JPH06321676A - Image furnace - Google Patents

Image furnace

Info

Publication number
JPH06321676A
JPH06321676A JP13646293A JP13646293A JPH06321676A JP H06321676 A JPH06321676 A JP H06321676A JP 13646293 A JP13646293 A JP 13646293A JP 13646293 A JP13646293 A JP 13646293A JP H06321676 A JPH06321676 A JP H06321676A
Authority
JP
Japan
Prior art keywords
sample
furnace
heated
wavelength
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13646293A
Other languages
Japanese (ja)
Other versions
JP2601137B2 (en
Inventor
Takao Yokota
孝夫 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5136462A priority Critical patent/JP2601137B2/en
Publication of JPH06321676A publication Critical patent/JPH06321676A/en
Application granted granted Critical
Publication of JP2601137B2 publication Critical patent/JP2601137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To measure the temp. of samples fixed in a vessel without contact. CONSTITUTION:The bielliptic type image furnace is shown. Heat light sources (2a, 2b) set at first focal points emit IR rays of <=5mum wavelength. The IR rays are reflected by spheroid reflection mirrors (1a, 1b) and are condensed to second focal points to heat the samples (5a, 5b) which are to be heated and are set there to form molten zones 6. The transparent vessel 12 for fixing and housing the samples(5a, 5b) is mounted via a holder 4b on the front end of a shaft 3b to be put into and out of a Tee type furnace core tube 7b. The furnace core tube 7b consists of quartz glass which allows the transmission of the IR rays of <=5mum wavelength and the vessel 12 consists of sapphire, etc., which allows the transmission of the IR rays of >=5mum wavelength. The IR rays of >=5mum wavelength emitted from the samples and the molten zones are guided to the furnace core tube 7b and arrive at a window 8 where the IR rays transmit a protective plate 9b consisting of sapphire and enter a detector 10b which senses the IR rays of >=5mum wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶成長等で利用され
るイメージ炉に係り、特に加熱中の試料温度を非接触で
測定するための被加熱試料の取り付け構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image furnace used for crystal growth and the like, and more particularly to a mounting structure for a heated sample for non-contact measurement of a sample temperature during heating.

【0002】[0002]

【従来の技術】イメージ炉は、炉内面を回転楕円反射鏡
で構成し、その回転楕円面の第1焦点近傍に熱光源を配
置し、第2焦点近傍に配置した試料に熱光線を集中し、
試料を加熱する装置である。
2. Description of the Related Art In an image furnace, the inner surface of the furnace is composed of a spheroidal reflector, a heat source is arranged near the first focal point of the spheroidal surface, and heat rays are concentrated on a sample arranged near the second focal point. ,
This is a device for heating a sample.

【0003】このイメージ炉には、反射鏡が1個の回転
楕円面のみで構成される単楕円型、反射鏡が2個の回転
楕円面の組み合わせで構成され第2の焦点を共有する構
造の双楕円型、更に反射鏡が3個の回転楕円面の組み合
わせで構成され第2の焦点を共有する構造の多楕円型、
等各種のタイプのものがある。
In this image furnace, the reflecting mirror is a single ellipsoidal type having only one spheroid, and the reflecting mirror is a combination of two spheroids having a second focal point. A bi-elliptical type, and a multi-elliptical type in which a reflecting mirror is composed of a combination of three spheroids and shares a second focus,
There are various types such as.

【0004】また、試料温度は、熱電対等により直接測
定が可能であるが、非接触測定を可能にするイメージ炉
には、単管の炉芯管を用いたタイプ(図2)と、T字型
炉芯管を用いたタイプ(図3)とがある。図2及び図3
に示すイメージ炉は、何れも双楕円型イメージ炉であっ
て、本出願人の提案に係るものである。
Although the sample temperature can be measured directly by a thermocouple or the like, the image furnace which enables non-contact measurement is of a type using a single tube core tube (FIG. 2) and a T-shaped type. There is a type using a mold core tube (Fig. 3). 2 and 3
The image furnaces shown in (2) are all bi-elliptical image furnaces, which are proposed by the applicant.

【0005】具体的には、図2に示す双楕円型イメージ
炉は、特開昭60−205178号公報にて公開され既
に公知であるが、5μm以下の特定波長の赤外線による
非接触温度計測が行えるものである。一方、図3に示す
双楕円型イメージ炉は、未公開(特願平4−17328
号)であるが、5μm以上の特定波長の赤外線による非
接触度計測が行えるものである。以下、図2と図3を参
照して従来のイメージ炉における非接触温度測定の構造
を説明する。
Specifically, the bi-elliptical type image furnace shown in FIG. 2 has been disclosed in Japanese Patent Application Laid-Open No. 60-205178 and is already known, but non-contact temperature measurement by infrared rays having a specific wavelength of 5 μm or less is possible. It can be done. On the other hand, the bi-elliptical image furnace shown in FIG. 3 has not been disclosed (Japanese Patent Application No. 4-17328).
No.), it is possible to measure the non-contact degree by infrared rays having a specific wavelength of 5 μm or more. Hereinafter, the structure of the non-contact temperature measurement in the conventional image furnace will be described with reference to FIGS. 2 and 3.

【0006】図2のA(横断面図)において、炉内面
は、1aと1bの2個の回転楕円反射鏡を第2焦点(同
図中の中央付近)を共有するようにそれぞれの第1焦点
を水平面内で対向配置して形成され、回転楕円反射鏡1
aの第1焦点近傍に熱光源2aが配置され、回転楕円反
射鏡1bの第1焦点近傍に熱光源2bが配置される。こ
れらの熱光源の発する赤外線は回転楕円反射鏡(1a、
1b)で反射され第2焦点位置に集光される。
In FIG. 2A (transverse cross-sectional view), the inner surface of the furnace is provided with two spheroidal reflectors 1a and 1b so as to share a second focal point (near the center in the figure) with each of the first spheroidal reflectors. The spheroidal reflector 1 is formed by arranging the focal points so as to face each other in a horizontal plane.
The thermal light source 2a is arranged near the first focal point of a, and the thermal light source 2b is arranged near the first focal point of the spheroidal reflecting mirror 1b. The infrared rays emitted by these heat sources are spheroidal mirrors (1a,
It is reflected by 1b) and condensed at the second focal position.

【0007】これらの熱光源は、ハロゲンランプ等から
なり、フィラメント(21a、21b)を石英ガラス
(22a、22b)からなるバルブ内に納めたものである。
なお、石英ガラスは透過波長が5μm以下であり、それ
以上の波長の赤外線は透過せず吸収するが、図2に示す
石英ガラス(22a、22b)は、5μm以下の特定波長λ
の赤外線を透過させずに吸収する材質のものからなる。
These heat sources are halogen lamps and the like, and the filaments (2 1a , 2 1b ) are contained in a bulb made of quartz glass (2 2a , 2 2b ).
Quartz glass has a transmission wavelength of 5 μm or less and absorbs infrared light having a wavelength longer than that, but the quartz glass (2 2a , 2 2b ) shown in FIG. 2 has a specific wavelength λ of 5 μm or less.
It is made of a material that absorbs infrared rays without transmitting them.

【0008】第2焦点近傍には、図2のB(縦断面図)
に詳示するように、2つの熱光源の配置方向に直交する
上下方向に向けて棒状の被加熱試料等が配置される。具
体的には、第2焦点近傍の上下方向に対向する炉壁には
上側シャフト3aと下側シャフト3bが炉内に出入り可
能に設けられ、両シャフトの先端にホルダ(4a、4
b)を介して被加熱試料(5a、5b)が取り付けられ
る。なお、両シャフトにはOリングからなるシール材
(11a、11b)が介挿され、炉内の機密性の確保が
図られている。
In the vicinity of the second focal point, B in FIG. 2 (longitudinal sectional view)
As will be described in detail, a rod-shaped sample to be heated and the like are arranged in the up-down direction orthogonal to the arrangement direction of the two heat sources. Specifically, an upper shaft 3a and a lower shaft 3b are provided in a furnace wall facing vertically in the vicinity of the second focal point so that they can move in and out of the furnace, and holders (4a, 4
The sample to be heated (5a, 5b) is attached via b). Sealing materials (11a, 11b) made of O-rings are inserted on both shafts to ensure the airtightness inside the furnace.

【0009】上側試料5aと下側試料5bの対向先端位
置の間隔は、両シャフトを出入り操作して調節設定する
が、その対向先端はフィラメント(21a、21b)の発す
る赤外線により加熱され、溶融帯6が形成される。
The distance between the opposing tip positions of the upper sample 5a and the lower sample 5b is adjusted and set by operating both shafts to move in and out. The opposing tips are heated by the infrared rays emitted from the filaments (2 1a , 2 1b ), A melting zone 6 is formed.

【0010】そして、円筒状の単管炉芯管7aが、これ
らシャフト及び試料を収納するようにその両端が第2焦
点近傍の上下方向に対向する炉壁に固定される。この単
管炉芯管7aは、5μm以下の特定波長λの赤外線を透
過させ得る一般の石英ガラスからなり、上下の被加熱試
料(5a、5b)及び溶融帯6を外部から遮断し、それ
らの周囲に不活性ガスなどの雰囲気ガスを満たしたり、
更にそれらが発生するガスから回転楕円反射鏡(1a、
1b)を保護する目的で設けられる。
Then, the cylindrical single tube furnace core tube 7a is fixed at both ends thereof to the furnace wall vertically facing in the vicinity of the second focal point so as to accommodate the shaft and the sample. The single-tube furnace core tube 7a is made of general quartz glass capable of transmitting infrared rays having a specific wavelength λ of 5 μm or less, and shields the upper and lower heated samples (5a, 5b) and the melting zone 6 from the outside, and Fill ambient gas with inert gas,
Further, from the gas generated by them, a spheroidal reflector (1a,
It is provided for the purpose of protecting 1b).

【0011】次に、第2焦点近傍に対向した炉壁には、
窓8が穿設され、被加熱試料(5a、5b)の加熱状態
及び溶融帯6の形成状態を目視確認できるようになって
いるが、被加熱試料(5a、5b)及び溶融帯6の温度
を測定するため、この窓8の炉壁外面には5μm以下の
特定波長λの赤外線のみを通過させるバンドパスフィル
タ9が設けられる。なお、炉内の機密性を確保するた
め、バンドパスフィルタ9には同じくOリング等からな
るシール材11cが介挿される。
Next, on the furnace wall facing the vicinity of the second focal point,
Although the window 8 is provided so that the heating state of the sample to be heated (5a, 5b) and the formation state of the melting zone 6 can be visually confirmed, the temperature of the sample to be heated (5a, 5b) and the temperature of the melting zone 6 can be confirmed. In order to measure the temperature, a bandpass filter 9 is provided on the outer surface of the furnace wall of the window 8 to pass only infrared rays having a specific wavelength λ of 5 μm or less. In order to secure the airtightness in the furnace, the bandpass filter 9 is also provided with a sealing material 11c made of an O-ring or the like.

【0012】即ち、被加熱試料(5a、5b)及び溶融
帯6の発する赤外線のうち5μm以下の特定波長λの赤
外線は炉芯管7aを透過した後バンドパスィルタ9を通
り外部に設定した5μm以下の特定波長λに感度を有す
る検出器10aに導入される。検出器10aの出力は、
図示しないディスプレイ等に接続され、被加熱試料(5
a、5b)及び溶融帯6の温度値や温度分布が表示等さ
れる。
That is, of the infrared rays emitted from the sample to be heated (5a, 5b) and the melting zone 6, the infrared ray having a specific wavelength λ of 5 μm or less passes through the furnace core tube 7a and then passes through the bandpass filter 9 and is set to the outside of 5 μm. It is introduced into the detector 10a having sensitivity to the following specific wavelength λ. The output of the detector 10a is
The sample to be heated (5
a, 5b) and the temperature value and temperature distribution of the melting zone 6 are displayed.

【0013】このとき、フィラメント(21a、21b)の
発する赤外線のうち、5μm以下の特定波長λの赤外線
は石英ガラス(22a、22b)で吸収され、検出器10a
には到達せず、特定波長λに対応した温度を正確に測定
できるようになっている。
At this time, among the infrared rays emitted from the filaments (2 1a , 2 1b ), the infrared rays having a specific wavelength λ of 5 μm or less are absorbed by the quartz glass (2 2a , 2 2b ) and the detector 10a.
The temperature corresponding to the specific wavelength λ can be accurately measured.

【0014】要するに、図2に示すイメージ炉は、フィ
ラメント(21a、21b)の発する赤外線のうち波長5μ
m以下の特定波長λの赤外線が窓8から検出器10aに
飛び込み正確な温度計測ができないので、バルブたる石
英ガラス(22a、22b)を特定波長λを吸収する材質か
らなるもので形成したのである。
In short, the image furnace shown in FIG. 2 has a wavelength of 5 μm among infrared rays emitted from the filaments (2 1a , 2 1b ).
Since infrared rays with a specific wavelength λ of m or less jump into the detector 10a through the window 8 and accurate temperature measurement cannot be performed, the quartz glass (2 2a , 2 2b ) that is a bulb is made of a material that absorbs the specific wavelength λ. Of.

【0015】しかし、その後の検討結果、フィラメント
(21a、21b)の発する赤外線でバルブ(22a、22b
は加熱され、点灯中は数百度[℃]の高温になるので、
バルブ(22a、22b)の表面からその特定波長λの赤外
線が発せられ、正確な温度計測は依然としてできていな
いことが判明した。
However, as a result of the subsequent examination, the bulbs (2 2a , 2 2b ) were irradiated with the infrared rays emitted from the filaments (2 1a , 2 1b ).
Is heated and reaches a high temperature of several hundred degrees [° C] during lighting,
It was revealed that infrared rays of the specific wavelength λ were emitted from the surface of the bulbs (2 2a , 2 2b ), and accurate temperature measurement could not be performed yet.

【0016】次に、図3において、このイメージ炉は、
石英ガラスは一般に波長5μm以上の赤外線を透過せず
吸収する性質があることに鑑み、石英ガラス製の炉芯管
としてT字型炉芯管7bを用い、シャフト(3a、3
b)、被加熱試料(5a、5b)及び溶融帯6を収納す
ると共に、溶融帯6近傍の所定範囲から窓8に至る経路
を包み込み、溶融帯6近傍の所定範囲で発する波長5μ
m以上の赤外線が窓8に支障なく到達できるようにし、
また窓8の炉壁外面に波長5μm以上の赤外線をも透過
するサファイア等からなる保護板9bを設け、かつ、5
μm以上の特定波長に感度を有する検出器10bを設け
たものである。
Next, referring to FIG. 3, the image furnace is
In view of the fact that quartz glass generally has a property of absorbing and not transmitting infrared rays having a wavelength of 5 μm or more, a T-shaped furnace core tube 7b is used as a furnace core tube made of quartz glass, and the shaft (3a, 3
b), the sample to be heated (5a, 5b) and the melting zone 6 are housed, and the path extending from the predetermined range near the melting zone 6 to the window 8 is wrapped and the wavelength 5 μ emitted in the predetermined range near the melting zone 6
Infrared rays of m or more can reach the window 8 without any trouble,
Further, a protective plate 9b made of sapphire or the like which transmits infrared rays having a wavelength of 5 μm or more is provided on the outer surface of the furnace wall of the window 8, and 5
A detector 10b having sensitivity to a specific wavelength of μm or more is provided.

【0017】なお、図3に示す構成では、熱光源(2
a、2b)の発する波長5μm以下の赤外線がT字型炉
芯管7bを通過し、検出器10bに到達しても検出器1
0bは感知しないので、熱光源(2a、2b)のバルブ
を形成する石英ガラスは、5μm以下の特定波長の赤外
線を吸収する材質からなるものであっても良く、また波
長5μm以上の赤外線を吸収する一般の材質からなるも
のであっても良い。
In the structure shown in FIG. 3, the heat source (2
Infrared rays having a wavelength of 5 μm or less emitted by a, 2b) pass through the T-shaped furnace core tube 7b and reach the detector 10b.
Since 0b is not sensed, the quartz glass forming the bulb of the heat source (2a, 2b) may be made of a material that absorbs infrared rays with a specific wavelength of 5 μm or less, and also absorbs infrared rays with a wavelength of 5 μm or more. It may be made of a general material.

【0018】[0018]

【発明が解決しようとする課題】上述したように、T字
型炉芯管を用いたイメージ炉では、波長5μm以上の赤
外線により非接触で被加熱試料や溶融帯の温度を正確に
計測できるが、近年、被加熱試料として人体に有毒なひ
素等のガスを発生する可能性のあるものが用いられてき
ており、かかる場合には被加熱試料を封入した密閉容器
を上側または下側の何れか一方のシャフトに取り付けて
T字型炉芯管内に配置し、その密閉容器内で試料を加熱
し溶融帯を形成する必要がある。
As described above, in the image furnace using the T-shaped furnace core tube, the temperature of the sample to be heated or the melting zone can be accurately measured by infrared rays having a wavelength of 5 μm or more without contact. In recent years, as a sample to be heated, one that may generate a gas such as arsenic that is toxic to the human body has been used.In such a case, a closed container enclosing the sample to be heated is placed on either the upper side or the lower side. It is necessary to attach it to one shaft and arrange it in a T-shaped furnace core tube, and heat the sample in the closed container to form a molten zone.

【0019】また、被加熱試料をT字型炉芯管内に設定
する方法として図3に示す場合の他に、シャフトを上側
または下側の何れか一方とする共に、被加熱試料を側端
面が開口した筒状の容器内に固定し、その筒状容器をそ
の1つのシャフトに取り付けてT字型炉芯管内に配置す
る方法がある。この場合にもその筒状容器内で試料を加
熱し溶融帯を形成することになる。
In addition to the method shown in FIG. 3 as a method for setting the sample to be heated in the T-shaped furnace core tube, the shaft is either on the upper side or the lower side, and the sample to be heated has a side end surface. There is a method of fixing in an open tubular container, attaching the tubular container to one shaft thereof, and disposing the tubular container in a T-shaped furnace core tube. In this case as well, the sample is heated in the cylindrical container to form a melting zone.

【0020】しかし、従来では、かかる用途に用いる密
閉容器や筒状容器は炉芯管と同様の石英ガラスで形成す
るのが一般であるので、密閉容器や筒状容器内で加熱中
の試料や溶融帯の発する赤外線のうち波長5μm以上の
赤外線は、密閉容器や筒状容器で吸収され検出器に到達
できず、温度測定ができないという問題がある。その際
に、検出器として5μm以下の特定波長に感度を有する
ものを用いることも考えられるが、この場合には、熱光
源の発する赤外線も検出してしまうので、妥当でない。
However, conventionally, since the closed container and the cylindrical container used for such an application are generally made of quartz glass similar to the furnace core tube, the sample or the sample being heated in the closed container or the cylindrical container is used. Among the infrared rays emitted from the melting zone, infrared rays having a wavelength of 5 μm or more are absorbed by the closed container or the cylindrical container and cannot reach the detector, which causes a problem that the temperature cannot be measured. At that time, it is possible to use a detector having sensitivity to a specific wavelength of 5 μm or less, but in this case, infrared rays emitted from a heat source are also detected, which is not appropriate.

【0021】本発明は、このような従来の問題に鑑みな
されたもので、その目的は、容器内で加熱溶融する試料
の温度を非接触で正確に計測できるイメージ炉を提供す
ることにある。
The present invention has been made in view of such conventional problems, and an object thereof is to provide an image furnace capable of accurately measuring the temperature of a sample heated and melted in a container in a non-contact manner.

【0022】[0022]

【課題を解決するための手段】前記目的を達成するた
め、本発明のイメージ炉は次の如き構成を有する。即
ち、本発明のイメージ炉は、炉内面が第1焦点と第2焦
点を有する回転楕円反射鏡で構成される炉内部に; 前
記第1焦点近傍に設けられるハロゲンランプ等の熱光源
と; 前記第2焦点近傍に設けられ前記熱光源の発する
赤外線で加熱される被加熱試料と; 前記被加熱試料を
収納すると共に、当該被加熱試料の発する赤外線を前記
第2焦点近傍に対応して炉壁に開けられた窓に導くT字
型炉芯管と; を設け、前記窓から炉外に射出される赤
外線を波長5μm以上の赤外線に感応する温度検出器に
導入して前記被加熱試料の温度を測定するイメージ炉に
おいて; 前記T型炉芯管内に前記被加熱試料を設定す
る際に使用される透明容器は、波長5μm以上の赤外線
をも透過するサファイア等の材料で構成される;ことを
特徴とするものである。
In order to achieve the above object, the image furnace of the present invention has the following constitution. That is, in the image furnace of the present invention, the inside surface of the furnace is composed of a spheroidal mirror having a first focus and a second focus; a heat source such as a halogen lamp provided near the first focus; A sample to be heated which is provided in the vicinity of a second focus and is heated by infrared rays emitted from the heat source; and an infrared ray emitted from the sample to be heated, which accommodates the sample to be heated and corresponds to the vicinity of the second focus. A T-shaped furnace core tube leading to a window opened in the furnace; and introducing infrared rays emitted from the furnace out of the furnace into a temperature detector sensitive to infrared rays having a wavelength of 5 μm or more, and the temperature of the sample to be heated. An image furnace for measuring the temperature; a transparent container used when setting the sample to be heated in the T-type furnace core tube is made of a material such as sapphire that transmits infrared rays having a wavelength of 5 μm or more; It is a feature.

【0023】[0023]

【作用】次に、前記の如くに構成される本発明のイメー
ジ炉の作用を説明する。本発明のイメージ炉では、T型
炉芯管内に被加熱試料を設定する密閉容器または筒状容
器である透明容器に、サファイア等の波長5μm以上の
赤外線をも透過する材料で形成したものを用いるように
してある。
Next, the operation of the image furnace of the present invention constructed as described above will be described. In the image furnace of the present invention, a transparent container, which is a closed container or a cylindrical container for setting a sample to be heated in a T-shaped core tube, is made of a material such as sapphire which transmits infrared rays having a wavelength of 5 μm or more. Is done.

【0024】従って、人体に有毒なガスを発生する試料
であっても支障なく、密閉容器内で加熱溶融する試料の
温度を非接触で正確に計測できることになる。
Therefore, even if the sample emits a gas toxic to the human body, the temperature of the sample heated and melted in the closed container can be accurately measured without contact.

【0025】[0025]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係るイメージ炉を示
す。図3と同一構成部分には同一符号名称を付してあ
る。以下、本発明に係る部分を中心に説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an image furnace according to an embodiment of the present invention. The same components as those in FIG. 3 are designated by the same reference numerals. Hereinafter, the description will focus on the part relating to the present invention.

【0026】図1において、シャフトは下側3bのみと
し、この下側シャフト3bの先端に下側ホルダ4bを介
して透明容器12が取り付けられ、この透明容器12内
に被加熱試料(5a、5b)が固定配置される。
In FIG. 1, the shaft is limited to the lower side 3b, and the transparent container 12 is attached to the tip of the lower shaft 3b through the lower holder 4b. The sample to be heated (5a, 5b) is placed in the transparent container 12. ) Is fixedly placed.

【0027】透明容器12は、波長5μm以上の赤外線
をも透過できる材料、例えばサファイアからなり、被加
熱試料(5a、5b)を封入固定する密閉容器または被
加熱試料(5a、5b)を単に固定する端面開口の筒状
容器である。
The transparent container 12 is made of a material that can also transmit infrared rays having a wavelength of 5 μm or more, for example, sapphire, and is a closed container for enclosing and fixing the heated sample (5a, 5b) or simply fixing the heated sample (5a, 5b). It is a cylindrical container having an end face opening.

【0028】斯くして、被加熱試料(5a、5b)及び
溶融帯6の発する波長5μm以上の赤外線は、支障なく
透明容器12を透過して検出器10bに到達できるの
で、透明容器12内で加熱溶融する試料の温度を被接触
で正確に測定できる。
In this way, the infrared rays having a wavelength of 5 μm or more emitted from the sample to be heated (5a, 5b) and the melting zone 6 can pass through the transparent container 12 and reach the detector 10b without any trouble. The temperature of the sample to be heated and melted can be accurately measured by contact.

【0029】[0029]

【発明の効果】以上説明したように、本発明のイメージ
炉では、T型炉芯管内に被加熱試料を設定する密閉容器
または筒状容器である透明容器に、サファイア等の波長
5μm以上の赤外線をも透過する材料で形成したものを
用いるので、人体に有毒なガスを発生する試料であって
も支障なく、密閉容器内で加熱溶融する試料の温度を非
接触で正確に計測できる効果がある。また、試料を炉内
に挿入するシャフトを片側の1つのみとし、操作及び構
造の簡素化が図れる効果もある。
As described above, in the image furnace of the present invention, a transparent container, which is a closed container or a cylindrical container for setting the sample to be heated in the T-type core tube, is provided with infrared rays such as sapphire having a wavelength of 5 μm or more. Since it is formed of a material that also permeates through, it is possible to accurately measure the temperature of a sample that heats and melts in a closed container in a non-contact manner, even if it is a sample that emits a gas that is toxic to the human body. . Further, there is also an effect that the shaft for inserting the sample into the furnace is only one on one side and the operation and the structure can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るイメージ炉を示し、A
は横断面図、Bは縦断面図である。
FIG. 1 shows an image furnace according to an embodiment of the present invention.
Is a horizontal sectional view, and B is a vertical sectional view.

【図2】従来の単管の炉芯管を用いたイメージ炉を示
し、Aは横断面図、Bは縦断面図である。
2A and 2B show an image furnace using a conventional single tube furnace core tube, in which A is a transverse sectional view and B is a longitudinal sectional view.

【図3】従来のT字型炉芯管を用いたイメージ炉を示
し、Aは横断面図、Bは縦断面図である。
3A and 3B show an image furnace using a conventional T-shaped furnace core tube, in which A is a transverse sectional view and B is a longitudinal sectional view.

【符号の説明】[Explanation of symbols]

1a,1b 回転楕円反射鏡 2a,2b 熱光源 3b 下側シャフト 4b 下側試料ホルダ 5a 上側試料 5b 下側試料 6 溶融帯 7b T字型炉芯管 8 窓 9b 保護板 10b 検出器 12 透明容器 1a, 1b spheroidal reflector 2a, 2b heat source 3b lower shaft 4b lower sample holder 5a upper sample 5b lower sample 6 melting zone 7b T-shaped furnace core tube 8 window 9b protective plate 10b detector 12 transparent container

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内面が第1焦点と第2焦点を有する回
転楕円反射鏡で構成される炉内部に; 前記第1焦点近
傍に設けられるハロゲンランプ等の熱光源と; 前記第
2焦点近傍に設けられ前記熱光源の発する赤外線で加熱
される被加熱試料と; 前記被加熱試料を収納すると共
に、当該被加熱試料の発する赤外線を前記第2焦点近傍
に対応して炉壁に開けられた窓に導くT字型炉芯管と;
を設け、前記窓から炉外に射出される赤外線を波長5
μm以上の赤外線に感応する温度検出器に導入して前記
被加熱試料の温度を測定するイメージ炉において; 前
記T型炉芯管内に前記被加熱試料を設定する際に使用さ
れる透明容器は、波長5μm以上の赤外線をも透過する
サファイア等の材料で構成される; ことを特徴とする
イメージ炉。
1. A furnace inner surface formed of a spheroidal mirror having a first focus and a second focus; a heat source such as a halogen lamp provided near the first focus; and a vicinity of the second focus. A sample to be heated, which is heated by infrared rays emitted from the heat source, and which accommodates the sample to be heated and opens the infrared rays emitted from the sample to be heated on the furnace wall corresponding to the vicinity of the second focal point. T-shaped core tube leading to the window;
Infrared rays emitted from the window to the outside of the furnace with a wavelength of 5
In an image furnace in which a temperature detector sensitive to infrared rays of μm or more is introduced to measure the temperature of the sample to be heated; a transparent container used when setting the sample to be heated in the T-type furnace core tube is An image furnace characterized by being made of a material such as sapphire which transmits infrared rays having a wavelength of 5 μm or more;
JP5136462A 1993-05-14 1993-05-14 Image furnace Expired - Lifetime JP2601137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136462A JP2601137B2 (en) 1993-05-14 1993-05-14 Image furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136462A JP2601137B2 (en) 1993-05-14 1993-05-14 Image furnace

Publications (2)

Publication Number Publication Date
JPH06321676A true JPH06321676A (en) 1994-11-22
JP2601137B2 JP2601137B2 (en) 1997-04-16

Family

ID=15175683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136462A Expired - Lifetime JP2601137B2 (en) 1993-05-14 1993-05-14 Image furnace

Country Status (1)

Country Link
JP (1) JP2601137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037640A (en) * 2009-08-06 2011-02-24 Canon Machinery Inc Apparatus and method for growing single crystal
KR101107113B1 (en) * 2009-10-13 2012-01-30 한국원자력연구원 Transparent specimen holder for vertical heat conduction measuring tester

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628145U (en) * 1985-07-01 1987-01-19
JPH03164492A (en) * 1989-08-31 1991-07-16 Nichiden Mach Ltd Apparatus for producing single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628145U (en) * 1985-07-01 1987-01-19
JPH03164492A (en) * 1989-08-31 1991-07-16 Nichiden Mach Ltd Apparatus for producing single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037640A (en) * 2009-08-06 2011-02-24 Canon Machinery Inc Apparatus and method for growing single crystal
KR101107113B1 (en) * 2009-10-13 2012-01-30 한국원자력연구원 Transparent specimen holder for vertical heat conduction measuring tester

Also Published As

Publication number Publication date
JP2601137B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JP6389444B2 (en) Thermal radiation thermometer
US5092342A (en) Sensor arrangement for optically measuring gas components
US5271084A (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
US7995195B2 (en) Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body
KR0158676B1 (en) Method and apparatus for optically coupling an element analysis system and a laser to liquid metal in a melting vessel
JPH08210919A (en) Temperature measuring instrument
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JP2601137B2 (en) Image furnace
US1639534A (en) Pyrometer
US3645627A (en) Calibration system for photodetecting instruments
US4884896A (en) Production line emissivity measurement system
US4661236A (en) Fluid electrode and method of making
EP0414072B1 (en) Low temperature infrared source
JP3126759B2 (en) Optical analyzer
US3439985A (en) Pyrometric device
JPH0527029B2 (en)
JPS6266130A (en) Minute cavity radiator device
JP2826176B2 (en) Single crystal manufacturing equipment
US3730630A (en) Observing device for heated sample cells
JPH0230454Y2 (en)
SU807170A1 (en) Device for measuring optic properties of metal oxides and metalloids
JPH0511497Y2 (en)
JPS63149619A (en) Heating device for high temperature microscope by heating with infrared ray lamp
JPH0527027B2 (en)
Saggese The evaluation of hollow dielectric waveguides for thermometry and spectroscopy