを
2として実施した実施例における2つの焦点距離可変対
物系と接眼系のレンズ構成を示す。接眼系および接眼系
と組み合わせられる焦点距離可変対物系との間には「像
反転系」が配備される。
FIG. 1 shows two variable-focal-length objective systems and an eyepiece system in an embodiment in which the real-image variable-magnification finder of the present invention is implemented with the number of variable-focal-length objective systems constituting the objective system: N. A lens structure is shown. An "image inversion system" is provided between the eyepiece system and the variable focal length objective system combined with the eyepiece system.

【0015】図1(a)は第1の焦点距離可変対物系
(以下、対物系1と称する)を示し、同図(b)は第2
の焦点距離可変対物系(以下、対物系2と称する)とプ
リズムP1を、また図1(c)は接眼系である接眼レン
ズL6と、プリズムP2を示す。プリズムP1とP2とは
「像反転系」を成す。プリズムP1はまた、後述するよ
うに光軸切り換え手段の反射部材の一つを構成する。図
1(c)に示す部分が「接眼系側」である。対物系1は
レンズL1〜L5により構成され、対物系2はL1’〜
5’により構成されている。
FIG. 1A shows a first variable focal length objective system (hereinafter referred to as objective system 1), and FIG. 1B shows a second objective system.
1) shows a variable focal length objective system (hereinafter referred to as objective system 2) and a prism P 1 , and FIG. 1C shows an eyepiece lens L 6 which is an eyepiece system and a prism P 2 . The prisms P 1 and P 2 form an “image inversion system”. The prism P 1 also constitutes one of the reflecting members of the optical axis switching means, as will be described later. The portion shown in FIG. 1C is the “eyepiece side”. The objective system 1 is composed of lenses L 1 to L 5 , and the objective system 2 is L 1 ′ to
It is composed of L 5 '.

【0016】対物系1,2の近軸屈折力配置を図2に示
す。対物系1,2は共に、物体側から像側へ向かって順
に、正・負・正・正の4群構成となっており、対物系1
はF=8.0〜20.9mmの焦点距離変化領域を有
し、対物系2はF’=20.9〜45.6mmの焦点距
離変化領域を有する。従って、最大焦点距離は、対物系
2の方が対物系1よりも大きい。
The paraxial refractive power arrangement of the objective systems 1 and 2 is shown in FIG. The objective systems 1 and 2 both have a positive / negative / positive / positive four-group configuration in order from the object side to the image side.
Has a focal length change region of F = 8.0 to 20.9 mm, and the objective system 2 has a focal length change region of F ′ = 20.9 to 45.6 mm. Therefore, the maximum focal length of the objective system 2 is larger than that of the objective system 1.

【0017】対物系1,2は共に、第2群がバリエー
タ、第4群がコンペンセータとして移動することにより
像面を一定位置に保ちつつ焦点距離を変化させる。図2
に示されているように、ズーム撮影系で広角端(WID
E,FW=8.0)から中間焦点距離(MEAN,FM
20.9)のズーム域で撮影が行われるときは、対物系
1を接眼系と組合せ、上記中間焦点距離(MEAN,F
M’=20.9)から望遠端(TELE,FT’=45.
6)のズーム域で撮影が行われるときは、対物系2を接
眼系と組合せる。
In both the objective systems 1 and 2, the second group moves as a variator and the fourth group moves as a compensator to change the focal length while keeping the image plane at a constant position. Figure 2
As shown in, the wide-angle end (WID
E, F W = 8.0) to the intermediate focal length (MEAN, F M =
When photographing is performed in the zoom range of 20.9), the objective system 1 is combined with the eyepiece system, and the intermediate focal length (MEAN, F
M '= 20.9) to the telephoto end (TELE, F T ' = 45.
When photographing is performed in the zoom range of 6), the objective system 2 is combined with the eyepiece system.

【0018】対物系1はバックフォーカス:BF=1
1.3mmを有し、対物系2はバックフォーカス:B
F’=24.3(>BF)を有する。
Objective system 1 has a back focus: BF = 1
Objective lens 2 has a back focus of B: 1.3 mm
It has F ′ = 24.3 (> BF).

