JPH06322795A - Pumping-up method for underground water to be pressurized from group well attended with water injection - Google Patents

Pumping-up method for underground water to be pressurized from group well attended with water injection

Info

Publication number
JPH06322795A
JPH06322795A JP5134109A JP13410993A JPH06322795A JP H06322795 A JPH06322795 A JP H06322795A JP 5134109 A JP5134109 A JP 5134109A JP 13410993 A JP13410993 A JP 13410993A JP H06322795 A JPH06322795 A JP H06322795A
Authority
JP
Japan
Prior art keywords
water
well
injection
pumping
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5134109A
Other languages
Japanese (ja)
Other versions
JP2764365B2 (en
Inventor
Shigehiko Kimura
重彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSAKU KK
NITSUSAKU KK
Original Assignee
NISSAKU KK
NITSUSAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSAKU KK, NITSUSAKU KK filed Critical NISSAKU KK
Priority to JP5134109A priority Critical patent/JP2764365B2/en
Publication of JPH06322795A publication Critical patent/JPH06322795A/en
Application granted granted Critical
Publication of JP2764365B2 publication Critical patent/JP2764365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Abstract

PURPOSE:To increase water injection ability and pumping-up ability with a time by a method wherein refuse and a contaminating material needing monitoring, contained in injection water, are removed, and during water injection, water injection ability is increased by means of a vacuum deaerating device, all of a well group forms a well used for both water injection and pumping-up, and water injection and pumping-up are repeated in a given order. CONSTITUTION:A floating material contained in precipitation (a) and surface water (b), collected in a water collection passage 1, is removed by a screen 2 and mixed soil is removed by a filtering device 3, and water passing therethrough is stored in a first tank 4. It is decided by a water quality measuring device 5 whether each of water qualities, needing monitoring, of stored water exceeds allowable concentration. When concentration of any water is below an allowable concentration the water is caused to pass through a vacuum deaerating device 7 to remove gas dissolved in water. A water injection well is determined, in an order, decided on a basis of the magnitude of a quantity of water injected for a time in which an injection wall level (e) in each well 17 at a current point of time is increased to an upper limit water level (d). When a water level in a water injection well is increased to the upper limit water level (d) through injection of water, injection of water is stopped and water injection is transferred to a well 17 in a next order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、注水を伴う群井からの
被圧地下水の揚水方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pumping pressurized groundwater from a group of wells accompanied by water injection.

【0002】[0002]

【従来の技術】水中ポンプの開発は、地下水位が深くて
利用できなかった水質の良い低恒温の被圧地下水を任意
時点に低コストで大量に利用できるようにした。しか
し、それは停滞性地下水を大量に引き抜くことになり、
地下水資源の涸渇化、地盤沈下の発生、海岸地域での帯
水層への海水侵入等の揚水障害を招いた。
2. Description of the Related Art The development of a submersible pump has made it possible to use a large amount of low-temperature, pressure-controlled groundwater with good water quality, which could not be used because the groundwater level was deep, at a low cost at any time. However, that would lead to the extraction of large amounts of stagnant groundwater,
Depletion of groundwater resources, occurrence of land subsidence, and invasion of seawater into aquifers in coastal areas resulted in pumping failures.

【0003】対処方法の一つに降水や地表水を井戸から
被圧地下水層に注入する方法が試みられたが、一般に注
水量は直前の揚水量の60〜80%が最大になり、しか
もその量は帯水層の目詰まりの進行で急減した。例外で
ある断層破砕帯や伏流水系に接する井戸では満足な注入
をした例をもつが、この場合にも注水による井戸の目詰
まりが発生し、頻繁な逆洗操作を行なう必要が生じてい
る。また、これらの注水では水質の監視や汚染物の除去
等は行なわれていない。
As one of the countermeasures, a method of injecting precipitation or surface water into a confined groundwater layer from a well has been attempted, but generally, the maximum amount of water injection is 60 to 80% of the immediately preceding amount of pumped water, and The amount decreased sharply as the aquifer clogged. In some cases, wells in contact with fault crush zones and underground water systems, which are exceptions, have been injected satisfactorily, but in this case as well, the wells were clogged with water and frequent backwashing operations were required. In addition, these water injections do not monitor water quality or remove contaminants.

