JPH06322358A - New biodedgradable high water absorbent and its production - Google Patents

New biodedgradable high water absorbent and its production

Info

Publication number
JPH06322358A
JPH06322358A JP13295293A JP13295293A JPH06322358A JP H06322358 A JPH06322358 A JP H06322358A JP 13295293 A JP13295293 A JP 13295293A JP 13295293 A JP13295293 A JP 13295293A JP H06322358 A JPH06322358 A JP H06322358A
Authority
JP
Japan
Prior art keywords
water
poly
glutamic acid
radiation
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13295293A
Other languages
Japanese (ja)
Other versions
JPH0772267B2 (en
Inventor
Masao Kunioka
正雄 国岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13295293A priority Critical patent/JPH0772267B2/en
Publication of JPH06322358A publication Critical patent/JPH06322358A/en
Publication of JPH0772267B2 publication Critical patent/JPH0772267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a biodegradable water absorbent, excellent in biocompatibility and useful as a soil improving agent, a material, etc., for artificial skin by dissolving a specific amount of poly(gamma-glutamic acid) in water, etc., exposing the resultant solution to radiation and then separating the produced cross-linked material. CONSTITUTION:The objective water absorbent having 40-90% gelatinization ratio is obtained by dissolving poly(gamma-glutamic acid) produced by a microorganism in water or a mixed solvent of the water with a water-soluble solvent such as methyl alcohol so as to provide 1.5-6wt.% concentration thereof, exposing the resultant solution to radiation such as-rays preferably at 1.0-50Mrad and then separating the produced cross-linked material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な生分解性高吸水
体及びその製造方法に関するものである。本発明の生分
解性高吸水体は、自然界で生分解を受けるので、例えば
土木分野における改質剤、農園芸分野における土壌改良
剤、種子コーティング剤、植物栽培用保水剤、化粧・ト
イレタリー分野における紙おむつ、生理用品、メカノケ
ミカル材料などに利用しうる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel biodegradable highly water absorbent body and a method for producing the same. The biodegradable superabsorbent of the present invention undergoes biodegradation in nature, and therefore, for example, a modifier in the field of civil engineering, a soil improver in the field of agriculture and horticulture, a seed coating agent, a water retention agent for plant cultivation, in the field of makeup and toiletries. It can be used for disposable diapers, sanitary products, and mechanochemical materials.

【0002】[0002]

【従来の技術】水溶性高分子にグラフト重合、放射線架
橋、イオン架橋、架橋剤による架橋、凍結、融解を繰り
返すことによる分子架橋などを用いることにより、高吸
水体の生成することが知られている。これらの化合物は
布や綿などの水吸収剤と異なり、圧力をかけても離水し
ないという特性を利用して、水性の汚物を吸収後、それ
を漏れないように保持しうる製品、例えば紙おむつや生
理用品などに多用されている。
2. Description of the Related Art It is known that a super absorbent body is formed by using graft polymerization, radiation crosslinking, ionic crosslinking, crosslinking with a crosslinking agent, molecular crosslinking by repeating freezing and melting on a water-soluble polymer. There is. Unlike water absorbents such as cloth and cotton, these compounds take advantage of the property that they do not release water even when pressure is applied, and after absorbing water-based dirt, products that can hold it, such as disposable diapers and It is often used for sanitary products.

【0003】このような、吸水体としては、デンプンを
原料としてこれにアクリル酸などの合成モノマーをグラ
フト重合して、3次元架橋化することにより得られるデ
ンプン系高吸水体、生物系の含水ゲルであるヒアルロン
酸系高吸水体、化学合成されたポリビニルアルコール系
高吸水体、アクリル酸塩系高吸水体、アクリルアミド系
高吸水体などがある。
As such a water-absorbing material, a starch-based high water-absorbing material obtained by graft-polymerizing a synthetic monomer such as acrylic acid into starch as a raw material and three-dimensionally crosslinking it, or a biological hydrogel Examples of the hyaluronic acid-based superabsorbent, chemically synthesized polyvinyl alcohol-based superabsorbent, acrylate-based superabsorbent, and acrylamide-based superabsorbent.

【0004】これらの高吸水体は、土壌改良剤のように
自然界で使用した場合、使用後自然界に分解されずに残
留してしまう。また、これらを回収することは非常に困
難である。そこで、環境保全上からも使用後は自然界に
棲む微生物などで分解され自然界の炭素循環サイクルに
取り込まれるような生分解性を有する高吸水体の開発が
急務となっている。
[0004] When used in the natural world like a soil conditioner, these superabsorbents remain without being decomposed in the natural world after use. Also, it is very difficult to collect these. Therefore, from the viewpoint of environmental protection, there is an urgent need to develop a highly water-absorbing body having biodegradability that is decomposed by microorganisms living in the natural world after use and taken into the natural carbon cycle.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来の高吸水体のもつ欠点を克服し、自然界での利用促
進を図れる、生分解性を有する高吸水体を提供すること
を目的としてなされたものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a biodegradable superabsorbent body which overcomes the drawbacks of the conventional superabsorbent body and can be used in the natural world. It was made as.

【0006】[0006]

【課題を解決するための手段】本発明者らは、生分解性
の高吸水体を開発するために種々研究を重ねた結果、生
分解性の水溶性高分子であるポリ(γ‐グルタミン酸)
の所定濃度の水溶液あるいは水性溶液に所定照射線量の
放射線を照射して得られる所定ゲル化率の架橋体が、生
分解性を失うことなく優れた吸水性を有することを見出
し、この知見に基づいて本発明をなすに至った。
Means for Solving the Problems As a result of various researches conducted to develop a biodegradable highly water-absorbing body, the present inventors have found that poly (γ-glutamic acid), which is a biodegradable water-soluble polymer.
Based on this finding, it was found that a cross-linked product having a predetermined gelation rate obtained by irradiating a predetermined concentration of an aqueous solution or an aqueous solution with a predetermined irradiation dose of radiation has excellent water absorption without losing biodegradability. The present invention has been completed.

【0007】すなわち、本発明は、ゲル化率40〜90
%のポリ(γ‐グルタミン酸)放射線架橋体から成る生
分解性高吸水体を提供するものである。
That is, according to the present invention, the gelation rate is 40 to 90.
% Of poly (γ-glutamic acid) radiation-crosslinked product.

【0008】本発明において、ゲル化率とは、仕込みポ
リ(γ‐グルタミン酸)量に対するポリ(γ‐グルタミ
ン酸)放射線架橋体の乾燥重量の百分比を意味する。
In the present invention, the gelation rate means the percentage of the dry weight of the crosslinked poly (γ-glutamic acid) radiation to the amount of charged poly (γ-glutamic acid).

【0009】本発明の生分解性高吸水体は、ポリ(γ‐
グルタミン酸)をその濃度が1.5〜6重量%好ましく
は2〜5重量%になるように水又は水と水溶性溶媒との
混合溶媒に溶解し、次いで得られた溶液に放射線を照射
したのち、生成した架橋体を分離することによって製造
することができる。
The biodegradable superabsorbent material of the present invention comprises poly (γ-
Glutamic acid) is dissolved in water or a mixed solvent of water and a water-soluble solvent so that the concentration thereof is 1.5 to 6% by weight, preferably 2 to 5% by weight, and then the resulting solution is irradiated with radiation. Can be produced by separating the crosslinked product thus produced.

【0010】本発明において用いるポリ(γ‐グルタミ
ン酸)については特に制限はなく、微生物を用いた製造
法、化学合成法などいかなる製造法によるものでもよい
が、微生物により産生されたもの、例えばバチルス・ズ
ブチルスのようなバチルス属菌種などの微生物により産
生されたもの[例えばBiosci.Biotech.
Biochem.,56,1031〜1035(199
2)、特開平1−174397号公報参照]が好まし
く、中でも数十万〜百数十万の分子量を有するものが好
ましい。
The poly (γ-glutamic acid) used in the present invention is not particularly limited and may be produced by any production method such as a production method using a microorganism or a chemical synthesis method. However, those produced by a microorganism such as Bacillus Those produced by microorganisms such as Bacillus spp. Such as Subtilis [eg Biosci. Biotech.
Biochem. , 56, 1031 to 1035 (199
2), JP-A-1-174397]. Among them, those having a molecular weight of several hundreds of thousands to several hundreds of thousands are preferable.

【0011】本発明において、ポリ(γ‐グルタミン
酸)を溶解するのに水との混合溶媒として用いられる水
溶性溶媒については特に制限はないが、ポリ(γ‐グル
タミン酸)を溶解させうるように、水の割合を十分な量
とし、水溶性溶媒の割合を適宜調整するようにするのが
よい。この水溶性溶媒としては、例えばメチルアルコー
ル、エチルアルコール、アセトン、酢酸メチル、酢酸エ
チルなどが挙げられる。
In the present invention, the water-soluble solvent used as a mixed solvent with water for dissolving poly (γ-glutamic acid) is not particularly limited, but poly (γ-glutamic acid) may be dissolved in It is preferable that the ratio of water is sufficient and the ratio of water-soluble solvent is appropriately adjusted. Examples of the water-soluble solvent include methyl alcohol, ethyl alcohol, acetone, methyl acetate, ethyl acetate and the like.

【0012】ポリ(γ‐グルタミン酸)を溶解した溶液
は、放射線透過性容器例えばガラス製バイアル瓶などに
入れ、密封して用いるのが好ましい。この溶液に照射さ
れる放射線については特に制限はなく、例えばα線、β
線、γ線、電子線、中性子線、X線、荷電粒子線などが
挙げられるが、好ましくはγ線が用いられ、またβ線や
電子線やα線は透過力が小さいため目的物をフイルム状
で得るのを可能にする。
The solution in which poly (γ-glutamic acid) is dissolved is preferably placed in a radiation permeable container such as a glass vial and sealed before use. There is no particular limitation on the radiation applied to this solution. For example, α rays, β
Rays, γ rays, electron rays, neutron rays, X rays, charged particle rays and the like can be mentioned, but γ rays are preferably used, and β rays, electron rays and α rays have a small penetrating power, so that the object is a film. Allows you to get in the shape.

【0013】このような放射線照射処理にγ線を用いる
場合には、有利にはγ線は照射線量1.0〜50Mra
d、好ましくは1.5〜40Mrad、より好ましくは
2〜30Mradで照射され、通常室温で架橋が進行す
る。
When γ-rays are used for such a radiation irradiation treatment, the γ-rays are preferably used in an irradiation dose of 1.0 to 50 Mra.
d, preferably 1.5 to 40 Mrad, more preferably 2 to 30 Mrad, and the crosslinking usually proceeds at room temperature.

【0014】γ線については特に制限はないが、例えば
コバルト60を線源とする照射装置などにより発生させ
たものなどが用いられる。架橋化において、温度は特に
重要ではなく、通常室温で架橋が進行する。
The γ-ray is not particularly limited, but for example, the one generated by an irradiation device using cobalt 60 as a radiation source or the like is used. In the cross-linking, the temperature is not particularly important, and the cross-linking usually proceeds at room temperature.

【0015】このようにして得られた粗生成物を水性媒
体好ましくは蒸留水などの水で精製処理することによ
り、未架橋のポリマーや分解物を除去して所望の高純度
の架橋体から成る生分解性高吸水体を調製することがで
きる。この精製処理は、通常、浸せき、透析などにより
行われる。
The crude product thus obtained is subjected to a purification treatment with an aqueous medium, preferably water such as distilled water, to remove uncrosslinked polymers and decomposed products, thereby forming a desired highly pure crosslinked product. A biodegradable super absorbent body can be prepared. This purification treatment is usually performed by dipping, dialysis or the like.

【0016】このようにして得られた生分解性高吸水体
は、無色透明なゲルであり、吸水性に優れ、水とアルコ
ールとの混合溶媒やアセトンと水との混合溶媒にも膨潤
するが、メチルアルコール、エチルアルコール、アセト
ン、テトラヒドロフラン、クロロホルム、ペンゼン、n
‐ヘキサン、n‐ヘプタンには膨潤しない。
The biodegradable highly water-absorbent material thus obtained is a colorless and transparent gel, has excellent water absorbability, and swells in a mixed solvent of water and alcohol or a mixed solvent of acetone and water. , Methyl alcohol, ethyl alcohol, acetone, tetrahydrofuran, chloroform, benzene, n
-Does not swell in hexane or n-heptane.

【0017】本発明の生分解性高吸水体の特性は、放射
線照射量や前記溶液の濃度により異なり、低照射量や低
濃度では架橋度が小さく高吸水率となるし、また高照射
量かつ高濃度では架橋が飽和状態となり相対的に低吸水
率となるものの、この場合でも十分な吸水性を保持しう
る。
The characteristics of the biodegradable highly water-absorbing material of the present invention differ depending on the radiation dose and the concentration of the solution. At low doses and low concentrations, the degree of cross-linking is small and the water absorption rate is high. When the concentration is high, the crosslinking is saturated and the water absorption is relatively low, but sufficient water absorption can be maintained even in this case.

【0018】本発明の生分解性高吸水体は、繰り返し使
用することが可能である。吸水した架橋体を凍結乾燥す
ることにより乾燥させて再び水に膨潤させても吸水性能
に変化はない。これを数回繰り返しても吸水性能にほと
んど変化はみられなかった。
The biodegradable highly water-absorbent material of the present invention can be repeatedly used. There is no change in the water absorption performance even if the crosslinked body that has absorbed water is lyophilized to be dried and swollen again in water. Even if this was repeated several times, there was almost no change in the water absorption performance.

【0019】また、本発明の生分解性高吸水体は、pH
により吸水性能が変化し、酸性pH領域では吸水率が低
く、アルカリ性pH領域では吸水率が高い。このこと
は、架橋体の置かれた環境によって体積が変化すること
を示し、メカノケミカル材料への利用も期待しうる。
The biodegradable highly water-absorbent material of the present invention has a pH value of
As a result, the water absorption performance changes, and the water absorption rate is low in the acidic pH range and high in the alkaline pH range. This indicates that the volume changes depending on the environment in which the crosslinked product is placed, and can be expected to be used for mechanochemical materials.

【0020】[0020]

【発明の効果】本発明の生分解性高吸水体は、自然界に
放置してもそこに棲む微生物などにより分解され、生分
解性に優れている。
EFFECTS OF THE INVENTION The biodegradable highly water-absorbent body of the present invention is excellent in biodegradability because it is decomposed by microorganisms living therein even if left in the natural environment.

【0021】したがって、本発明の生分解性高吸水体
は、使用後も自然界に放置されるような土壌改良剤、種
子のコーティング剤、植物栽培用保水剤用材料として好
適に利用しうるし、また使用後の処理が容易になるため
に生理用品、紙おむつ用材料などに、それぞれ使用しう
る。
Therefore, the biodegradable highly water-absorbent material of the present invention can be suitably used as a soil improving agent, a seed coating agent, a material for a water retaining agent for plant cultivation, which is left in the natural environment after use. Since it can be easily treated after use, it can be used for sanitary products, materials for disposable diapers, etc., respectively.

【0022】また、本発明の高吸水体は、生体に対する
適合性が良好であるために人工皮膚用材料に、また周囲
環境による体積変化を利用してメカノケミカル素子用材
料にも利用しうる。
The superabsorbent material of the present invention has good compatibility with living organisms, and thus can be used as a material for artificial skin, and also as a material for mechanochemical elements by utilizing volume change due to the surrounding environment.

【0023】[0023]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0024】実施例1〜12 照射線量の変化による架橋体の生成条件を検討した。微
生物により産生されたポリ(γ‐グルタミン酸)を5重
量%濃度になるように水に溶解させ、各1mlバイアル
瓶に0.5mlずつ分注し、蓋をした。これらの各試料
に、コバルト60(110TBq)を線源として備えた
γ線照射装置によりγ線を表1に示すような種々の各照
射線量で照射処理した。得られた各試料処理物を各バイ
アル瓶から取り出し、蒸留水に浸せきすることにより未
架橋の高分子や分解生成物を除去した。こうして、純度
の高い各架橋体を得た。これら各架橋体について、ゲル
化率〔ゲル乾燥重量/仕込ポリ(γ‐グルタミン酸)量
の百分比〕と吸水率(架橋体に最大限保持されている水
分量/ゲル乾燥重量)を測定した。その結果を表1に示
す。
Examples 1 to 12 The conditions for forming a crosslinked product by changing the irradiation dose were examined. Poly (γ-glutamic acid) produced by a microorganism was dissolved in water so as to have a concentration of 5% by weight, 0.5 ml was dispensed into each 1 ml vial and the lid was closed. Each of these samples was irradiated with γ rays at various irradiation doses as shown in Table 1 by a γ ray irradiation device equipped with cobalt 60 (110 TBq) as a radiation source. Each of the obtained sample treated products was taken out of each vial and immersed in distilled water to remove uncrosslinked polymers and decomposition products. In this way, highly crosslinked products were obtained. With respect to each of these crosslinked products, the gelation rate [gel dry weight / percentage ratio of charged poly (γ-glutamic acid)] and water absorption rate (water content maximally retained in crosslinked product / gel dry weight) were measured. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】照射線量が1.92Mradで形成された
架橋体は脆弱ではあるが、吸水率が3550であり、つ
まり、架橋体の自重の約3500倍もの水を吸収しえ
た。照射線量の増加に伴いゲル化率は増加する傾向がみ
られ、また吸水率は照射線量が少ない場合には大きく、
かつ照射線量の増加に伴い減少し、また照射線量が多い
場合には架橋が飽和するためほぼ同じとなり、いずれに
しても吸水率は100を超え十分な吸水性能を示すこと
が分る。
The crosslinked body formed at an irradiation dose of 1.92 Mrad was fragile, but had a water absorption rate of 3550, that is, it was able to absorb about 3500 times as much water as its own weight. The gelation rate tends to increase as the irradiation dose increases, and the water absorption rate increases when the irradiation dose is low,
Moreover, it decreases with the increase of the irradiation dose, and when the irradiation dose is high, it becomes almost the same because the crosslinking is saturated, and in any case, the water absorption rate exceeds 100 and it can be seen that sufficient water absorption performance is exhibited.

【0027】照射線量を10.24Mradとした実施
例5において得られた架橋体の赤外線吸収スペクトルを
図1に示す。これより、この架橋体はポリ(γ‐グルタ
ミン酸)の架橋体であることが確認された。また、この
架橋体は水に不溶のゲルであった。
The infrared absorption spectrum of the crosslinked product obtained in Example 5 with the irradiation dose of 10.24 Mrad is shown in FIG. From this, it was confirmed that this crosslinked product was a crosslinked product of poly (γ-glutamic acid). The crosslinked product was a water-insoluble gel.

【0028】得られた架橋体の生分解性については次の
ようにして調べた。すなわち、各架橋体を土壌(畑)中
に埋め放置したところ、2ケ月後に半減するまで分解さ
れ、4ケ月後には完全に分解されていた。
The biodegradability of the obtained crosslinked product was examined as follows. That is, when each crosslinked product was buried in soil (field) and left to stand, it was decomposed until it halved after 2 months and completely decomposed after 4 months.

【0029】実施例13〜16 γ線照射を行うポリ(γ‐グルタミン酸)水溶液の濃度
を変化させた場合の架橋体の生成条件を検討した。ポリ
(γ‐グルタミン酸)を2〜5重量%になるように溶解
させ、各1mlバイアル瓶に0.5mlずつ分注し、蓋
をした。これらの各試料に、コバルト60(110TB
q)を線源として備えたγ線照射装置によりγ線を7M
radと10Mradの各照射線量でそれぞれ照射処理
した。得られた各試料処理物を各バイアル瓶から取り出
し、蒸留水に浸せきすることにより未架橋の高分子や分
解生成物を除去した。こうして、純度の高い各架橋体を
得た。これら各架橋体について、吸水率を測定した。こ
の結果を表2に示す。
Examples 13 to 16 The conditions for forming crosslinked products when the concentration of the aqueous poly (γ-glutamic acid) solution subjected to γ-ray irradiation was changed were examined. Poly (γ-glutamic acid) was dissolved at 2 to 5% by weight, 0.5 ml was dispensed into each 1 ml vial, and the vial was capped. For each of these samples, cobalt 60 (110 TB
γ-ray irradiation device equipped with q) as a radiation source
Irradiation treatment was performed at each irradiation dose of rad and 10 Mrad. Each of the obtained sample treated products was taken out of each vial and immersed in distilled water to remove uncrosslinked polymers and decomposition products. In this way, highly crosslinked products were obtained. The water absorption rate of each of these crosslinked products was measured. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】比較例 ポリ(γ‐グルタミン酸)濃度を1重量%に変えた以外
は実施例13と同様にしてγ線照射処理物を得たが、こ
のものは架橋体の生成もゲル化も見られなかった。
Comparative Example A γ-ray-irradiated product was obtained in the same manner as in Example 13 except that the concentration of poly (γ-glutamic acid) was changed to 1% by weight. This product showed formation of a crosslinked product and gelation. I couldn't do it.

【0032】実施例17 所望の架橋体が繰り返し使用に耐えられるかどうかを検
討した。照射線量10Mradで生成した実施例16の
架橋体を蒸留水に1週間浸せきし、凍結乾燥した。この
時の保持している水分量を測定し、吸水率を求めた。こ
れを何度か繰り返した。その結果を表3に示す。
Example 17 It was examined whether the desired crosslinked product can withstand repeated use. The crosslinked product of Example 16 produced at an irradiation dose of 10 Mrad was immersed in distilled water for 1 week and freeze-dried. The amount of water retained at this time was measured to determine the water absorption rate. I repeated this several times. The results are shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】これより、架橋体は繰り返し使用しても最
初に使用した時の特性がかなり保持され、繰り返し使用
に耐えられることが分る。
From the above, it can be seen that the crosslinked product retains its properties when first used even after repeated use and can withstand repeated use.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例5の照射線量10.24Mradで生
成した架橋体の赤外線吸収スペクトル図。
FIG. 1 is an infrared absorption spectrum diagram of a crosslinked product produced at an irradiation dose of 10.24 Mrad in Example 5.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ゲル化率40〜90%のポリ(γ‐グル
タミン酸)放射線架橋体から成る生分解性高吸水体。
1. A biodegradable highly water-absorbing material comprising a radiation-crosslinked poly (γ-glutamic acid) having a gelation rate of 40 to 90%.
【請求項2】 ポリ(γ‐グルタミン酸)をその濃度が
1.5〜6重量%になるように水又は水と水溶性溶媒と
の混合溶媒に溶解し、次いで得られた溶液に放射線を照
射したのち、生成した架橋体を分離することを特徴とす
る生分解性高吸水体の製造方法。
2. Poly (γ-glutamic acid) is dissolved in water or a mixed solvent of water and a water-soluble solvent so that the concentration thereof is 1.5 to 6% by weight, and then the resulting solution is irradiated with radiation. After that, a method for producing a biodegradable highly water-absorbing body, which comprises separating the produced crosslinked body.
【請求項3】 放射線の照射が、γ線を照射線量1.0
〜50Mradで照射するものである請求項2記載の方
法。
3. The irradiation of radiation is a γ-ray irradiation dose of 1.0.
The method according to claim 2, wherein the irradiation is performed at -50 Mrad.
【請求項4】 ポリ(γ‐グルタミン酸)が微生物によ
り産生されたものである請求項3記載の方法
4. The method according to claim 3, wherein the poly (γ-glutamic acid) is produced by a microorganism.
JP13295293A 1993-05-11 1993-05-11 Novel biodegradable water absorbent and method for producing the same Expired - Lifetime JPH0772267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295293A JPH0772267B2 (en) 1993-05-11 1993-05-11 Novel biodegradable water absorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295293A JPH0772267B2 (en) 1993-05-11 1993-05-11 Novel biodegradable water absorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06322358A true JPH06322358A (en) 1994-11-22
JPH0772267B2 JPH0772267B2 (en) 1995-08-02

Family

ID=15093338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295293A Expired - Lifetime JPH0772267B2 (en) 1993-05-11 1993-05-11 Novel biodegradable water absorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0772267B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037103A1 (en) * 1995-05-23 1996-11-28 Donlar Corporation Seed treatment composition and method
WO2002051907A1 (en) * 2000-12-22 2002-07-04 Microorganism Science Laboratory Incorporated Biodegradable plastics
WO2004039339A1 (en) * 2002-10-31 2004-05-13 Idemitsu Technofine Co., Ltd. Cosmetics excellent in texture and oil-dispersibility
EP1550469A1 (en) * 2003-12-19 2005-07-06 Tung Hai Biotechnology Corporation Stable biodegradable, water absorbing gamma-polyglutamic acid hydrogel
JP2005314489A (en) * 2004-04-27 2005-11-10 Idemitsu Technofine Co Ltd MANUFACTURING METHOD OF CROSSLINKED PRODUCT OF POLY-gamma-GLUTAMIC ACID AND CROSSLINKED PRODUCT OF POLY-gamma-GLUTAMIC ACID OBTAINED BY THE SAME
WO2006054624A1 (en) * 2004-11-18 2006-05-26 Keio University Adhesion preventive and method of preventing adhesion
WO2007132785A1 (en) 2006-05-16 2007-11-22 Keio University Agent for preventing organ adhesion and method for preventing adhesion using the same
US7364879B2 (en) 2003-12-19 2008-04-29 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
US7389637B2 (en) 1993-04-09 2008-06-24 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
CN102454105A (en) * 2010-10-14 2012-05-16 远东新世纪股份有限公司 Preparation method for superabsorbent antibacterial fiber
US8273278B2 (en) 2009-04-07 2012-09-25 Far East New Century Corporation Process of making water-insoluble polyglutamic acid fibers
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil
US8771571B2 (en) 2010-10-04 2014-07-08 Far Eastern New Century Corporation Method for preparing high water-absorption and anti-bacterial gamma polyglutamic acid fibers
US8916141B2 (en) 2005-10-20 2014-12-23 Bioleaders Corporation Hyaluronidase inhibitor containing poly-gamma-glutamic acid as an effective component

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389637B2 (en) 1993-04-09 2008-06-24 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
WO1996037103A1 (en) * 1995-05-23 1996-11-28 Donlar Corporation Seed treatment composition and method
WO2002051907A1 (en) * 2000-12-22 2002-07-04 Microorganism Science Laboratory Incorporated Biodegradable plastics
WO2004039339A1 (en) * 2002-10-31 2004-05-13 Idemitsu Technofine Co., Ltd. Cosmetics excellent in texture and oil-dispersibility
US7759088B2 (en) 2003-12-19 2010-07-20 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable γ-polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
EP1550469A1 (en) * 2003-12-19 2005-07-06 Tung Hai Biotechnology Corporation Stable biodegradable, water absorbing gamma-polyglutamic acid hydrogel
US7364879B2 (en) 2003-12-19 2008-04-29 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
US7790417B2 (en) 2003-12-19 2010-09-07 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
JP2005314489A (en) * 2004-04-27 2005-11-10 Idemitsu Technofine Co Ltd MANUFACTURING METHOD OF CROSSLINKED PRODUCT OF POLY-gamma-GLUTAMIC ACID AND CROSSLINKED PRODUCT OF POLY-gamma-GLUTAMIC ACID OBTAINED BY THE SAME
JP4574214B2 (en) * 2004-04-27 2010-11-04 出光テクノファイン株式会社 Method for producing poly-γ-glutamic acid crosslinked product
WO2006054624A1 (en) * 2004-11-18 2006-05-26 Keio University Adhesion preventive and method of preventing adhesion
JPWO2006054624A1 (en) * 2004-11-18 2008-05-29 学校法人慶應義塾 Adhesion prevention material and adhesion prevention method
US7955789B2 (en) 2004-11-18 2011-06-07 Keio University Adhesion-preventing material and process for preventing adhesion
JP5003998B2 (en) * 2004-11-18 2012-08-22 学校法人慶應義塾 Adhesion prevention material and adhesion prevention method
US8916141B2 (en) 2005-10-20 2014-12-23 Bioleaders Corporation Hyaluronidase inhibitor containing poly-gamma-glutamic acid as an effective component
WO2007132785A1 (en) 2006-05-16 2007-11-22 Keio University Agent for preventing organ adhesion and method for preventing adhesion using the same
US8273278B2 (en) 2009-04-07 2012-09-25 Far East New Century Corporation Process of making water-insoluble polyglutamic acid fibers
US8771571B2 (en) 2010-10-04 2014-07-08 Far Eastern New Century Corporation Method for preparing high water-absorption and anti-bacterial gamma polyglutamic acid fibers
CN102454105A (en) * 2010-10-14 2012-05-16 远东新世纪股份有限公司 Preparation method for superabsorbent antibacterial fiber
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil

Also Published As

Publication number Publication date
JPH0772267B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
Qamruzzaman et al. An overview on starch-based sustainable hydrogels: Potential applications and aspects
Kundu et al. Cellulose hydrogels: Green and sustainable soft biomaterials
JPH06322358A (en) New biodedgradable high water absorbent and its production
US4842597A (en) Hydrophilic copolymers for wound dressings and other biomedical uses
Saber-Samandari et al. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels
CA1056092A (en) Water swellable poly (alkylene oxide)
JP6085887B2 (en) Gels and hydrogels
US7307157B2 (en) Process for producing chitin derivatives and/or chitosan derivatives having a crosslinked structure
Abd El-Rehim Swelling of radiation crosslinked acrylamide-based microgels and their potential applications
Maziad et al. Radiation preparation of smart hydrogel has antimicrobial properties for controlled release of ciprofloxacin in drug delivery systems
JP4015988B2 (en) Three-dimensionally cross-linked, stable biodegradable superabsorbent γ-polyglutamic acid hydrogel and preparation method thereof
Rai et al. In vitro evaluations of biodegradable polyacrylamide grafted moringa bark gum graft copolymer (MOG-g-PAAM) as biomedical and controlled drug delivery device synthesized by microwave accelerated free radical synthesis
Kołodyńska et al. Hydrogels from fundaments to application
JP3502879B2 (en) Novel biodegradable superabsorbent and its production method
Villegas et al. Enhancement swelling properties of PVGA hydrogel by alternative radiation crosslinking route
JP3715414B2 (en) Biodegradable water absorbent resin
JP3416741B2 (en) Novel biodegradable superabsorbent and method for producing the same
JP4674357B2 (en) Crosslinking of starch derivatives and methods for their production
JP5257878B2 (en) Method for controlling biodegradability of superabsorbent gel and biodegradable gel with controlled biodegradability
Tranquilan-Aranilla et al. Properties and Potential Applications of Carboxymethyl-kappa-carrageenan Hydrogels Crosslinked by Gamma Radiation.
Sinha Biopolymer derived superabsorbent for environmental sustainability: A review
JP5317041B2 (en) Poly-γ-L-glutamic acid cross-linked product, process for producing the same, and hydrogel comprising the same
KR20210032186A (en) Composition for absorbent composite, absorbent composite prepared using the same and method for preparing the same
Foroutan et al. Investigation of synthesis of PVP hydrogel by irradiation
JP4574214B2 (en) Method for producing poly-γ-glutamic acid crosslinked product

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term