JPH0632408B2 - Boiling cooler - Google Patents

Boiling cooler

Info

Publication number
JPH0632408B2
JPH0632408B2 JP59225763A JP22576384A JPH0632408B2 JP H0632408 B2 JPH0632408 B2 JP H0632408B2 JP 59225763 A JP59225763 A JP 59225763A JP 22576384 A JP22576384 A JP 22576384A JP H0632408 B2 JPH0632408 B2 JP H0632408B2
Authority
JP
Japan
Prior art keywords
boiling
refrigerant
boiling point
vaporization
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59225763A
Other languages
Japanese (ja)
Other versions
JPS61104696A (en
Inventor
伊藤  豊
崇夫 三輪
三良 庄司
▲吉▼治 本間
文雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59225763A priority Critical patent/JPH0632408B2/en
Publication of JPS61104696A publication Critical patent/JPS61104696A/en
Publication of JPH0632408B2 publication Critical patent/JPH0632408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰冷却装置に係り、特に電子部品や変圧器の
発熱吸収装置に好適な沸騰冷却装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device, and more particularly to a boiling cooling device suitable for a heat absorbing device for electronic components and transformers.

〔発明の背景〕[Background of the Invention]

現在、コンピュータに搭載される電子素子等電子部品集
積度は増加の一方をたどつている。このため、電子素子
の発熱密度も急激に増加し、これまで空冷あるいは間接
液冷によつて冷却していたものが、直接液冷あるいは電
子素子を直接液体中に浸漬し液体の蒸発潜熱を利用する
沸騰冷却にする必要がある。また、沸騰冷却は変圧器や
整流器等、発熱密度の高い他の分野にも適用されつつあ
る。
At present, the degree of integration of electronic components such as electronic elements mounted on a computer is increasing. For this reason, the heat generation density of the electronic element also rapidly increases, and what has been cooled by air cooling or indirect liquid cooling until now is directly liquid cooled or the electronic element is directly immersed in the liquid and the latent heat of vaporization of the liquid is used. It is necessary to cool to boiling. Further, boiling cooling is being applied to other fields with high heat generation density such as transformers and rectifiers.

この沸騰冷却に利用される液体は、冷媒と呼ばれ、沸騰
冷却が通常大気圧で行なわれるため、冷媒の選定に標準
沸点が重要な因子となる。すなわち、電子素子等、発熱
体の作動温度が決まれば、冷媒の標準沸点をもとに冷媒
を選び出せる。ある範囲の標準沸点をもつ化合物は限定
されるため、その対策として、特開昭54−7657号公
報,特開昭54−7658号公報にあるように、冷媒を混合
して標準沸点を調節する手法がとられるが、その成分の
標準沸点差の小さいものを混合していた。
The liquid used for this boiling cooling is called a refrigerant, and since boiling cooling is usually performed at atmospheric pressure, the standard boiling point is an important factor in selecting a refrigerant. That is, if the operating temperature of the heating element such as an electronic element is determined, the refrigerant can be selected based on the standard boiling point of the refrigerant. Since compounds having a standard boiling point within a certain range are limited, as a countermeasure against this, as shown in JP-A-54-7657 and JP-A-54-7658, a refrigerant is mixed to adjust the standard boiling point. Although the method is adopted, the components having a small difference in standard boiling point were mixed.

冷媒の選定要件には、更に、冷媒の電気的性質,不燃
性,低毒性,化学的安定性が加味される。コンピュータ
など高信頼性を要求されるものは、これらのうち、化学
的安定性が重要な因子であり、一般には、炭化水素化合
物中のすべての水素原子をフツ素原子に置き換えたパー
フロロ化合物の化学的安定性がすぐれていることが知ら
れている。パーフロロ化合物の中から、上記選定要件を
充たす物質を選ぶとすれば、更に限定される。
In addition to the refrigerant selection requirements, the refrigerant's electrical properties, nonflammability, low toxicity, and chemical stability are taken into consideration. Among them, chemical stability is an important factor that requires high reliability, such as computers, and in general, the chemistry of perfluoro compounds in which all the hydrogen atoms in a hydrocarbon compound are replaced by fluorine atoms. It is known that it has excellent stability. If a substance satisfying the above selection requirements is selected from the perfluoro compounds, it is further limited.

また、沸騰冷却は冷媒の蒸発潜熱を利用して冷却するの
であるから、蒸発潜熱の大きな冷媒が冷却性能がすぐれ
ていると言える。従つて、化学的に安定なパーフロロ化
合物を用いた電子素子の沸騰冷却用冷媒は極めて限定さ
れるため、冷却能力もある限られた範囲内になる。
Further, since the boiling cooling uses the latent heat of vaporization of the refrigerant for cooling, it can be said that the refrigerant having a large latent heat of vaporization has excellent cooling performance. Therefore, since the coolant for boiling cooling of the electronic device using the chemically stable perfluoro compound is extremely limited, the cooling capacity is also within a limited range.

〔発明の目的〕[Object of the Invention]

本発明の目的は、沸騰冷却性能を改善した冷媒を提供す
ることにより、より信頼性の高い電子素子,変圧器等の
沸騰冷却装置を実現しようとするものである。
An object of the present invention is to provide a refrigerant with improved boiling cooling performance to realize a more reliable boiling cooling device for electronic devices, transformers and the like.

〔発明の概要〕[Outline of Invention]

本発明者は、パーフロロ化合物を用いた沸騰冷却では、
その冷却性能が限定される現状に対し、標準沸点差の離
れた冷媒を混合し、その混合物が非共沸混合冷媒である
場合、冷媒の冷却性能を支配する蒸発潜熱が大幅に改善
できることを見出し、本発明に至つた。ここで非共沸混
合冷媒とは、ある温度,圧力下で混合冷媒の蒸気と液体
とが熱平衡している場合、混合冷媒の液相の組成と蒸気
相の組成とが異なるものであり、本発明で言う非共沸混
合冷媒とは、少なくとも、沸騰冷却装置として作動させ
る温度,圧力下で液相組成と蒸気相組成とが異なるもの
を言う。
The present inventor, in boiling cooling using a perfluoro compound,
In contrast to the present situation where the cooling performance is limited, it was found that when the refrigerants with different standard boiling points are mixed and the mixture is a non-azeotropic mixed refrigerant, the latent heat of vaporization that governs the cooling performance of the refrigerant can be significantly improved. The present invention has been achieved. The term "non-azeotropic mixed refrigerant" as used herein means that the composition of the liquid phase and the composition of the vapor phase of the mixed refrigerant are different when the vapor and the liquid of the mixed refrigerant are in thermal equilibrium at a certain temperature and pressure. The non-azeotropic mixed refrigerant referred to in the invention means that the liquid phase composition and the vapor phase composition are different at least under the temperature and pressure for operating as a boiling cooling device.

すなわち本発明の沸騰冷却装置の特徴は、被冷却物を液
体に浸漬して冷却する装置であつて、この液体が沸点差
の大きい低沸点成分と高沸点成分との2種以上の成分か
ら成る非共沸混合冷媒である点にある。この構成成分の
沸点差は70℃以上であることが望ましい。例えば低沸
点成分はオクタフルオロシクブタンであり、この場合の
高沸点成分の沸点は70℃以上である。高沸点成分を例
示すると、トリフルオロメチル−ウンデカフルオロシク
ロヘキサン、1,2−ビス(トリフルオロチメル)−デ
カフルオロシクロヘキサン、オクタデカフルオロ〔4.4.
0〕デカン、2−ノナフルオロブチル−ヘプタフルオロ
オキソランである。これらの成分からなる冷媒を用いる
本発明装置は、電子部品や変圧器の発熱吸収装置に適し
ている。
That is, the feature of the boiling cooling apparatus of the present invention is an apparatus for cooling an object to be cooled by immersing it in a liquid, and the liquid is composed of two or more kinds of components having a large boiling point difference, a low boiling point component and a high boiling point component. It is a non-azeotropic mixed refrigerant. It is desirable that the difference in boiling points between the constituents be 70 ° C. or higher. For example, the low boiling point component is octafluorocyclbutane, and the high boiling point component in this case has a boiling point of 70 ° C. or higher. Examples of high-boiling components include trifluoromethyl-undecafluorocyclohexane, 1,2-bis (trifluorothymer) -decafluorocyclohexane, octadecafluoro (4.4.
0] decane, 2-nonafluorobutyl-heptafluorooxolane. The device of the present invention using the refrigerant composed of these components is suitable for the heat absorbing device of electronic parts and transformers.

〔発明の実施例〕Example of Invention

本発明を適用した一実施例装置の断面略図を第1図に示
す。この例は冷媒中に発熱体を直接浸漬する直接熱交換
型のものである。
FIG. 1 shows a schematic sectional view of an embodiment of the device to which the present invention is applied. This example is a direct heat exchange type in which a heating element is directly immersed in a refrigerant.

発熱体1は容器2の底部に設置される。非共沸混合冷媒
3は液相部分が発熱体1を覆うように注入されている。
4は冷却フインである。
The heating element 1 is installed at the bottom of the container 2. The non-azeotropic mixed refrigerant 3 is injected so that the liquid phase portion covers the heating element 1.
4 is a cooling fin.

液相非共沸混合冷媒3は半導体素子等の発熱体1から発
生した熱と熱交換することにより、気泡となつて上昇し
た気相冷媒5となる。冷却フイン4は気相冷媒5を凝縮
し液化する。
The liquid-phase non-azeotropic mixed refrigerant 3 becomes heat-exchanged with the heat generated from the heating element 1 such as a semiconductor element, and becomes the gas-phase refrigerant 5 that rises as bubbles. The cooling fins 4 condense and liquefy the vapor phase refrigerant 5.

第2図は間接型の自然循環式装置の断面略図である。6
は管、7は管6上外側に設けられた放熱フインである。
発熱体1は管6外面に直接或いは間接的に配置されてい
る。
FIG. 2 is a schematic sectional view of an indirect type natural circulation device. 6
Is a tube, and 7 is a heat dissipation fin provided outside the tube 6.
The heating element 1 is directly or indirectly arranged on the outer surface of the tube 6.

発熱体1によつて管6内の液相非共沸混合冷媒3が加熱
され低沸点成分の沸騰温度を越えると低沸点成分の気泡
8を生ずる。気泡の発生で閉鎖循環回路中の発熱体1寄
りの管とその反対側の管との間に大きな密度差を生じ、
冷媒3は管6の発熱体1寄り部分を上昇し、反対側管部
を下降して閉鎖回路を一巡する。気泡8を含む非共沸混
合冷媒3の二相流は放熱フイン7で冷却されて気泡8が
削減し、単相流となつて再び発熱体1該当部分に至る。
管6の内径は気泡8の最大直径よりも大きい方が望まし
い。
When the liquid phase non-azeotropic mixed refrigerant 3 in the pipe 6 is heated by the heating element 1 and the boiling temperature of the low boiling point component is exceeded, bubbles 8 of the low boiling point component are generated. The generation of bubbles causes a large density difference between the tube near the heating element 1 and the tube on the opposite side in the closed circuit.
The refrigerant 3 rises in the portion of the pipe 6 near the heating element 1 and descends in the opposite pipe portion to complete a closed circuit. The two-phase flow of the non-azeotropic mixed refrigerant 3 containing the bubbles 8 is cooled by the radiating fins 7 to reduce the bubbles 8, and becomes a single-phase flow to reach the corresponding portion of the heating element 1 again.
The inner diameter of the tube 6 is preferably larger than the maximum diameter of the bubble 8.

冷媒の蒸気圧及び蒸気密度を測定し、式(1)に示すクラ
ペイロン−クラウジウス式を用いて、冷媒の蒸発潜熱を
求めた。
The vapor pressure and vapor density of the refrigerant were measured, and the latent heat of vaporization of the refrigerant was determined using the Clapeyron-Clausius equation shown in equation (1).

ここで、p:冷媒の蒸気圧、T:絶対温度、ΔH:蒸発
潜熱、ΔV:蒸気の液体の比容積差(蒸気比容積で近
似) 測定装置の概略を第3図に示す。既知組成比の冷媒を封
入したステンレス製容器9を恒温油槽10中に浸漬し、
温度と圧力とをセンサ11,12によつて測定する。容
器中には、中空ガラス13を石英スプリング14で釣つ
てありその伸縮を容器の耐圧ガラス窓から観測する。こ
れによつて、冷媒の温度,蒸気圧、蒸気比容積を測定で
き、式(1)に従つて蒸発潜熱を求められる。尚、16は
油槽の熱媒体である。
Here, p: vapor pressure of refrigerant, T: absolute temperature, ΔH: latent heat of vaporization, ΔV: difference in specific volume of liquid of vapor (approximated by vapor specific volume) is schematically shown in FIG. A stainless steel container 9 containing a refrigerant having a known composition ratio is immersed in a constant temperature oil tank 10,
The temperature and the pressure are measured by the sensors 11 and 12. A hollow glass 13 is hung in the container by a quartz spring 14, and its expansion and contraction is observed through a pressure resistant glass window of the container. With this, the temperature of the refrigerant, the vapor pressure, and the vapor specific volume can be measured, and the latent heat of vaporization can be obtained according to the equation (1). Incidentally, 16 is a heat medium of the oil tank.

冷媒の蒸気圧が1気圧になるときの温度(標準沸点、並
びにその際の蒸発潜熱を表に示す。また、混合冷媒の際
には、成分の沸点差を示した。
The table shows the temperatures at which the vapor pressure of the refrigerant reaches 1 atm (standard boiling point and the latent heat of vaporization at that time. In the case of mixed refrigerants, the boiling point difference of the components is shown.

試料容器には蒸気試料採取管15を取付け、蒸気の採取
後、ガスクロマトグラフによつて蒸気の冷媒組成比を測
定した。表の実施例1〜8にある混合冷媒は、いずれも
非共沸であることがわつた。
A vapor sampling pipe 15 was attached to the sample container, and after the vapor was collected, the refrigerant composition ratio of the vapor was measured by a gas chromatograph. It was found that the mixed refrigerants in Examples 1 to 8 in the table are all non-azeotropic.

表において、比較例1にテトラデカフルオロヘキサンの
沸点が57℃で蒸発潜熱が20.6kcal/kgであることを示
した。また、比較例2〜3に示したように、他の純パー
フロロ系冷媒(NHO,BUdH)の蒸発潜熱は19.8〜21kcal/
kgである。これに対して実施例1〜8に示すように、純
成分の沸点差が73.2℃以上あるものの組合せによって蒸
発潜熱は22.8〜26.6kcal/kgを得られることを示した。
In the table, Comparative Example 1 shows that the boiling point of tetradecafluorohexane is 57 ° C. and the latent heat of vaporization is 20.6 kcal / kg. Further, as shown in Comparative Examples 2 and 3, the latent heat of vaporization of other pure perfluoro refrigerants (NHO, BUdH) is 19.8 to 21 kcal /
It is kg. On the other hand, as shown in Examples 1 to 8, it was shown that the latent heat of vaporization can obtain 22.8 to 26.6 kcal / kg by a combination of pure components having a boiling point difference of 73.2 ° C or more.

(1)同一沸点レベルでの比較:比較例1と実施例2,実
施例8との比較(沸点57℃) 比較例1は20.6kcal/kgであるのに対して、実施例2は
25.8kcal/kg,実施例8は22.8kcal/kgである。すなわ
ち、本発明によって11%〜25%の蒸発潜熱の向上と
なる。
(1) Comparison at the same boiling point level: Comparison between Comparative Example 1 and Examples 2 and 8 (boiling point 57 ° C.) Comparative Example 1 is 20.6 kcal / kg, while Example 2 is
25.8 kcal / kg, Example 8 is 22.8 kcal / kg. That is, according to the present invention, the latent heat of vaporization is improved by 11% to 25%.

(2)全体傾向:比較例1を沸点範囲50〜65℃の本発
明と比較すると、比較例1が20.6kcal/kgであるのに対
して、本発明では22.8〜26.6kcal/kgの蒸発潜熱を得る
ことができる。すなわち、11〜29%の蒸発潜熱の向
上となる。
(2) Overall tendency: Comparing Comparative Example 1 with the present invention having a boiling range of 50 to 65 ° C., Comparative Example 1 has 20.6 kcal / kg, whereas the present invention has a latent heat of vaporization of 22.8 to 26.6 kcal / kg. Can be obtained. That is, the latent heat of vaporization is improved by 11 to 29%.

また、比較例1〜3に示したように純パーフロロ系冷媒
の蒸発潜熱は20〜21kcal/kg程度である。一方、本
発明では前述したように22.8〜26.6kcal/kgの蒸発潜熱
である。従って、少なくとも9%以上の蒸発潜熱を向上
することができる。
Further, as shown in Comparative Examples 1 to 3, the latent heat of vaporization of the pure perfluoro-based refrigerant is about 20 to 21 kcal / kg. On the other hand, in the present invention, the latent heat of vaporization is 22.8 to 26.6 kcal / kg as described above. Therefore, the latent heat of vaporization of at least 9% can be improved.

本実施例に示すように、蒸発潜熱の向上は、沸点差が大
きくなると顕著である。このように本発明によれば、沸
騰冷却性能を大幅に改善できる。各成分の沸点差が小さ
い程、蒸発潜熱が低くなる傾向にあるが、70℃以上の
沸点差であれば、蒸発潜熱の向上効果が明らかである。
As shown in this example, the improvement of the latent heat of vaporization is remarkable when the boiling point difference becomes large. As described above, according to the present invention, the boiling cooling performance can be significantly improved. The smaller the boiling point difference between the components is, the lower the latent heat of vaporization tends to be, but if the boiling point difference is 70 ° C. or higher, the effect of improving the latent heat of vaporization is obvious.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明によれば冷媒の蒸発潜熱が大きいか
ら冷却性能の優れた沸騰冷却装置が得られるという効果
がある。
As described above, according to the present invention, since the latent heat of vaporization of the refrigerant is large, there is an effect that a boiling cooling device having excellent cooling performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は夫々本発明の実施例装置の断面概略
図、第3図は本発明に適用する冷媒の蒸発潜熱の測定装
置の断面概略図である。 1…発熱体、2…容器、3…非共沸混合冷媒、6…管、
8…気泡。
1 and 2 are schematic cross-sectional views of the apparatus of the embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view of the apparatus for measuring latent heat of vaporization of a refrigerant applied to the present invention. 1 ... Heating element, 2 ... Container, 3 ... Non-azeotropic mixed refrigerant, 6 ... Tube,
8 ... bubbles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 ▲吉▼治 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 中野 文雄 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (56)参考文献 特開 昭49−85567(JP,A) 特開 昭54−7658(JP,A) 特開 昭54−7657(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Honma ▲ Yoshi ▼ Oji, 1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Fumio Nakano Sachimachi, Hitachi City, Ibaraki Prefecture 3-1, 1-1, Hitachi Research Laboratory, Hitachi Ltd. (56) References JP-A-49-85567 (JP, A) JP-A-54-7658 (JP, A) JP-A-54-7657 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被冷却物を液体に浸漬して冷却する装置で
あって、該液体が相溶する2種以上の成分から成る非共
沸混合冷媒であることを特徴とする沸騰冷却装置。
1. An apparatus for cooling an object to be cooled by immersing it in a liquid, which is a non-azeotropic mixed refrigerant composed of two or more components in which the liquid is compatible.
【請求項2】前記非共沸混合冷媒を構成する成分の沸点
差が70℃以上であることを特徴とする特許請求の範囲
第1項記載の沸騰冷却装置。
2. The boiling cooling apparatus according to claim 1, wherein the components constituting the non-azeotropic mixed refrigerant have a boiling point difference of 70 ° C. or more.
【請求項3】前記成分の内低沸点成分がオクタフルオロ
シクロブタンであることを特徴とする特許請求の範囲第
2項記載の沸騰冷却装置。
3. The boiling cooling apparatus according to claim 2, wherein the low boiling point component of the components is octafluorocyclobutane.
【請求項4】前記成分の内高沸点成分の沸点は70℃以
上であることを特徴とする特許請求の範囲第2項記載の
沸騰冷却装置。
4. The boiling cooling apparatus according to claim 2, wherein the high boiling point component of the components has a boiling point of 70 ° C. or higher.
【請求項5】前記高沸点成分がトリフルオロメチル−ウ
ンデカフルオロシクロヘキサン、1,2−ビス(トリフ
ルオロチメル)−デカフルオロシクロヘキサン、オクタ
デカフルオロ〔4.4.0〕デカン、2−ノナフルオロ
ブチル−ヘプタフルオロオキソランから選ばれることを
特徴とする特許請求の範囲第1項または第3項記載の沸
騰冷却装置。
5. The high-boiling component is trifluoromethyl-undecafluorocyclohexane, 1,2-bis (trifluorothymer) -decafluorocyclohexane, octadecafluoro [4.4.0] decane, 2-nonafluoro. The boiling cooling device according to claim 1 or 3, which is selected from butyl-heptafluorooxolane.
【請求項6】前記被冷却物が電子部品であることを特徴
とする特許請求の範囲第1項乃至第5項いずれか記載の
沸騰冷却装置。
6. The boiling cooling device according to claim 1, wherein the object to be cooled is an electronic component.
【請求項7】前記被冷却物が変圧器であることを特徴と
する特許請求の範囲第1項乃至第5項いずれか記載の沸
騰冷却装置。
7. The boiling cooling apparatus according to claim 1, wherein the object to be cooled is a transformer.
JP59225763A 1984-10-29 1984-10-29 Boiling cooler Expired - Fee Related JPH0632408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225763A JPH0632408B2 (en) 1984-10-29 1984-10-29 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225763A JPH0632408B2 (en) 1984-10-29 1984-10-29 Boiling cooler

Publications (2)

Publication Number Publication Date
JPS61104696A JPS61104696A (en) 1986-05-22
JPH0632408B2 true JPH0632408B2 (en) 1994-04-27

Family

ID=16834425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225763A Expired - Fee Related JPH0632408B2 (en) 1984-10-29 1984-10-29 Boiling cooler

Country Status (1)

Country Link
JP (1) JPH0632408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065879A (en) * 2008-09-09 2010-03-25 Showa Denko Kk Heat pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456508A3 (en) * 1990-05-11 1993-01-20 Fujitsu Limited Immersion cooling coolant and electronic device using this coolant
JPH04226057A (en) * 1990-05-11 1992-08-14 Fujitsu Ltd Coolant for cooling dip liquid and boiling liquid cooled electric apparatus
JP4839890B2 (en) 2006-02-28 2011-12-21 ヤマハ株式会社 Wide directional speaker system
JP6904704B2 (en) * 2014-08-27 2021-07-21 日本電気株式会社 Phase change cooling device and phase change cooling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985567A (en) * 1972-12-25 1974-08-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065879A (en) * 2008-09-09 2010-03-25 Showa Denko Kk Heat pipe

Also Published As

Publication number Publication date
JPS61104696A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US20200386488A1 (en) Perfluorinated 1-alkoxypropenes, compositions, and methods and apparatuses for using same
US6374907B1 (en) Hydrofluoroether as a heat-transfer fluid
EP1694796B1 (en) Hydrofluoroether as a heat-transfer fluid
US20050224747A1 (en) Hydrofluoroether as a heat-transfer fluid
EP1711574A2 (en) Hydrofluoroether as a heat-transfer fluid
Saylor et al. Fluid selection and property effects in single-and two-phase immersion cooling (of electronic components)
JPH0632408B2 (en) Boiling cooler
CN101415794A (en) Working liquid for latent heat transport apparatus and method for operating latent heat transport apparatus
Kistiakowsky et al. Kinetics of Thermal Cis-Trans Isomerizations. V
US5395540A (en) Perfluoroisohexene as a cooling and insulating medium
Weber Criteria for establishing accurate vapour pressure curves
EP0120048A1 (en) Fluids for use in sorption refrigerators and heat pumps
Rao et al. Thermodynamic properties of Mg− Ge alloys
JP2726542B2 (en) Hydraulic fluid for heat pipe
US2998388A (en) Heat transfer
US3470101A (en) Fluorinated hydrocarbon compositions
THOME Nucleate pool boiling of hydrocarbon mixtures on a Gewa-TX tube
JPS59125643A (en) Liquid-cooled electronic device
WO2022149045A1 (en) Removal of contaminants from fluorinated fluids
JP2022169554A (en) Immersion cooling device
EP4214457A1 (en) Low-pressure heat pipes and heat transfer methods using low-pressure for heat pipes
Sharma et al. Solid-Liquid Equilibrium and Phase Diagram of Organic System Forming Simple Eutectic
Bertrand et al. New results on the dependence of the liquid evaporation rate on the pressure of its vapour
EP0120049A1 (en) Fluids for use in sorption refrigerators and heat pumps
CN109059591A (en) A kind of Synchronous Heating pipe and its preparation method and application

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees