JPH06323872A - Zero point position detector - Google Patents

Zero point position detector

Info

Publication number
JPH06323872A
JPH06323872A JP13535693A JP13535693A JPH06323872A JP H06323872 A JPH06323872 A JP H06323872A JP 13535693 A JP13535693 A JP 13535693A JP 13535693 A JP13535693 A JP 13535693A JP H06323872 A JPH06323872 A JP H06323872A
Authority
JP
Japan
Prior art keywords
zero point
scale
point position
light flux
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13535693A
Other languages
Japanese (ja)
Inventor
Norito Watanabe
範人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13535693A priority Critical patent/JPH06323872A/en
Publication of JPH06323872A publication Critical patent/JPH06323872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow easy formation of a zero point detection pattern without requiring any etching by forming the zero point detection pattern or the periphery thereof into a diffused surface. CONSTITUTION:First and second light beams 1, 2 are partially reflected on a half mirror 3 and impinge normally on a scale 4. The scale 4 moves in the arrow direction and when diffused surfaces 51, 52 approach points P1, P2, the diffused surface 51 arrives at the position P1 at first and thereby the light beam 1 reflected on a reflective surface 7a is scattered on the diffused surface 51 thus reducing the reflected light 1' impinging on a light receiving element S1. When the diffused surface 52 arrives at the position P2, the light beam 2 is scattered on the diffused surface 52 thus reducing the reflected light impinging on an element S2. Signals from the elements S1, S2 have a phase shift and delivered on a signal line L to a zero point detecting means 6. The means 6 generates a signal representative of the zero point of scale 4 immediately upon matching of input signal level thus detecting the zero point of the scale 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物体の移動や回転を計測
するために産業用工作機械や計測機械などの分野で利用
されるエンコーダの零点位置検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero point position detecting device for an encoder used in the fields of industrial machine tools and measuring machines for measuring the movement and rotation of an object.

【0002】[0002]

【従来の技術】従来、NC工作機械等には位置や角度を
検出する変位センサとしてエンコーダが使用されてい
る。そして、この種のエンコーダは高分解能化と高精度
化およびローコスト化が要求されている。このエンコー
ダのスケールとして用いる回折格子の記録密度を数ミク
ロン/ピッチにし、この回折格子で生じる一対の回析光
を取り出して干渉させ、干渉光を光電変換することによ
り、回析格子の変位に応じた周期信号を得ることのでき
る高分解能且つ高精度な変位測定装置がいくつか提案さ
れている。
2. Description of the Related Art Conventionally, an encoder has been used as a displacement sensor for detecting a position and an angle in NC machine tools and the like. Further, this type of encoder is required to have high resolution, high accuracy, and low cost. Depending on the displacement of the diffraction grating, the recording density of the diffraction grating used as the scale of this encoder is set to several microns / pitch, a pair of diffraction lights generated by this diffraction grating are extracted and interfered, and the interference light is photoelectrically converted. Several high-resolution and high-precision displacement measuring devices capable of obtaining periodic signals have been proposed.

【0003】この装置に組み込まれるスケールの零点位
置検出装置は検出分解能や精度が要求されるもので、図
5に示すように、移動方向前後に位置をずらせて零点位
置検出用パターン51,5−2が形成されたスケール4
と、このスケール4上で集光する第一光束1および第二
光束2と、スケール4で反射した第一光束1’を光電変
換して第一信号を出力する第一光電変換手段S1と、ス
ケール4で反射した第二光束2’を光電変換して第二信
号を出力する第二光電変換手段S2と、この第一光電変
換手段S1および第二光電変換手段S2から出力する第
一信号および第二信号のレベルの一致に応答して、スケ
ールの零点位置を示す信号を出力する零点検出手段6を
有するもので、上記零点位置検出用パターン5−1,5
−2が反射面または透光面であった。
The zero point position detecting device of the scale incorporated in this device is required to have detection resolution and accuracy. Therefore, as shown in FIG. Scale 4 with 2 formed
A first light flux 1 and a second light flux 2 which are condensed on the scale 4, and a first photoelectric conversion means S1 which photoelectrically converts the first light flux 1'reflected by the scale 4 and outputs a first signal, Second photoelectric conversion means S2 that photoelectrically converts the second light flux 2'reflected by the scale 4 and outputs a second signal, and a first signal output from the first photoelectric conversion means S1 and the second photoelectric conversion means S2. The zero point detecting means 6 outputs a signal indicating the zero point position of the scale in response to the coincidence of the level of the second signal, and the zero point position detecting patterns 5-1 and 5 are provided.
-2 was a reflective surface or a translucent surface.

【0004】[0004]

【発明が解決しようとする課題】従来の零点位置検出装
置は以上のように構成されているので、金属膜蒸着後エ
ッチングを施せば、零点位置検出用パターン5−1,5
−2の反射面または透光面は容易に作ることができる。
しかしエッチングを行わない製法、例えばレプリカ化し
た場合には、この反射面または透光面を設けることが困
難となるという問題点があった。
Since the conventional zero point position detecting device is constructed as described above, if the etching is performed after the metal film is deposited, the zero point position detecting patterns 5-1 and 5 are obtained.
A -2 reflective or transmissive surface can be easily made.
However, there is a problem in that it is difficult to provide the reflective surface or the translucent surface when a manufacturing method without etching, for example, a replica method is used.

【0005】本発明は上記のような問題点を解消した零
点位置検出装置を得ることを目的とする。
An object of the present invention is to obtain a zero point position detecting device which solves the above problems.

【0006】[0006]

【課題を解決するための手段】請求項1の発明によれ
ば、移動方向前後に位置をずらせて零点位置検出用パタ
ーンが形成されたスケールと、このスケール上に第一光
束および第二光束を集光する光学系と、前記零点位置検
出用パターンで反射した前記第一光束を光電変換して第
一信号を出力する第一光電変換手段と、前記スケールで
反射した第二光束を光電変換して第二信号を出力する第
二光電変換手段と、この第一信号および第二信号のレベ
ルの一致に応答して前記スケールの零点位置を示す信号
を出力する零点検出手段を有する零点位置検出装置にお
いて、零点位置検出用パターンを拡散面または該零点位
置検出用パターン以外の部分を拡散面としたことによ
り、レプリカスケールに応用すればローコスト且つ高精
度な零点位置検出用パターンを形成できる。
According to the invention of claim 1, a scale on which a zero point position detection pattern is formed by shifting the positions in the front and rear of the moving direction, and a first light flux and a second light flux are provided on the scale. An optical system for condensing, a first photoelectric conversion means for photoelectrically converting the first light flux reflected by the zero point position detection pattern and outputting a first signal, and a second light flux reflected by the scale for photoelectric conversion. Position detecting device having second photoelectric conversion means for outputting a second signal and zero point detecting means for outputting a signal indicating the zero point position of the scale in response to the coincidence of the levels of the first signal and the second signal. In the above, since the zero point position detection pattern is a diffusion surface or a portion other than the zero point position detection pattern is a diffusion surface, if applied to a replica scale, a low cost and highly accurate zero point position detection pattern can be obtained. Over emissions can be formed.

【0007】請求項2の発明によれば、移動方向前後に
位置をずらせて零点位置検出用パターンが形成されたス
ケールと、このスケール上に第一光束および第二光束を
集光する光学系と、前記零点位置検出用パターンで反射
した前記第一光束を光電変換して第一信号を出力する第
一光電変換手段と、前記スケールで反射した第二光束を
光電変換して第二信号を出力する第二光電変換手段と、
この第一信号および第二信号のレベルの一致に応答して
前記スケールの零点位置を示す信号を出力する零点検出
手段を有する零点位置検出装置において、零点位置検出
用パターンを回析格子または該零点位置検出用パターン
以外の部分を回析格子としたことにより、上記零点検出
用パターンの形成をローコスト且つ高精度に行うことが
できる。
According to the second aspect of the present invention, a scale having a zero point position detection pattern formed by shifting the position in the front-back direction and an optical system for converging the first light flux and the second light flux on the scale. A first photoelectric conversion unit that photoelectrically converts the first light flux reflected by the zero point position detection pattern and outputs a first signal; and a second light flux that photoelectrically converts the second light flux reflected by the scale and outputs a second signal. Second photoelectric conversion means,
In a zero point position detecting device having a zero point detecting means for outputting a signal indicating the zero point position of the scale in response to the coincidence of the levels of the first signal and the second signal, a zero point position detecting pattern is a diffraction grating or the zero point. By forming a portion other than the position detecting pattern as a diffraction grating, the zero point detecting pattern can be formed at low cost and with high accuracy.