【0019】図3は、この実施例における光軸切り換え
を説明するための構成図である。図3(a)(b)に示
すように、対物系1,2は光軸を互いに平行にして、且
つ、各光軸位置を固定して配備される。対物系2の光軸
は前述したプリズムP1により直角的に折り曲げられ、
対物系1の光軸は反射部材としてのミラーmにより直角
的に折り曲げられる。
FIG. 3 is a block diagram for explaining the optical axis switching in this embodiment. As shown in FIGS. 3A and 3B, the objective systems 1 and 2 are arranged such that their optical axes are parallel to each other and their optical axis positions are fixed. The optical axis of the objective system 2 is bent at a right angle by the prism P 1 described above,
The optical axis of the objective system 1 is bent at a right angle by a mirror m as a reflecting member.

【0020】これら折り曲げられた光軸は、互いに「合
流的」に接眼系側(プリズム2)の光軸と接合される。
即ち、プリズムP1により折り曲げられた対物系2の光
軸も、ミラーmにより折り曲げられた対物系1の光軸
も、接眼系側の光軸と合致する。 また、対物系1,2
のバックフォーカスの長短を考慮して、バックフォーカ
スの短い対物系1を対物系2よりも接眼系側に近付けて
配置している。
These bent optical axes are joined "jointly" with the optical axes on the eyepiece system side (prism 2 ).
That is, the optical axis of the objective system 2 bent by the prism P 1 and the optical axis of the objective system 1 bent by the mirror m coincide with the optical axis on the eyepiece system side. In addition, the objective systems 1 and 2
In consideration of the length of the back focus, the objective system 1 having a short back focus is arranged closer to the eyepiece system side than the objective system 2.

【0021】図3(a)は対物系1の光軸を接眼系側の
光軸に接合した状態を示している。ミラーmは、その反
射面を対物系1の光軸に対して45度傾けて、接眼系側
の像反転系であるプリズムP2の物体側に配備されてい
る。プリズムP1により折り曲げられた対物系2の光軸
はミラーmに遮られ、接眼系側の光軸に接合されない。
FIG. 3A shows a state in which the optical axis of the objective system 1 is joined to the optical axis on the eyepiece system side. The mirror m is disposed on the object side of the prism P 2 which is the image reversing system on the eyepiece side, with its reflecting surface inclined at 45 degrees with respect to the optical axis of the objective system 1. The optical axis of the objective system 2 bent by the prism P 1 is blocked by the mirror m and is not joined to the optical axis on the eyepiece system side.

【0022】図3(a)の状態では、対物系1の変倍に
より広角端(WIDE,FW=8.0)から中間焦点距
離(MEAN,FM=20.9)に到る焦点距離範囲の
ファインダー像を観察できる。
In the state of FIG. 3A, the focal length from the wide-angle end (WIDE, F W = 8.0) to the intermediate focal length (MEAN, F M = 20.9) due to the magnification change of the objective system 1. The finder image of the range can be observed.

【0023】図3(b)は対物系2の光軸を接眼系側の
光軸に接合した状態を示している。ミラーmは、図示さ
れない駆動系(プリズムP1,ミラーmとともに、光軸
切り換え手段を構成する)により、時計方向へ45度回
転して反射面を接眼系の物体側から退避させている。従
って、プリズムP1により折り曲げられた対物系2の光
軸が接眼系側の光軸に接合される。
FIG. 3B shows a state in which the optical axis of the objective system 2 is joined to the optical axis on the eyepiece system side. The mirror m is rotated 45 degrees clockwise by a drive system (which constitutes an optical axis switching means together with the prism P 1 and the mirror m) to retract the reflecting surface from the object side of the eyepiece system. Therefore, the optical axis of the objective system 2 bent by the prism P 1 is joined to the optical axis on the eyepiece system side.

【0024】図3(b)の状態では、対物系2を変倍す
ることで、中間焦点距離(MEAN,FM’=20.
9)から望遠端(TELE,FT’=45.6)に到る
焦点距離範囲のファインダー像を観察できる。
In the state of FIG. 3 (b), the objective system 2 is scaled so that the intermediate focal length (MEAN, F M '= 20.
The finder image in the focal length range from 9) to the telephoto end (TELE, F T '= 45.6) can be observed.

【0025】また、光軸の切り換えを行う際に、対物系
1,2とも焦点距離を共通の20.9mmにしておけ
ば、光軸切り換えに伴うファインダー像の倍率の不連続
な変化を避けることができ、対物系1,2の切り換えに
拘らず、ファインダー像の倍率を連続的に変化させるこ
とができる。
When the optical axes are switched, if the objective systems 1 and 2 have a common focal length of 20.9 mm, a discontinuous change in the magnification of the finder image due to the switching of the optical axes can be avoided. Therefore, the magnification of the finder image can be continuously changed regardless of switching between the objective systems 1 and 2.

【0026】以下、図1(a),(b),(c)に示す
各光学素子の具体的元を記する。図1(a)に示すよう
に、対物系1と接眼系の光軸を接合させた状態で、物体
側から数えて第i図の面(プリズム面を含む)の曲率半
径をRi(i=1〜14)、第i番目の面と第i+1番
目の面の光軸上の面間隔をDi(i=1〜14)、物体
側から数えて第j番目の光学素子(レンズおよびプリズ
ム)の材質のd線に対する屈折率およびアッベ数を、そ
れぞれNj,νj(j=1〜7)とする。但し、D10に関
し、D10Fは対物系1の第4群(レンズL5)の像側面
と、退避可能な反射部材によって光軸が折り曲げられた
位置との間の光軸上の距離、D10Rは、上記光軸が折り
曲げられた位置と接眼系側のプリズムP2の物体側面の
間の光軸上の距離を表す。
The specific elements of the optical elements shown in FIGS. 1 (a), 1 (b) and 1 (c) will be described below. As shown in FIG. 1 (a), in a state of being bonded to the optical axis of the objective 1 and the ocular system, the radius of curvature of the i-th view from the object side (including the prism surface) R i (i = 1 to 14), the surface distance on the optical axis between the i-th surface and the (i + 1) -th surface is D i (i = 1 to 14), and the j-th optical element (lens and prism) counted from the object side. The refractive index and Abbe number for the d-line of the material of) are N j and ν j (j = 1 to 7), respectively. However, regarding D 10 , D 10F is the distance on the optical axis between the image side surface of the fourth group (lens L 5 ) of the objective system 1 and the position where the optical axis is bent by the retractable reflecting member, and D 10 10R represents the distance on the optical axis between the position where the optical axis is bent and the object side surface of the prism P 2 on the eyepiece system side.

【0027】図1(b)に示すように、対物系2および
その像側のプリズムP1に関し、物体側から数えて第i
図の面(プリズム面を含む)の曲率半径をRi’(i=
1〜12)、第i番目の面と第i+1番目の面の光軸上
の面間隔をDi’(i=1〜12)、物体側から数えて
第j番目の光学素子(レンズおよびプリズム)の材質の
d線に対する屈折率およびアッベ数を、それぞれ
j’,νj’(j=1〜6)とする。D12’に関し、D
12F’は、プリズムP1の像側面と、反射部材が退避した
とき光軸が接合される位置との間の光軸上の距離、D’
12Rは、反射部材が退避したとき光軸が接合される位置
と接眼側のプリズムP2の物体側面の間の光軸上の距離
を表す。なお、D10R=D’12Rである。
As shown in FIG. 1B, regarding the objective system 2 and the prism P 1 on the image side thereof, the i-th object is counted from the object side.
The radius of curvature of the surface in the figure (including the prism surface) is R i '(i =
1 to 12), the surface distance on the optical axis between the i-th surface and the (i + 1) -th surface is D i '(i = 1 to 12), and the j-th optical element (lens and prism) counted from the object side. The refractive index and Abbe number of the material of () for the d-line are N j ′ and ν j ′ (j = 1 to 6), respectively. Regarding D 12 ', D
12F 'is the distance on the optical axis between the image side surface of the prism P 1 and the position where the optical axis is joined when the reflecting member is retracted, D'
12R represents the distance on the optical axis between the position where the optical axes are joined when the reflecting member is retracted and the object side surface of the prism P 2 on the eyepiece side. Note that D 10R = D ′ 12R .

【0028】図1(c)において、括弧内に示されたダ
ッシュ付きの符号は、接眼系側に対物系2を光軸接合し
たときの面,面間隔,光学素子の物体側からの準位を表
している。
In FIG. 1 (c), the reference numerals with dashes in parentheses indicate the surfaces, surface spacings, and levels of the optical element from the object side when the objective system 2 is optically bonded to the eyepiece system side. Is represented.

【0029】この実施例においては、対物系1,2、接
眼系側とも非球面を採用している。「非球面」は、この
明細書において、光軸上の曲率半径をR、光軸からの高
さをH、Hに対応する光軸方向の座標をX、Kを円錐定
数、4次,6次,8次の非球面係数をそれぞれA,B,
Cとするとき、 X=[(H2/R)/{1+√(Y)}]+A・H4+B
・H6+C・H8,Y=1−(1+K)・(H2/R2)な
る式で表される曲面である。上記各非球面に就いては円
錐定数:Kと高次の非球面係数:A,B,Cを与えて形
状を特定する。なお、高次の非球面係数の表示中の[E
−数字]はべき乗を表す。例えば[E−10]とあれ
ば、これは[1/1010]を意味し、この数がその前に
有る数に乗ぜられる。
In this embodiment, aspherical surfaces are used for both the objective systems 1 and 2 and the eyepiece system side. In this specification, an "aspherical surface" is a radius of curvature on the optical axis, a height from the optical axis is H, coordinates in the optical axis direction corresponding to H are X, K is a conic constant, quaternary, 6 The aspherical coefficients of the 8th and 8th orders are A, B, and
When C, X = [(H 2 / R) / {1 + √ (Y)}] + A · H 4 + B
· H 6 + C · H 8 , Y = a 1- (1 + K) · ( H 2 / R 2) becomes curved surface formula. The shape of each aspherical surface is specified by giving a conical constant: K and a higher-order aspherical surface coefficient: A, B, C. In addition, [E
-Number] represents a power. For example, if the [E-10], which means the 1/10 10], this number is multiplied to the number in front thereof.

【0030】 対物系1 i Rii j Nj νj 1 20.063 2.69 1 1.49154 57.82 2 −27.373 可変 3 14.004 1.04 2 1.49154 57.82 4 4.418 2.82 5 −4.938 1.03 3 1.49154 57.82 6 −9.726 可変 7 10.101 2.13 4 1.49154 57.82 8 −29.529 可変 9 17.798 2.52 5 1.49154 57.82 10 −13.587 可変(D10F) 。Objective System 1 i R i D i j N j ν j 1 20.063 2.69 1 1.49154 57.82 2 -27.373 Variable 3 14.004 1.04 2 1.49154 57.82 4 4.418 2.82 5 -4.938 1.03 3 1.49154 57.82 6 -9.7726 Variable 7 10.101 2.13 4 1.49154 57.82 8 -29.529 Variable 9917 .798 2.52 5 1.49154 57.82 10 -13.587 variable (D 10F).

【0031】非球面 第1面 K=−2.049,A=−7.25E−5,B=−9.
19E−7,C= 7.03E−10 第4面 K=−0.180,A=−7.21E−5,B= 4.
01E−6,C= 1.91E−6 第5面 K=−0.518,A=−6.29E−5,B= 9.
17E−5,C= 8.11E−7 第10面 K= 2.328,A= 6.13E−4,B= 7.
96E−6,C= 0
Aspherical first surface K = -2.049, A = -7.25E-5, B = -9.
19E-7, C = 7.03E-10 Fourth surface K = -0.180, A = -7.21E-5, B = 4.
01E-6, C = 1.91E-6 Fifth surface K = -0.518, A = -6.29E-5, B = 9.
17E-5, C = 8.11E-7 Tenth surface K = 2.328, A = 6.13E-4, B = 7.
96E-6, C = 0
.

【0032】可変量 (WIDE)倍率:0.367 D2=0.263,D6=8.287,D8=3.58,
10F=5.586 (WIDE−MEAN)倍率:0.595 D2=4.405,D6=4.145,D8=2.95
1,D10F=6.215 (MEAN)倍率:0.963 D2=8.287,D6=0.263,D8=3.58,
10F=5.586 。
Variable amount (WIDE) magnification: 0.367 D 2 = 0.263, D 6 = 8.287, D 8 = 3.58,
D 10F = 5.586 (WIDE-MEAN) Magnification: 0.595 D 2 = 4.405, D 6 = 4.145, D 8 = 2.95
1, D 10F = 6.215 (MEAN) Magnification: 0.963 D 2 = 8.287, D 6 = 0.263, D 8 = 3.58,
D 10F = 5.586.

【0033】 対物系2 i Ri’ Di’ j Nj’ νj’ 1 11.289 2.60 1 1.49154 57.82 2 18.013 可変 3 10.651 2.80 2 1.58500 29.30 4 7.117 2.30 5 −11.973 1.10 3 1.58500 29.30 6 −70.173 可変 7 26.354 2.10 4 1.49154 57.82 8 −37.162 可変 9 36.559 2.50 5 1.51680 64.20 10 −27.894 可変 11 ∞ 12.00 6 1.56883 56.04 12 ∞ 9.976(D12F’) 。Objective System 2 i R i 'D i ' j N jj ' 1 11.289 2.60 1 1.49154 57.82 2 18.013 Variable 3 10.651 2.80 2 1.58500 29.30 4 7.117 2.30 5 -11.973 1.10 3 1.58500 29.30 6 -7.173 Variable 7 26.354 2.10 4 1.49154 57.82 8 -37.162 Variable 9 36.559 2.50 5 1.51680 64.20 10 −27.894 Variable 11 ∞ 12.00 6 1.56883 56.04 12 ∞ 9.976 (D 12F ′).

【0034】非球面 第1面 K=−0.315,A=−1.336E−7,B=−
4.2816E−7,C= 1.1102E−8 第4面 K=−0.0272,A=−3.84E−5,B=−
1.0542E−6,C= 3.7908E−7 第5面 K= 0.16,A= 2.3668E−5,B=−
2.5555E−6,C= 4.5146E−7 第8面 K=−1.124,A= 5.0595E−5,B=−
3.3288E−7,C= 1.1535E−8
Aspherical First surface K = -0.315, A = -1.336E-7, B =-
4.2816E-7, C = 1.1102E-8 Fourth surface K = -0.0272, A = -3.84E-5, B =-
1.0542E-6, C = 3.7908E-7 Fifth surface K = 0.16, A = 2.3668E-5, B =-
2.5555E-6, C = 4.5146E-7 Eighth surface K = -1.124, A = 5.0595E-5, B =-
3.3288E-7, C = 1.1535E-8
.

【0035】可変量 (MEAN)倍率:0.963 D2’=0.898,D6’=14.063,D8’=
3.021,D10’=0.979 (MEAN−TELE)倍率:1.394 D2’=7.31,D6’=7.651,D8’=1.9
42,D10’=2.058 (TELE)倍率:2.098 D2’=14.684,D6’=0.277,D8’=
2.485,D10’=1.515
Variable amount (MEAN) magnification: 0.963 D 2 '= 0.898, D 6 ' = 14.063, D 8 '=
3.021, D 10 '= 0.979 ( MEAN-TELE) magnification: 1.394 D 2' = 7.31, D 6 '= 7.651, D 8' = 1.9
42, D 10 '= 2.058 (TELE) Magnification: 2.098 D 2 ' = 14.684, D 6 '= 0.277, D 8 ' =
2.485, D 10 '= 1.515
.

【0036】 接眼系側 i Rii j Nj νj 10 10.13(D10R=D’12R) 11 17.069 27.500 5 1.52580 52.10 12 ∞ 0.300 13 36.904 2.200 6 1.49154 57.82 14 −19.251 15.000 アイポイント 。Eyepiece system side i R i D i j N j ν j 10 10.13 (D 10R = D ′ 12R ) 11 17.069 27.500 5 1.52580 52.10 12 ∞ 0.300 13 36. 904 2.200 6 1.49154 57.82 14-19.251 15.000 eyepoints.