【0004】対象とする地域の被圧地下水を群井で揚水
するときに、各井戸で試掘時の揚水能や水質を配慮した
自動切替えの揚水方法、また二井を揚水・注水兼用井に
して水温の異なる地表水を地下貯蓄して利用する方法等
は存するが、対象とする地域の群井すべてに注水と揚水
を反復させ、かつ注水時の注水能や揚水時の揚水能の経
時変化に応じた全井での比較対象結果に基づく自動切替
えの注水、揚水方法は提供されていない。
[0004] When pumping groundwater under pressure in the target area with a group of wells, a pumping method of automatic switching that takes into account the pumping capacity and water quality at the time of trial drilling in each well, and the temperature of the two wells used as a pumping / irrigation well There are methods for underground storage of different types of surface water for use, but it is necessary to repeat water injection and pumping for all group wells in the target area, and to adjust the water injection capacity during water injection and the change over time in the water pumping capacity during pumping. In addition, automatic switching water injection and pumping methods based on the comparison results of all wells are not provided.

【0005】[0005]

【発明が解決しようとする課題】対象とする地域での降
水や地表水を一般の被圧地下水井群に大量を容易に注水
できるようにするために、注水に含むごみ,土砂,要監
視汚染物質等を除去し、注水時は真空脱気装置を設ける
ことで注水能を高め、井戸群のすべてを注水と揚水の兼
用井にし、それらのうちで注水時の注水能が又は揚水能
が、それぞれ最良の状態にある井戸の順序で注水又は揚
水をする方法を反復させることによって、各井戸の注水
能と揚水能を経時的に増加させていく。
[Problems to be Solved by the Invention] In order to make it possible to easily inject a large amount of precipitation and surface water in a target area into a general confined groundwater well group, dust, sediment, and monitoring pollution required for water injection are included. The substances are removed, and when water is injected, a vacuum degassing device is installed to increase the water injection capacity, and all of the wells are used as wells for water injection and pumping. By repeating the method of water injection or pumping in the order of the wells in the best condition, the water injection and pumping capacity of each well will be increased over time.

【0006】この操作で対象とする地域では、いずれの
井戸も直前の揚水量の60〜80%以上の注水量が可能
になる。対象地域では1ha当りの年間降水量である約
160万m3 に加え、取得することができる地表水量の
合計量を地下水資源とし、それらを任意の時期に任意な
量で利用できるようにし、かつ揚水に基づく地下水の涸
渇化や地盤沈下、海岸地域での帯水層への海水侵入等の
揚水障害を大幅に抑制させようとするものである。
In the area targeted by this operation, it is possible to inject water in an amount of 60 to 80% or more of the pumping amount immediately before in any well. In addition to the annual rainfall of about 1.6 million m 3 per ha in the target area, the total amount of surface water that can be acquired is used as groundwater resources, and they can be used in any amount at any time, and It aims to significantly suppress pumping failures such as depletion of groundwater due to pumping, ground subsidence, and seawater intrusion into aquifers in coastal areas.

【0007】[0007]

【課題を解決するための手段】本発明は、対象とする地
域の降水を集水路に集め、その地域で取得できる地表水
も集水路に導き、集水路の末端で、これらの水に浮遊す
る物質をスクリーンで排除し、次に混入する土粒子等を
濾過装置で取除き、通過した水を第1タンクに貯え、第
1タンク内の水の一部を予測される要監視汚染物質につ
いて濃度測定し、そのいずれかの物質の濃度が水質毎に
定めた設定濃度を超えたときは第1タンク内の水がもつ
その水質を除去装置で処理し、それが設定濃度以下にな
ったことを確認した水を第2タンクに移し、設定濃度以
下であった第1タンクの水又は設定濃度以下にした第2
タンクの水はなるべく速かに真空脱気装置を経て、各井
戸毎に定めた下限水位より低い位置に出口をもつパイプ
を通して注水井に注水するもので、各井戸は水位計を備
えた揚水と注水の兼用井とし、井戸ごとに上限と下限の
水位を定め、注水井の順番は各井戸の注入しようとする
時点の井水位が上限水位になるまでの注水可能水量の多
さを基準に定め、注水で注水井の井水位が上限水位にな
ったときは注水を停止し、注水は次の順番の井戸に移
し、また揚水の順番は、揚水しようとする時点の井水位
が下限水位になるまでの揚水可能量の多さを基準に定
め、揚水で井水位が下限水位になったとき揚水を停止
し、揚水は次の順番の井戸に移す。
According to the present invention, precipitation in a target area is collected in a water collection channel, surface water that can be acquired in the area is also guided to the water collection channel, and the surface water is suspended in these water at the end of the water collection channel. The substance is removed by a screen, the soil particles mixed in next are removed by a filtration device, the passing water is stored in the first tank, and a part of the water in the first tank is contaminated with the predicted pollutants requiring monitoring. When the concentration of any of the substances exceeds the set concentration specified for each water quality, the water quality of the water in the first tank is treated with a removal device, and it is confirmed that it is below the set concentration. The confirmed water was transferred to the second tank, and the water in the first tank that was below the set concentration or the second that was set below the set concentration
The water in the tank goes through the vacuum deaerator as quickly as possible, and then is poured into the water injection well through a pipe that has an outlet at a position lower than the lower limit water level specified for each well. It is a dual-use well for water injection, and the upper and lower water levels are set for each well.The order of the water injection wells is based on the large amount of water that can be injected until the well water level at the time of injection into each well reaches the upper water level. , When the water level of the water injection well reaches the upper limit water level, water injection is stopped, the water injection is moved to the next well, and the order of pumping is that the well water level at the time of pumping is the lower water level. Based on the large amount of water that can be pumped up to, the pumping will be stopped when the well level reaches the lower limit, and pumping will be moved to the next well.

【0008】各井戸が利用する帯水層は同一でも異なっ
てもよいが、注水と揚水は異なる井戸で行なう。
The aquifer used by each well may be the same or different, but water injection and pumping are performed in different wells.

【0009】以上の方法から成る注水を伴う群井からの
被圧地下水の揚水方法である。
A method for pumping groundwater under pressure from a group of wells with water injection, which comprises the above method.

【0010】[0010]

【作用】集水路に集めた降水と地表水に含まれた浮遊物
質はスクリーンで、混在する砂・粘土・コロイド等は濾
過装置でそれぞれ除去し、これらを通過した水を第1タ
ンクに貯える。
[Operation] Precipitation collected in the water collection channel and suspended matter contained in the surface water are removed by the screen, and mixed sand, clay, colloids, etc. are removed by the filtration device, and the water passing through these is stored in the first tank.

【0011】貯えた水が要監視水質それぞれについて設
定濃度以上にあるか否かをその測定装置で明らかにす
る。設定濃度は水質毎に法で定めた許容濃度以下となる
任意な濃度とする。いずれの濃度も設定濃度以下にある
ときはその水を真空脱気装置を通して水に溶存する気体
を取除き、各井戸のその時点での井水位が上限水位にな
るまでの注入可能水量の多さを基準にした順序で注水井
を定めていく。注水可能水量は、図2に示すように井戸
毎に直前の注水時に示された注水量と井水位の相関関係
から求める。
Whether or not the stored water is above the set concentration for each monitored water quality is clarified by the measuring device. The set concentration shall be an arbitrary concentration below the allowable concentration specified by law for each water quality. When all the concentrations are below the set concentration, the water dissolved in the water is removed through a vacuum deaerator, and the amount of water that can be injected until the well water level at each point reaches the upper limit water level. The water injection wells will be determined in the order based on. The amount of water that can be injected is calculated from the correlation between the amount of water injected at the time of the last injection and the well water level, as shown in Figure 2.

【0012】以上の操作は、水質に問題がない降水や地
表水を目詰まりが最も生じにくい条件で、より大量の注
水ができる井戸から注入していくことになる。また、注
水直前の井水位を対象とすることで、周辺井での注水や
揚水で生じたその井戸の注水能の変化を配慮した判断が
できる。
[0012] The above operation is to inject precipitation and surface water having no problem in water quality from a well where a larger amount of water can be injected under the condition that clogging is least likely to occur. In addition, by targeting the well water level immediately before water injection, it is possible to make judgments in consideration of changes in the water injection capacity of the well caused by water injection and pumping in the surrounding wells.

【0013】注水で注水井の水位が上限水位になったと
きは注水を停止し、注水を次の順序になる井戸に移す。
When the water level of the water injection well reaches the upper limit water level, the water injection is stopped and the water injection is moved to the well in the next order.

【0014】第1タンクの水が要監視水質のいずれかの
水質が設定濃度以上になったときは、その水質に応じた
除去装置を通し、その水を第2タンクに貯える。
When any one of the monitored water qualities of the water in the first tank exceeds a set concentration, the water is stored in the second tank through a removing device according to the water quality.

【0015】第2タンクの水の一部を採取し要監視水質
の濃度測定をし、いずれの濃度も設定濃度以下になった
ときはその水を真空脱気装置に送り、以降は前述と同じ
方法で注水する。
A part of the water in the second tank is sampled and the concentration of the water quality to be monitored is measured. When any concentration falls below the set concentration, the water is sent to a vacuum deaerator, and thereafter the same as above. Water by the method.

【0016】第2タンクの水が要監視水質のいずれかに
ついて設定濃度をこえたときに、再度の水質除去で注水
に適する見込みのあるときは、第2タンクの水を第1タ
ンクに戻した後、除去装置を経て第2タンクに貯え、以
降は前述の操作にしたがう。その見込みがないときは、
地表の排水路に投棄する。
When the water in the second tank exceeds the set concentration for any of the monitored water qualities and it is likely to be suitable for water injection in the water quality removal again, the water in the second tank is returned to the first tank. After that, it is stored in the second tank through the removing device, and thereafter, the above operation is performed. When you don't have the chance,
Dispose of in the surface drainage.

【0017】揚水の需要が生じたときは、各井戸の井水
位が下限水位になるまでの揚水可能水量の多さを基準と
した順序で揚水井を定めていく。
When a demand for pumping water arises, pumping wells are determined in order based on the amount of pumpable water until the well water level of each well reaches the lower limit water level.

【0018】揚水可能水量は図2に示すように、井戸毎
に直前の注水時に示された揚水量と井水位間の相関関係
から求める。揚水直前の井水位を対象とすることで、周
辺井での注水や揚水で生じたその井戸の揚水能の変化を
配慮した判断ができる。
As shown in FIG. 2, the pumpable water volume is obtained from the correlation between the well water level and the pumped water volume shown at the time of the last water injection for each well. By targeting the well water level immediately before pumping, it is possible to make judgments in consideration of changes in the pumping capacity of the well caused by water injection and pumping in the surrounding wells.

【0019】揚水井からの揚水で井水位が下限水位にな
ったときは揚水を停止し、揚水を次の順序になる井戸に
移す。
When the well water level reaches the lower limit water level by pumping water from the pumping well, the pumping is stopped and the pumped water is transferred to the well in the next order.

【0020】以上の操作で、揚水は揚水効率が最も良く
かつ揚水障害を生じにくい範囲で揚水できることにな
る。
By the above operation, the pumping can be carried out within the range where the pumping efficiency is the best and the pumping failure is less likely to occur.

【0021】各井戸で任意時点の井水位が上限水位に至
るまでの注水可能数量や下限水位に至るまでの揚水可能
水量は、いずれも注水と揚水の反復操作の中で経時変化
をする。このため注水や揚水に当っては、その間での井
水位と注水量又は揚水量の状態を測定し、それらをその
後の井水位に対する注水又は揚水の可能量を設定するた
めに必要な井水位と、注水量又は揚水量に対する新しい
相関関係に自動的に組み込んでいく機能をもたせる。
In each well, the pourable amount until the well water level reaches the upper limit water level and the pumpable water amount up to the lower limit water level at any given point change with time during repeated operations of water injection and pumping. Therefore, when injecting or pumping water, measure the well water level and the amount of water injected or pumped during that time, and set them as the well water level necessary to set the possible amount of water injection or pumping for the subsequent well water level. , It has a function to automatically incorporate a new correlation to the water injection amount or pumped water amount.

【0022】以上の注水・揚水の方法を反復利用するこ
とで、井戸周辺の地層の空隙構造は再三の逆流操作を受
けることになり、目詰まりを生じにくくするばかりか、
井戸周辺に水みちを拡大し、発展させ、井戸の注水能を
揚水能を経時的に増加させていく。
By repeatedly using the above-mentioned water injection / pumping methods, the void structure of the stratum around the well is subject to repeated backflow operations, which not only makes it difficult to cause clogging,
We will expand and develop water channels around the wells and increase the water injection capacity and pumping capacity of the wells over time.

【0023】[0023]

【実施例】必要な装置と施設はまず対象とする地域にそ
こでの降水aを集め、また取得できる地表水bを導入す
る集水路1を設ける。この集水路の末端部にスクリーン
2と濾過装置3を設け、通過した水を第1タンク4に貯
える。
[Examples] The necessary equipment and facilities are first provided in the target area with a water collection channel 1 for collecting precipitation a therein and introducing surface water b which can be acquired. A screen 2 and a filter device 3 are provided at the end of this water collection channel, and the water that has passed through is stored in a first tank 4.

【0024】第1タンク4からは要監視水質の測定装置
5間を結ぶパイプ6、真空脱気装置7と結ぶパイプ8、
第1タンク4からパイプ9を要監視水質の各除去装置1
0に及び、この除去装置からパイプ12を経て第2タン
ク11に至る。
From the first tank 4, a pipe 6 connecting between the measuring devices 5 for water quality to be monitored, a pipe 8 connecting to a vacuum degassing device 7,
Pipes 9 from the first tank 4 Each monitoring device 1 for water quality to be monitored
It reaches 0 and reaches the second tank 11 from this removing device through the pipe 12.

【0025】第2タンク11からは要監視水質の測定装
置5を結ぶパイプ13、真空脱気装置7と結ぶパイプ1
4、排水路15へのパイプ16を設ける。
From the second tank 11, a pipe 13 connecting the measuring device 5 for water quality to be monitored and a pipe 1 connecting the vacuum degassing device 7 are connected.
4. Provide a pipe 16 to the drainage channel 15.

【0026】各井戸17は水位計18、揚水ポンプ1
9、注水パイプ20を備え、注水パイプ20は末端を井
戸毎に設定する下限水位c以下の深さとし、上端を前記
真空脱気装置7に結ぶ21は揚水パイプである。
Each well 17 has a water level gauge 18 and a pump 1
9. A water injection pipe 20 is provided, and the water injection pipe 20 has a depth equal to or lower than the lower limit water level c set for each well, and 21 connected to the vacuum degassing device 7 at the upper end is a pumping pipe.

【0027】各井戸17では、既往の揚水試験結果に揚
水又は注水による水位と揚水量又は注水量の経時変化が
示す図2のような相関関係に基づいて、上限水位dと下
限水位をc設定する。
In each well 17, the upper limit water level d and the lower limit water level are set to c based on the correlation as shown in FIG. 2 in which the water level due to pumping or water injection and the change over time in the amount of water pumped or water injected are shown in the results of the past pumping test. To do.

【0028】上限水位dとは、単位水量の注水による井
水位eの増加率が急増に大きくなる井水位よりも低い水
位になる任意に規定する水位とし、下限水位cとは、単
位水量の揚水による井水位eの低下率が急激に大きくな
る井水位よりも高い水位になる任意に規定する水位とす
る。
The upper limit water level d is an arbitrary regulated water level that is lower than the well water level at which the rate of increase of the well water level e due to the injection of a unit amount of water increases rapidly, and the lower limit water level c is the pumping of a unit water amount. The water level is arbitrarily defined as a water level higher than the well water level at which the rate of decrease of the well water level e rapidly increases.

【0029】前述した単位注水量又は単位揚水量と井水
位eの変化率の相関関係は、注水又は揚水による帯水層
fの地下水流動構造の変化のために変化を受けるので、
揚水又は注水を行なう毎に新しい相関関係を求めてい
く。
Since the above-mentioned correlation between the unit water injection amount or unit pumped water amount and the rate of change of the well water level e is changed due to the change of the groundwater flow structure of the aquifer f due to water injection or pumping,
A new correlation is sought each time pumping or water injection is performed.

【0030】集水路1に流入する地表水流の制御、集水
路の水と第1タンク4、第2タンク11の水の水質測
定、第1タンク4と第2タンク11の水の汚染水質の除
去や注水動作の制御、各井戸17の水位に応じた揚水井
と注水井の選定や揚水と注水の時間設定等を自動管理す
る自動管理装置を設ける。
Control of surface water flow into the water collection channel 1, measurement of water in the water collection channel and water quality of the first tank 4 and second tank 11, removal of contaminated water quality of water in the first tank 4 and the second tank 11. An automatic management device for automatically managing the control of the water injection operation, the selection of the pumping well and the injection well according to the water level of each well 17, and the time setting of the pumping and the water injection are provided.

【0031】[0031]

【発明の効果】本発明の方法を実施することによって、
対象とする地域での降水や地表水を一般の被圧地下水井
群に大量を容易に注水できるようにするために、注水に
含むごみ,土砂,要監視汚染物質等を除去し、注水時は
真空脱気装置を設けることで注水能を高め、かつ井戸群
のすべてを注水と揚水の兼用井にし、それらのうちで注
水時の注水能が又は揚水能が、それぞれ最良の状態にあ
る井戸の順序で注水又は揚水をする方法を反復させるこ
とによって、各井戸の注水能と揚水能を経時的に増加さ
せていくことができる。
By carrying out the method of the present invention,
In order to make it possible to easily inject a large amount of precipitation and surface water in the target area into a general confined groundwater well group, remove the dust, sediment, and pollutants required for monitoring, etc. By providing a vacuum degassing device, the water injection capacity can be improved, and all of the wells can be used as both water injection and water pumping wells. By repeating the method of injecting or pumping water in order, it is possible to increase the water injection capacity and the water intake capacity of each well over time.

【0032】また、この操作で対象とする地域では、い
ずれの井戸も直前の揚水量の60〜80%以上の注水量
が可能になるから、そこで、対象地域では1ha当りの
年間降水量である約160万m3 に加え、取得すること
ができる地表水量の合計量を地下水資源とし、それらを
任意の時期に任意な量で利用できるようになり、かつ揚
水に基づく地下水の涸渇化や地盤沈下、海岸地域での帯
水層への海水侵入等の揚水障害を大幅に抑制することが
できる。
Further, in the target area of this operation, the water injection amount of 60 to 80% or more of the pumping amount immediately before can be applied to any of the wells. Therefore, in the target area, the annual precipitation per ha is obtained. in addition to the approximately 1.6 million m 3, the total amount of surface water that can be acquired with groundwater resources, they will be available in any amount at any time, and groundwater based on the pumping depleted reduction and subsidence , It is possible to significantly suppress pumping obstacles such as seawater intrusion into aquifers in coastal areas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法のフローチャートFIG. 1 is a flowchart of the method of the present invention.