【0008】[0008]

【実施例】【Example】

実施例1.以下、本発明の実施例を図面について説明す
る。
Example 1. Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は請求項1の発明の実施例を示す概略
図である。図1において、1はスケール4上で集光する
第一光束、2はスケール4上で集光する第二光束、3は
第一光束1および第2光束をスケール4上に集光する光
学系としてのハーフミラー、51および52は零点位置
検出用パターンを構成する第一の拡散面および第二の拡
散面、7aは第一光束1および第二光束2が照射される
スケール4の零点位置検出用パターン以外の部分で反射
面、1’は第一光束1の反射光、2’は第二光束2の反
射光、6は光線変換手段としての受光素子S1,S2か
らの信号に基づいてスケール4の零点位置を示す信号を
出力する零点検出手段である。
FIG. 1 is a schematic view showing an embodiment of the invention of claim 1. In FIG. 1, reference numeral 1 is a first light beam condensed on the scale 4, 2 is a second light beam condensed on the scale 4, and 3 is an optical system for converging the first light beam 1 and the second light beam on the scale 4. Half mirrors, 51 and 52 are first and second diffusing surfaces forming a zero point position detection pattern, and 7a is a zero point position detection of the scale 4 irradiated with the first light flux 1 and the second light flux 2. In a portion other than the pattern for use, a reflecting surface, 1'is reflected light of the first light flux 1, 2'is reflected light of the second light flux 2, and 6 is a scale based on signals from the light receiving elements S1 and S2 as light ray converting means. 4 is a zero point detecting means for outputting a signal indicating the zero point position.

【0010】第一光束1および第二光束2はハーフミラ
ー3で一部が反射してスケール4に垂直入射する。スケ
ール4は駆動手段(図示せず)からの駆動力を受けて、
矢印方向に移動し、拡散面51,52が位置P1,P2
にさしかかると、拡散面51が先に位置P1に到達する
ので、それまで反射面7aで反射していた第一光束1が
拡散面51で分散して受光素子S1に入射する反射光
1’の減少が生じる。続いて、拡散面52が位置P2に
到達すると、第二光束2が拡散面52で分散して受光素
子S2に入射する反射光2’の減少が生じる。
The first light flux 1 and the second light flux 2 are partially reflected by the half mirror 3 and are vertically incident on the scale 4. The scale 4 receives a driving force from a driving means (not shown),
Move in the direction of the arrow, and the diffusion surfaces 51 and 52 are located at the positions P1 and P2.
When approaching, the diffusing surface 51 reaches the position P1 first, so that the first light flux 1 which has been reflected by the reflecting surface 7a until then is dispersed by the diffusing surface 51 and is incident on the light receiving element S1. A decrease occurs. Subsequently, when the diffusing surface 52 reaches the position P2, the second light flux 2 is dispersed on the diffusing surface 52 and the reflected light 2'which is incident on the light receiving element S2 is reduced.

【0011】この受光素子S1,S2からの信号は互い
に位相がずれた信号であり、各々で信号線Lを介して零
点検出手段6に入力される。零点検出手段6はこれらの
入力信号のレベルが一致した瞬間にスケール4の零点位
置を示す零点信号を発生させるもので、これによりスケ
ール4の零点位置が検出されたことになる。
The signals from the light receiving elements S1 and S2 are signals whose phases are deviated from each other, and are respectively input to the zero point detecting means 6 via the signal line L. The zero point detecting means 6 generates a zero point signal indicating the zero point position of the scale 4 at the moment when the levels of these input signals coincide with each other, and this means that the zero point position of the scale 4 is detected.

【0012】実施例2.図2は請求項1の発明の実施例
を示す概略図である。図2において、1はスケール4上
で集光する第一光束、2はスケール4上で集光する第二
光束、3はハーフミラー、53はおよび54は零点位置
検出用パターンを構成する第一の反射面および第二の反
射面、7bは第一光束1および第二光束2が照射される
スケール4の零点位置検出用パターン以外の部分の拡散
面、1’は第一光束1の反射光、2’は第二光束2の反
射光、S1,S2は受光素子、6は受光素子S1,S2
からの信号に基づいてスケール4の零点位置を示す信号
を出力する零点検出手段である。
Example 2. FIG. 2 is a schematic view showing an embodiment of the invention of claim 1. In FIG. 2, 1 is a first light beam condensed on the scale 4, 2 is a second light beam condensed on the scale 4, 3 is a half mirror, and 53 and 54 are first zero-point position detecting patterns. And a second reflecting surface, 7b is a diffusing surface of a portion other than the zero point position detection pattern of the scale 4 on which the first light flux 1 and the second light flux 2 are irradiated, and 1'is the reflected light of the first light flux 1. 2'is reflected light of the second light flux 2, S1 and S2 are light receiving elements, and 6 is light receiving elements S1 and S2.
It is a zero point detecting means that outputs a signal indicating the zero point position of the scale 4 based on the signal from.

【0013】第一光束1および第二光束2はハーフミラ
ー3で一部が反射してスケール4に垂直入射する。スケ
ール4は駆動手段(図示せず)からの駆動力を受けて矢
印方向に移動し、反射面53,54が位置P1,P2に
さしかかると、反射面53が先に位置Pに到達するの
で、それまで拡散面7bで分散していた第一光束1が反
射面53で反射し受光素子S1に入射する反射光1’の
増加が生じる。続いて、反射面54が位置P2に到達し
て第二光束2が反射面54で反射し受光素子S2に入射
する反射光2’の増加が生じる。
The first light flux 1 and the second light flux 2 are partially reflected by the half mirror 3 and are vertically incident on the scale 4. The scale 4 receives a driving force from a driving means (not shown) and moves in the direction of the arrow, and when the reflecting surfaces 53 and 54 approach the positions P1 and P2, the reflecting surface 53 reaches the position P first. The first light flux 1 which has been dispersed on the diffusing surface 7b until then is reflected on the reflecting surface 53 and the reflected light 1'incident on the light receiving element S1 increases. Subsequently, the reflecting surface 54 reaches the position P2, the second light flux 2 is reflected by the reflecting surface 54, and the reflected light 2'incident on the light receiving element S2 increases.

【0014】この受光素子S1,S2からの信号は互い
に位相がずれた信号であり、各々信号線Lを介して零点
検出手段6に入力される。零点検出手段6はこれらの入
力信号のレベルが一致した瞬間にスケール4の零点位置
を示す零点信号を発生させるもので、これによりスケー
ル4の零点位置が検出されたことになる。
The signals from the light receiving elements S1 and S2 are signals whose phases are shifted from each other, and are input to the zero point detecting means 6 via the signal lines L, respectively. The zero point detecting means 6 generates a zero point signal indicating the zero point position of the scale 4 at the moment when the levels of these input signals coincide with each other, and this means that the zero point position of the scale 4 is detected.

【0015】実施例3.図3は請求項2の発明の実施例
を示す概略図である。図3において、11はスケール1
4上で集光する第一光束、12はスケール14上で集光
する第二光束、13は第1光束および第2光束をスケー
ル14に集光する光学系としてのハーフミラー、71お
よび72は零点位置検出用パターンを構成する回折格
子、17aは第一光束11および第二光束12が照射さ
れるスケール14の零点位置検出用パターン以外の部分
である反射面、11’は第一光束11の反射光、12’
は第二光束12の反射光、S1,S2は反射光11’,
12’を受光する光電変換素子としての受光素子、16
は受光素子S1,S2からの信号に基づいてスケール1
4の零点位置を示す信号を出力する零点検出手段であ
る。
Example 3. FIG. 3 is a schematic view showing an embodiment of the invention of claim 2. In FIG. 3, 11 is a scale 1
4 is a first light flux condensed on the scale 14, 12 is a second light flux condensed on the scale 14, 13 is a half mirror as an optical system for condensing the first light flux and the second light flux on the scale 14, and 71 and 72 are A diffraction grating forming a zero point position detection pattern, 17a is a reflecting surface that is a portion other than the zero point position detection pattern of the scale 14 on which the first light flux 11 and the second light flux 12 are irradiated, and 11 'is the first light flux 11. Reflected light, 12 '
Is the reflected light of the second light flux 12, S1 and S2 are the reflected light 11 ',
A light receiving element as a photoelectric conversion element for receiving 12 ', 16
Is a scale 1 based on signals from the light receiving elements S1 and S2.
4 is a zero point detecting means for outputting a signal indicating the zero point position.

【0016】第一光束11および第二光束12はハーフ
ミラー13で一部が反射してスケール14に垂直入射す
る。スケール14は駆動手段(図示せず)からの駆動力
を受けて矢印方向に移動し、回折格子71,72が位置
P1,P2にさしかかると、回折格子71が先に位置P
1に到達するので、それまで反射面17aで反射してい
た第一光束11が回折格子71で回折し受光素子S1に
入射する反射光11’の減少が生じる。続いて、回折格
子72が位置P2に到達して第二光束12が回折格子7
2で回折し受光素子S2に入射する反射光12’の減少
が始まる。
The first light flux 11 and the second light flux 12 are partially reflected by the half mirror 13 and are vertically incident on the scale 14. The scale 14 receives a driving force from a driving means (not shown) and moves in the direction of the arrow, and when the diffraction gratings 71 and 72 approach the positions P1 and P2, the diffraction grating 71 moves to the position P first.
Since it reaches 1, the first light flux 11 that has been reflected by the reflecting surface 17a is diffracted by the diffraction grating 71 and the reflected light 11 'that enters the light receiving element S1 is reduced. Then, the diffraction grating 72 reaches the position P2 and the second light flux 12 is emitted from the diffraction grating 7
The reduction of the reflected light 12 'diffracted by 2 and incident on the light receiving element S2 starts.

【0017】この受光素子S1,S2からの信号は互い
に位相がずれた信号であり、各々信号線Lを介して零点
検出手段16に入力される。零点検出手段16はこれら
の入力のレベルが一致した瞬間にスケール14の零点位
置を示す零点信号を発生させるもので、これによりスケ
ール14の零点位置が検出されたことになる。
The signals from the light receiving elements S1 and S2 are signals whose phases are shifted from each other, and are input to the zero point detecting means 16 via the signal lines L, respectively. The zero-point detecting means 16 generates a zero-point signal indicating the zero-point position of the scale 14 at the moment when the levels of these inputs match, and this means that the zero-point position of the scale 14 has been detected.

【0018】実施例4.図4は請求項2の発明の実施例
を示す概略図である。図4において、11はスケール1
4上で集光する第一光束、12はスケール14上で集光
する第二光束、13はハーフミラー、73および74は
零点位置検出用パターンを構成する第一の反射面および
第二の反射面、17bは第一光束11および第二光束1
2が照射されるスケール14の零点位置検出用パターン
以外の部分の回折格子、11’は第一光束11の反射
光、12’は第二光束12の反射光、16は反射光1
1’,12’を受光する受光素子S1,S2からの信号
に基づいてスケール14の零点位置を示す信号を出力す
る零点検出手段である。
Example 4. FIG. 4 is a schematic view showing an embodiment of the invention of claim 2. In FIG. 4, 11 is a scale 1
4 is a first light flux condensed on 4, a second light flux is condensed on the scale 14, a 13 is a half mirror, and 73 and 74 are a first reflection surface and a second reflection which form a zero point position detection pattern. Surface 17b is the first light flux 11 and the second light flux 1
2 is a diffraction grating of a portion other than the zero point position detection pattern of the scale 14, 11 'is reflected light of the first light flux 11, 12' is reflected light of the second light flux 12, 16 is reflected light 1
The zero point detecting means outputs a signal indicating the zero point position of the scale 14 based on the signals from the light receiving elements S1 and S2 which receive 1'and 12 '.

【0019】第一光束11および第二光束12はハーフ
ミラー13で一部が反射してスケール14に垂直入射す
る。スケール14は駆動手段(図示せず)からの駆動力
を受けて矢印方向P1に到達するので、それまで回析格
子17bで回析していた第一光束11が反射面73で反
射し受光素子S1に入射する反射光11’の増加が生じ
る。続いて、反射面74が位置P2に到達して第二光束
12が反射面74で反射し受光素子S2に入射する反射
光12’の増加が生じる。
The first light flux 11 and the second light flux 12 are partially reflected by the half mirror 13 and are vertically incident on the scale 14. Since the scale 14 receives the driving force from the driving means (not shown) and reaches the direction P1 in the arrow direction, the first light flux 11 that has been diffracted by the diffraction grating 17b until then is reflected by the reflecting surface 73 and is received by the light receiving element. An increase in the reflected light 11 ′ incident on S1 occurs. Then, the reflection surface 74 reaches the position P2, the second light flux 12 is reflected by the reflection surface 74, and the reflected light 12 'that enters the light receiving element S2 increases.

【0020】この受光素子S1,S2からの信号は互い
に位相がずれた信号であり、各々信号線Lを介して零点
検出手段6に入力される。零点検出手段6はこれらの入
力信号のレベルが一致した瞬間にスケール14の零点位
置を示す零点信号を発生させるもので、これによりスケ
ール14の零点位置が検出されたことになる。
The signals from the light receiving elements S1 and S2 are signals whose phases are shifted from each other, and are input to the zero point detecting means 6 via the signal lines L, respectively. The zero-point detecting means 6 generates a zero-point signal indicating the zero-point position of the scale 14 at the moment when the levels of these input signals match, and this means that the zero-point position of the scale 14 has been detected.

【0021】[0021]

【発明の効果】以上のように、請求項1の発明によれ
ば、零点位置検出用パターンまたはそれ以外の周囲を拡
散面に形成し、請求項2の発明によれば、零点位置検出
用パターンまたはそれ以外の周囲を回析格子としたの
で、反射面、透過面以外によって零点位置を検出するこ
とができ、エッチングを施さなくても容易に零点位置検
出用パターンが形成できる。この結果、レプリカスケー
ルを応用して零点位置検出用パターンを形成することに
より、型への加工だけで済むため、安価で、かつ高精度
な零点位置検出装置を得ることができるという効果があ
る。
As described above, according to the first aspect of the present invention, the zero point position detecting pattern or the periphery other than the zero point position detecting pattern is formed on the diffusing surface. According to the second aspect of the invention, the zero point position detecting pattern. Alternatively, since the surroundings other than that are made to be a diffraction grating, the zero point position can be detected by means other than the reflecting surface and the transmitting surface, and the zero point position detecting pattern can be easily formed without etching. As a result, by forming the zero point position detection pattern by applying the replica scale, it is only necessary to process the pattern into the mold, so that an inexpensive and highly accurate zero point position detection device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1による零点位置検出装置を
示す斜視図
FIG. 1 is a perspective view showing a zero point position detection device according to a first embodiment of the present invention.

【図2】 本発明の実施例2による零点位置検出装置を
示す斜視図
FIG. 2 is a perspective view showing a zero point position detecting device according to a second embodiment of the present invention.

【図3】 本発明の実施例3による零点位置検出装置を
示す斜視図
FIG. 3 is a perspective view showing a zero point position detection device according to a third embodiment of the present invention.

【図4】 本発明の実施例4による零点位置検出装置を
示す斜視図
FIG. 4 is a perspective view showing a zero point position detecting device according to a fourth embodiment of the present invention.

【図5】 従来の零点位置検出装置の斜視図FIG. 5 is a perspective view of a conventional zero point position detection device.

【符号の説明】[Explanation of symbols]

1,11 第一光束 2,12 第二光束 13 ハーフミラー(光学系) 4,14 スケール 5a,5b,15a,15b 零点位置検出用パターン 6,16 零点検出手段 51,52,7b 拡散面 71,72,17b 回折格子 1, 11 First luminous flux 2, 12 Second luminous flux 13 Half mirror (optical system) 4, 14 Scale 5a, 5b, 15a, 15b Zero point position detection pattern 6,16 Zero point detecting means 51, 52, 7b Diffusing surface 71, 72,17b diffraction grating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動方向前後に位置をずらせて零点位置
検出用パターンが形成されたスケールと、このスケール
上に第一光束および第二光束を集光する光学系と、前記
零点位置検出用パターンで反射した前記第一光束を光電
変換して第一信号を出力する第一光電変換手段と、前記
スケールで反射した第二光束を光電変換して第二信号を
出力する第二光電変換手段と、この第一信号および第二
信号のレベルの一致に応答して前記スケールの零点位置
を示す信号を出力する零点検出手段を有する零点位置検
出装置において、前記零点位置検出用パターン又は該零
点位置検出用パターン以外を拡散面としたことを特徴と
する零点位置検出装置。
1. A scale in which a zero point position detection pattern is formed by shifting the position in the front-back direction of the moving direction, an optical system for converging the first light flux and the second light flux on the scale, and the zero point position detection pattern. A first photoelectric conversion means for photoelectrically converting the first light flux reflected by and outputting a first signal, and a second photoelectric conversion means for photoelectrically converting the second light flux reflected by the scale and outputting a second signal. A zero point position detecting device having zero point detecting means for outputting a signal indicating the zero point position of the scale in response to the coincidence of the levels of the first signal and the second signal, the zero point position detecting pattern or the zero point position detecting A zero point position detecting device, characterized in that a portion other than the working pattern is a diffusion surface.
【請求項2】 移動方向前後に位置をずらせて零点位置
検出用パターンが形成されたスケールと、このスケール
上に第一光束および第二光束を集光する光学系と、前記
零点位置検出用パターンで反射した前記第一光束を光電
変換して第一信号を出力する第一光電変換手段と、前記
スケールで反射した第二光束を光電変換して第二信号を
出力する第二光電変換手段と、この第一信号および第二
信号のレベルの一致に応答して前記スケールの零点位置
を示す信号を出力する零点検出手段を有する零点位置検
出装置において、前記零点検出用パターン又は該零点位
置検出用パターン以外を回折格子としたことを特徴とす
る零点位置検出装置。
2. A scale on which a zero point position detection pattern is formed by shifting the position back and forth in the moving direction, an optical system for converging the first light flux and the second light flux on the scale, and the zero point position detection pattern. A first photoelectric conversion means for photoelectrically converting the first light flux reflected by and outputting a first signal, and a second photoelectric conversion means for photoelectrically converting the second light flux reflected by the scale and outputting a second signal. A zero point detecting device having a zero point detecting means for outputting a signal indicating a zero point position of the scale in response to the coincidence of the levels of the first signal and the second signal, the zero point detecting pattern or the zero point position detecting pattern A zero-point position detection device characterized in that a diffraction grating is used other than the pattern.
JP13535693A 1993-05-13 1993-05-13 Zero point position detector Pending JPH06323872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13535693A JPH06323872A (en) 1993-05-13 1993-05-13 Zero point position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13535693A JPH06323872A (en) 1993-05-13 1993-05-13 Zero point position detector

Publications (1)

Publication Number Publication Date
JPH06323872A true JPH06323872A (en) 1994-11-25

Family

ID=15149841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13535693A Pending JPH06323872A (en) 1993-05-13 1993-05-13 Zero point position detector

Country Status (1)

Country Link
JP (1) JPH06323872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240413B1 (en) * 2009-02-13 2013-03-11 캐논 가부시끼가이샤 Origin detection apparatus, displacement measurement apparatus and optical apparatus
JP2013224910A (en) * 2012-04-23 2013-10-31 Hitachi Maxell Ltd Resin-made encoder scale, metal mold for resin-made encoder scale, method of manufacturing resin-made encoder scale, and encoder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240413B1 (en) * 2009-02-13 2013-03-11 캐논 가부시끼가이샤 Origin detection apparatus, displacement measurement apparatus and optical apparatus
JP2013224910A (en) * 2012-04-23 2013-10-31 Hitachi Maxell Ltd Resin-made encoder scale, metal mold for resin-made encoder scale, method of manufacturing resin-made encoder scale, and encoder
US10288453B2 (en) 2012-04-23 2019-05-14 Maxell, Ltd. Resin encoder scale, mold for resin encoder scale, method for producing resin encoder scale, and encoder

Similar Documents

Publication Publication Date Title
US4079252A (en) Photoelectric grating displacement measuring apparatus
US5026985A (en) Method and apparatus for detecting a reference position of a rotating scale with two sensors
JP2913984B2 (en) Tilt angle measuring device
US5120132A (en) Position measuring apparatus utilizing two-beam interferences to create phase displaced signals
JP2862417B2 (en) Displacement measuring device and method
JP3066923B2 (en) Encoder and system having the same
US6472658B2 (en) Photoelectric position measuring system that optimizes modulation of a scanning device and the intensity of a reference mark signal
JPH0285715A (en) Encoder
JPH06229781A (en) Displacement measuring equipment
JPH02231525A (en) Encoder
US4025197A (en) Novel technique for spot position measurement
US7586621B2 (en) Displacement-measuring optical scale and optical encoder using same
JPH0718714B2 (en) encoder
EP0489399B1 (en) Displacement detector
JP2625917B2 (en) Linear encoder
JPH06323872A (en) Zero point position detector
JP3937596B2 (en) Displacement information measuring device
JPH09152309A (en) Method and device for position detection
EP0486050B1 (en) Method and apparatus for measuring displacement
JPH03115920A (en) Zero-point position detector
JPH0599638A (en) Angle measuring device
JP3168282B2 (en) Method for detecting the movement reference position of a moving object
JPH10103917A (en) Position measuring apparatus
JP2688988B2 (en) Optical measuring device
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device