【0037】非球面 第11面 K=−38.343,A= 2.45E−4,B=−
3.88E−6,C=0.0
Aspheric surface 11th surface K = -38.343, A = 2.45E-4, B =-
3.88E-6, C = 0.0
.

【0038】上記実施例において、対物系1を接眼系側
に光軸接合したときの、上記WIDE,WIDE−ME
AN,MEANの各状態における収差図を、図4〜図6
に順次示す。対物系2を接眼系側に光軸接合したとき
の、上記MEAN,MEAN−TELE,TELEの各
状態における収差図を、図7〜図9に順次示す。これら
収差図において、C,D,FはC線,D線,F線に関す
るものであることを表し、球面収差図における破線は
「正弦条件」を、非点収差図における実線はタンジェン
シアル、破線はメリディオナルの各方向を示す。
In the above embodiment, the above-mentioned WIDE, WIDE-ME when the objective system 1 is optical-axis joined to the eyepiece system side.
Aberration diagrams in each state of AN and MEAN are shown in FIGS.
Are shown in sequence. FIGS. 7 to 9 sequentially show aberration diagrams in each of the states of MEAN, MEAN-TELE, and TELE when the objective system 2 is optical axis joined to the eyepiece system side. In these aberration diagrams, C, D, and F indicate that they are related to the C line, D line, and F line, the broken line in the spherical aberration diagram indicates the "sinusoidal condition", and the solid line in the astigmatism diagram indicates the tangential. The broken line indicates each direction of meridional.

【0039】対物系1,2と接眼系側との光軸接合の各
状態とも、収差は良好に補正され性能良好であり。通算
して5.27倍という極めて高い変倍比が実現されてい
る。
In each state of the optical axis cementing between the objective systems 1 and 2 and the eyepiece system side, the aberration is well corrected and the performance is good. A very high zoom ratio of 5.27 times is realized in total.

【0040】なお、上には焦点距離可変対物系が2種で
ある場合を示したが、互いに焦点距離変化領域の異なる
3種以上の焦点距離可変対物系を用いる場合も可能であ
ることは、上の説明から容易に理解されるであろう。
Although the case where there are two types of variable focal length objective systems is shown above, it is also possible to use three or more types of variable focal length objective systems having different focal length change regions. It will be readily understood from the above description.

【0041】[0041]

【発明の効果】以上説明したように、この発明によれば
新規な実像式変倍ファインダーを提供できる。この発明
では、上述の如く、共通の接眼系に組み合わせる焦点距
離可変対物系を切り換えることにより極めて高い変倍比
を実現できる。個々の焦点距離可変対物系自体はさほど
大きな焦点距離変化領域を有する必要はないので、通算
した変倍比は極めて高いにも拘らず、折り曲げ全長は小
さくてすみ、収差の良好な補正も可能である。
As described above, according to the present invention, it is possible to provide a new real image type variable magnification finder. In the present invention, as described above, an extremely high zoom ratio can be realized by switching the variable focal length objective system combined with the common eyepiece system. Since each focal length variable objective system itself does not need to have a very large focal length change region, the total bending ratio is extremely high, but the total bending length is small, and good aberration correction is possible. is there.

【0042】請求項2,3記載の発明では光学配置が容
易であり、請求項4記載の発明は、光軸切り換え手段が
簡素である。また請求項5記載の発明では対物系の切り
換えの前後でファインダー像の倍率を連続的に変化させ
ることができる。
In the second and third aspects of the invention, the optical arrangement is easy, and in the fourth aspect of the invention, the optical axis switching means is simple. According to the invention of claim 5, the magnification of the finder image can be continuously changed before and after the switching of the objective system.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実像式変倍ファインダーの1実施例
における、焦点距離可変対物系と接眼系側(像反転プリ
ズムと接眼系)の具体的レンズ構成を示す図である。
FIG. 1 is a diagram showing a specific lens configuration of a variable focal length objective system and an eyepiece system side (image inverting prism and eyepiece system) in one embodiment of a real image type variable magnification finder of the present invention.

【図2】実施例における各対物系の屈折力配置を示す図
である。
FIG. 2 is a diagram showing a refractive power arrangement of each objective system in an example.

【図3】実施例における光軸切り換えを説明するための
図である。
FIG. 3 is a diagram for explaining optical axis switching in the embodiment.

【図4】実施例において対物系1を接眼系側に光軸接合
したときのWIDE状態における収差図である。
FIG. 4 is an aberration diagram in a WIDE state when the objective system 1 is optically bonded to the eyepiece system side in Example.

【図5】実施例において対物系1を接眼系側に光軸接合
したときのWIDE−MEAN状態における収差図であ
る。
FIG. 5 is an aberration diagram in a WIDE-MEAN state when the objective system 1 is optical axis joined to the eyepiece system side in Example.

【図6】実施例において対物系1を接眼系側に光軸接合
したときのMEAN状態における収差図である。
FIG. 6 is an aberration diagram in the MEAN state when the objective system 1 is optical axis joined to the eyepiece system side in the example.

【図7】実施例において対物系2を接眼系側に光軸接合
したときのNEAN状態における収差図である。
FIG. 7 is an aberration diagram in a NEAN state when the objective system 2 is optical axis joined to the eyepiece system side in Example.

【図8】実施例において対物系2を接眼系側に光軸接合
したときのMEAN−TELE状態における収差図であ
る。
FIG. 8 is an aberration diagram in a MEAN-TELE state when the objective system 2 is optically bonded to the eyepiece system side in the example.

【図9】実施例において対物系2を接眼系側に光軸接合
したときのTELE状態における収差図である。
FIG. 9 is an aberration diagram in a TELE state when the objective system 2 is optical axis joined to the eyepiece system side in Example.

【符号の説明】[Explanation of symbols]

1〜L5 対物系1(第1の焦点距離可変対物系)
の各レンズ L1’〜L5’ 対物系2(第2の焦点距離可変対物
系)の各レンズ P1 光軸切り換え手段の構成要素であるプリズム P2 像反転系 L6 接眼系である接眼レンズ
L 1 to L 5 objective system 1 (first focal length variable objective system)
Lenses L 1 'to L 5 ' Each lens of the objective system 2 (second focal length variable objective system) P 1 Prism which is a constituent element of the optical axis switching means P 2 Image inversion system L 6 Eyepiece which is an eyepiece system lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】焦点距離可変な対物系による実像を像反転
系により反転させ接眼系により正立像として観察する実
像式変倍ファインダーであって、 対物系が、焦点距離の変化領域が互いに異なるN(≧
2)個の焦点距離可変対物系により構成され、 接眼系は、上記N個の焦点距離可変対物系の任意のもの
と選択的に組み合わせ可能に設けられる単一のレンズ系
であり、 上記N個の焦点距離可変対物系のうちの所望のものの光
軸を上記接眼系側の光軸に接合する光軸切り換え手段を
有することを特徴とする、実像式変倍ファインダー。
1. A real image type variable magnification finder for observing a real image by an objective system having a variable focal length by an image inverting system and observing it as an erect image by an eyepiece system, wherein the objective system has different focal length changing regions. (≧
2) is composed of a variable focal length objective system, and the eyepiece system is a single lens system provided so as to be selectively combined with any of the N variable focal length objective systems, 2. A real image type variable power viewfinder having an optical axis switching means for joining the optical axis of a desired one of the variable focal length objective systems to the optical axis on the side of the eyepiece system.
【請求項2】請求項1記載の実像式変倍ファインダーに
おいて、 N個の焦点距離可変対物系は、最大焦点距離の長い順に
長いバックフォーカスを有し、光軸を互いに平行にして
配備され、空間における配列順序がバックフォーカスの
長さの順になっていることを特徴とする、実像式変倍フ
ァインダー。
2. The variable-magnification real-image finder according to claim 1, wherein the N variable focal length objectives have a long back focus in order of increasing maximum focal length, and are arranged with their optical axes parallel to each other. A real-image variable-magnification viewfinder characterized in that the order of arrangement in space is the order of the length of the back focus.
【請求項3】請求項2記載の実像式変倍ファインダーに
おいて、 N個の焦点距離可変対物系は装置空間に固定して互いに
並列的に配備され、 光軸切り換え手段は、各焦点距離可変対物系の個々に対
応して設けられ、対応する焦点距離可変対物系の光軸を
互いに合流的に接眼系側の光軸に接合するN個の反射手
段と、これら反射手段のうち、最長バックフォーカスを
有する焦点距離可変対物系に対するもの以外の(N−
1)個の反射手段を光軸接合態位と退避態位とに切り換
える態位切り換え手段とを有することを特徴とする実像
式変倍ファインダー。
3. The real image variable magnification finder according to claim 2, wherein the N focal length variable objective systems are fixed in the apparatus space and arranged in parallel with each other, and the optical axis switching means is each focal length variable objective. N reflecting means provided corresponding to each of the systems, which join the optical axes of the corresponding variable focal length objective systems to the optical axis on the eyepiece system side, and the longest back focus among these reflecting means. (N- other than for variable focal length objectives with
1) A real image type variable power viewfinder having a position switching means for switching the individual reflecting means between an optical axis bonding state and a retracted state.
【請求項4】請求項3記載の実像式変倍ファインダーに
おいて、 光軸接合態位と退避態位とに切り換え可能な(N−1)
個の反射手段がミラーであって、態位の切り換えが揺動
的に行われることを特徴とする実像式変倍ファインダ
ー。
4. The variable magnification finder of the real image type according to claim 3, wherein the optical axis bonding state and the retracted state are switchable (N-1).
A real image type variable power viewfinder in which each of the reflecting means is a mirror, and the postures are switched in a swinging manner.
【請求項5】請求項2または3または4記載の実像式変
倍ファインダーにおいて、 光軸切り換え時において、光軸切り換えに関与する2つ
の焦点距離可変対物系の焦点距離を同じにすることを特
徴とする実像式変倍ファインダー。
5. The real image variable magnification finder according to claim 2, 3 or 4, wherein, when the optical axes are switched, two focal length variable objective systems involved in the optical axis switching have the same focal length. A real image type zoom finder.
JP5110614A 1993-05-12 1993-05-12 Real image type variable power finder Pending JPH06324266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5110614A JPH06324266A (en) 1993-05-12 1993-05-12 Real image type variable power finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5110614A JPH06324266A (en) 1993-05-12 1993-05-12 Real image type variable power finder

Publications (1)

Publication Number Publication Date
JPH06324266A true JPH06324266A (en) 1994-11-25

Family

ID=14540286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5110614A Pending JPH06324266A (en) 1993-05-12 1993-05-12 Real image type variable power finder

Country Status (1)

Country Link
JP (1) JPH06324266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107526151A (en) * 2017-08-23 2017-12-29 舜宇光学(中山)有限公司 Vision lenses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107526151A (en) * 2017-08-23 2017-12-29 舜宇光学(中山)有限公司 Vision lenses
CN107526151B (en) * 2017-08-23 2024-03-19 舜宇光学(中山)有限公司 Visual lens

Similar Documents

Publication Publication Date Title
JP3167069B2 (en) Zoom lens
JPH08292372A (en) Reflection type zoom optical system and image pickup device using the system
JP3387524B2 (en) Variable magnification finder optical system
JPS63292106A (en) Variable power lens
JPH03120507A (en) Zoom lens
JPH0843885A (en) High variable-power real image system finder
JP3709252B2 (en) Real-image magnification finder
JPH08292368A (en) Reflection type zoom optical system and image pickup device using the system
JP3181636B2 (en) Switchable zoom finder
JPH0876192A (en) Real image type variable power finder optical system
JP2533779B2 (en) Zoom lens
JPH08327901A (en) Variable-magnification finder
US5687413A (en) Camera having short entire length
JPH06308387A (en) Zoom lens
JPH06300972A (en) Zoom lens with wide field angle
JPH06123833A (en) Variable power finder
JPH09203869A (en) Real-image type variable power viewfinder
JPH06324266A (en) Real image type variable power finder
JP2004101739A (en) Large aperture zoom lens
JPH08110467A (en) Rear focusing inverted telephoto photographing lens
JPH09197275A (en) Wide angle variable power finder
JP2984503B2 (en) Zoom finder
JPH08248316A (en) Real image type zooming finder
JPH1172706A (en) Real image type zoom finder
JP4714972B2 (en) Real-image magnification finder