【図2】注水量又は揚水量と井水位との相関図[Fig. 2] Correlation diagram between water injection volume or pumped water volume and well water level

【図3】作業過程の模式図[Fig. 3] Schematic diagram of work process

【符号の説明】[Explanation of symbols]

1 集水路 2 スクリーン 3 濾過装置 4 第1タンク 5 諸水質測定装置 7 真空脱気装置 10 除去装置 11 第2タンク 15 排水路 17 井戸 18 水位計 20 注水パイプ 21 揚水パイプ 1 Water Collection Channel 2 Screen 3 Filtration Device 4 First Tank 5 Water Quality Measuring Device 7 Vacuum Degassing Device 10 Removal Device 11 Second Tank 15 Drainage Channel 17 Well 18 Water Level Meter 20 Water Injection Pipe 21 Pumping Pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対象とする地域の降水を集水路に集め、
その地域で取得できる地表水も集水路に導く。集水路の
末端で、これらの水に浮遊する物質をスクリーンで排除
し、次に混入する土粒子等を濾過装置で取除き、通過し
た水を第1タンクに貯える。第1タンク内の水の一部を
予測される要監視汚染物質について濃度測定し、そのい
ずれかの物質の濃度が水質毎に定めた設定濃度を超えた
ときは第1タンク内の水がもつその水質を除去装置で処
理し、それが設定濃度以下になったことを確認した水を
第2タンクに移す。設定濃度以下であった第1タンクの
水又は設定濃度以下にした第2タンクの水はなるべく速
かに真空脱気装置を経て、各井戸毎に定めた下限水位よ
り低い位置に出口をもつパイプを通して下記の方法で定
めた注水井に注水する。各井戸は水位計を備えた揚水と
注水の兼用井とし、井戸ごとに上限と下限の水位を定め
る。注水井の順番は各井戸の注入しようとする時点の井
水位が上限水位になるまでの注水可能水量の多さを基準
に定める。注水で注水井の井水位が上限水位になったと
きは注水を停止し、注水は次の順番の井戸に移す。揚水
の順番は、揚水しようとする時点の井水位が下限水位に
なるまでの揚水可能量の多さを基準に定める。揚水で井
水位が下限水位になったときは揚水を停止し、揚水は次
の順番の井戸に移す。以上の方法から成る注水を伴う群
井からの被圧地下水の揚水方法。
1. Collecting precipitation in a target area into a water collection channel,
Surface water that can be obtained in the area will also be led to the water collection channel. At the end of the water collection channel, these substances floating in water are removed by a screen, soil particles and the like mixed in next are removed by a filtration device, and the passed water is stored in the first tank. Concentration of some of the water in the first tank is measured for predicted pollutants, and if the concentration of any of the substances exceeds the set concentration specified for each water quality, the water in the first tank has it. The water quality is treated with a removing device, and the water which is confirmed to be below the set concentration is transferred to the second tank. The water in the first tank below the set concentration or the water in the second tank below the set concentration goes through the vacuum deaerator as quickly as possible, and has a pipe with an outlet at a position lower than the lower limit water level set for each well. Through the water injection well defined by the following method. Each well will be a well equipped with a water gauge for pumping and water injection, and the upper and lower water levels will be set for each well. The order of water injection wells is determined based on the large amount of water that can be injected until the well water level at the time of injection into each well reaches the upper limit water level. When the water level of the water injection well reaches the upper limit water level, water injection is stopped and water injection is moved to the next well. The order of pumping is determined based on the large amount of pumpable water until the well level at the time of pumping reaches the lower limit. When the well water level reaches the minimum water level during pumping, pumping will be stopped and pumped to the next well. A method of pumping pressurized groundwater from a group of wells with water injection consisting of the above methods.
JP5134109A 1993-05-13 1993-05-13 Injection and pumping of pressurized groundwater from a well with water injection Expired - Fee Related JP2764365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5134109A JP2764365B2 (en) 1993-05-13 1993-05-13 Injection and pumping of pressurized groundwater from a well with water injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134109A JP2764365B2 (en) 1993-05-13 1993-05-13 Injection and pumping of pressurized groundwater from a well with water injection

Publications (2)

Publication Number Publication Date
JPH06322795A true JPH06322795A (en) 1994-11-22
JP2764365B2 JP2764365B2 (en) 1998-06-11

Family

ID=15120669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134109A Expired - Fee Related JP2764365B2 (en) 1993-05-13 1993-05-13 Injection and pumping of pressurized groundwater from a well with water injection

Country Status (1)

Country Link
JP (1) JP2764365B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112490A (en) * 2014-12-12 2016-06-23 鹿島建設株式会社 Dissolved oxygen removal system and dissolved oxygen removal method for well water
CN107653931A (en) * 2017-07-14 2018-02-02 中国地质调查局水文地质环境地质调查中心 Alkaline land improvement system and method
CN107700505A (en) * 2017-09-12 2018-02-16 上海建工建集团有限公司 Deep foundation pit precipitation, purification, recharge integral system and control method
CN112982561A (en) * 2021-03-02 2021-06-18 江西经匠建设有限公司 Equipment for collecting and utilizing rainwater on roof of environment-friendly building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112490A (en) * 2014-12-12 2016-06-23 鹿島建設株式会社 Dissolved oxygen removal system and dissolved oxygen removal method for well water
CN107653931A (en) * 2017-07-14 2018-02-02 中国地质调查局水文地质环境地质调查中心 Alkaline land improvement system and method
CN107653931B (en) * 2017-07-14 2024-02-09 中国地质调查局水文地质环境地质调查中心 Saline-alkali soil transformation system and method
CN107700505A (en) * 2017-09-12 2018-02-16 上海建工建集团有限公司 Deep foundation pit precipitation, purification, recharge integral system and control method
CN112982561A (en) * 2021-03-02 2021-06-18 江西经匠建设有限公司 Equipment for collecting and utilizing rainwater on roof of environment-friendly building

Also Published As

Publication number Publication date
JP2764365B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
CN108314106B (en) DNAPL (deoxyribonucleic acid-styrene-acrylonitrile copolymer) polluted underground water in-situ remediation method
KR101160678B1 (en) System and method for recovering clogging of collecting well
KR101410905B1 (en) System and method for removing a residual dense non-aqueous liquid in a zone of saturation
CN112830593B (en) Groundwater sewage treatment system
CN110451685A (en) Combined restoration system and method for removing organic pollution in underground water in mine
CN106777509A (en) Polymer-bearing waste-water filtering-backwashing parameters optimization design device and optimization method
JPH06322795A (en) Pumping-up method for underground water to be pressurized from group well attended with water injection
CN109838220A (en) A kind of oil field extracted water re-injection index Evaluation Method
Leonards et al. Piping and erosion tests at Conner Run Dam
CN210595310U (en) Contain non-aqueous phase liquid pollution groundwater normal position and take out processing system
RU2239698C1 (en) Method for preparing water for feeding into force wells
JP2559654B2 (en) Equipment for monitoring and decontaminating groundwater flow rate and specific water quality
CN218361291U (en) A vehicular normal position prosthetic devices for following river chemical industry heavy metal pollution landmass
Wett Monitoring clogging of a RBF-system at the river Enns, Austria
CN107082474A (en) Leakage oil pollution soil and the quick repair system of underground water based on electric flocculation technique
CN204200125U (en) A kind of closed well washing water circulation treatment facility
McCormick Filter‐Pack Installation and Redevelopment Techniques for Shallow Recharge Shafts a
CN112676326B (en) Oil storage place normal position dialysis formula groundwater oils pollutes remove device
CN218407396U (en) Overflow recovery device for oil field
Vecchioli et al. Hydraulic effects of recharging the Magothy aquifer, Bay Park, New York, with tertiary-treated sewage
CN217188381U (en) Real-time monitoring control system for drainage on reverse slope
CN219817462U (en) Extraction device for groundwater pollutants
CN215907911U (en) Tunnel adverse slope drainage system capable of detecting and monitoring in real time
RU66702U1 (en) SYSTEM FOR CLEANING THE SOIL CONTAMINATED WITH OIL OR OIL PRODUCT
RU1825391C (en) Method for oil pool development

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees