JPH06321652A - Heat-resistant composite member - Google Patents

Heat-resistant composite member

Info

Publication number
JPH06321652A
JPH06321652A JP11456393A JP11456393A JPH06321652A JP H06321652 A JPH06321652 A JP H06321652A JP 11456393 A JP11456393 A JP 11456393A JP 11456393 A JP11456393 A JP 11456393A JP H06321652 A JPH06321652 A JP H06321652A
Authority
JP
Japan
Prior art keywords
heat
high temperature
base material
resistant
composite member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11456393A
Other languages
Japanese (ja)
Inventor
Tomoyuki Wakamatsu
智之 若松
Masatake Sakagami
正剛 阪上
Takatoshi Takemoto
隆俊 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11456393A priority Critical patent/JPH06321652A/en
Publication of JPH06321652A publication Critical patent/JPH06321652A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To use a heat-resistant composite member for a long time by repairing a damaged part of the specified base material with a source material containing a metal source which can be maintained in a gas state at high temp. and can be changed into ceramic. CONSTITUTION:Continuous pores 2h are formed to penetrate from the surface 2a to the back surface 2b of a porous base material 2 such as SiC, and the surface 2a is coated with a heat-resistant oxide coating layer 3 having sealing property. Then the back surface 2b is attached to a jacket 5 having a vacancy 4, surface 5a, hole 5ha and hole 5hb to produce a heat-resistant composite member 1. When cracks 8 generate in the coating layer 3 during the time when the member 1 is used at high temp., the vacancy 4 is filled with the source material for repairment maintained in a gas state at high temp. and high pressure. This source material passes through pores 2h to the cracks 8 to break the equibillium state in the vacancy 4 and to proceed pyrolysis and/or chemical reaction of the source material. Thus, ceramics 9 is precipitated to cover and seal cracks 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱複合部材に関し、
特に、高温酸化雰囲気中または高温還元雰囲気中で長時
間使用できるように改良された、耐熱複合部材に関す
る。
FIELD OF THE INVENTION The present invention relates to a heat resistant composite member,
In particular, the present invention relates to a heat-resistant composite member improved for long-term use in a high-temperature oxidizing atmosphere or a high-temperature reducing atmosphere.

【0002】[0002]

【従来の技術】ジェットエンジン、ガスタービンまたは
ロケットエンジンのノズルライナー等の高温機器や、高
温炉の炉壁材等の高温部構造材料としては、Cr等の合
金元素を添加した耐熱鋼等の耐熱合金またはNi基とC
o基との合金からなる超耐熱合金等が用いられている。
2. Description of the Related Art As a high temperature equipment such as a nozzle liner of a jet engine, a gas turbine or a rocket engine, or a high temperature part structural material such as a furnace wall material of a high temperature furnace, a heat resistant steel such as a heat resistant steel to which an alloying element such as Cr is added is used. Alloy or Ni base and C
A super heat-resistant alloy or the like made of an alloy with an o-base is used.

【0003】また、高温部構造材料としては、耐熱性を
有する金属基材等の基材に、さらに、耐熱性、耐酸化性
または断熱性等を付与するため、基材の高温側にさらさ
れる側の面(以下、本明細書において用いられる用語
「表面」は、基材の高温側にさらされる側の面を意味
し、また、「裏面」は、基材の高温側にさらされる側の
面の他方側の面を意味する)に、セラミックス層が被覆
(コーティング)された耐熱複合部材の適用が検討され
ている。基材の表面にセラミックス層がコーティングさ
れた耐熱複合部材を用いた高温機器等では、セラミック
ス層が、高温での使用時に損傷した場合には、セラミッ
クス層が損傷した高温機器等を部品ごと交換したり、ま
たは、セラミックス層の損傷部に、再度、セラミックス
層をコーティングする等のメインテナンス作業を行なう
ことにより、高温機器等の性能を維持する必要があっ
た。
Further, as a high temperature part structural material, a base material such as a metal base material having heat resistance is further exposed to the high temperature side of the base material in order to impart heat resistance, oxidation resistance or heat insulation. Side surface (hereinafter, the term "front surface" as used herein means the surface on the side exposed to the hot side of the substrate, and "back surface" refers to the side exposed to the hot side of the substrate). Application of a heat-resistant composite member in which a ceramic layer is coated (meaning the surface on the other side of the surface) is being studied. For high-temperature equipment that uses a heat-resistant composite material with a ceramics layer coated on the surface of the base material, if the ceramics layer is damaged during use at high temperatures, replace the high-temperature equipment with damaged ceramics layer with the parts. Alternatively, it is necessary to maintain the performance of the high-temperature equipment or the like by performing maintenance work such as coating the ceramic layer again on the damaged portion of the ceramic layer.

【0004】また、高温部構造材料は、現実には、セラ
ミックス層を再コーティングする等のメインテナンス作
業が困難な部分に使用されることが多い。したがって、
従来の高温部構造材料を用いた高温機器等では、その製
品寿命が、高温部構造材料の高温雰囲気下での使用可能
な時間によって決まってしまうという問題があった。
Further, in reality, the high temperature portion structural material is often used in a portion where maintenance work such as recoating the ceramic layer is difficult. Therefore,
The conventional high-temperature equipment using the high-temperature structural material has a problem that its product life is determined by the time during which the high-temperature structural material can be used in a high-temperature atmosphere.

【0005】また、従来の高温部構造材料を用いた高温
機器等では、高温部構造材料の高温雰囲気下での使用可
能な時間を超えて、メインテナンス作業をすることな
く、長時間連続的に高温雰囲気下での使用ができないと
いう問題があった。
Further, in the conventional high temperature equipment using the high temperature part structural material, the high temperature part structural material is continuously used for a long time without performing maintenance work beyond the usable time of the high temperature part structural material in a high temperature atmosphere. There was a problem that it could not be used in an atmosphere.

【0006】かかる問題を緩和する技術としては、高温
部構造材料を冷却する内部構造を備えたものが開発され
ている。しかしながら、このような高温部構造材料を冷
却する機構を備えた耐熱部材では、耐熱部材の構造その
ものが複雑になるという問題があり、なお十分とはいえ
なかった。
As a technique for alleviating such a problem, a technique having an internal structure for cooling the high temperature structural material has been developed. However, the heat-resistant member having such a mechanism for cooling the high-temperature-part structural material has a problem that the structure itself of the heat-resistant member becomes complicated, which is still insufficient.

【0007】また、高温部構造材料としては、高温部構
造材料自体や、基材の表面に形成するセラミックス層の
セラミックスコーティング材中に、耐酸化性を向上させ
るため、高温雰囲気下で酸化されることによりガラス状
物質を生じる物質を添加した、いわゆる自己修復性高温
部構造材料が知られている。しかしながら、このような
自己修復性高温部構造材料は、高温雰囲気下での使用期
間が多少延びるものの、添加物質がなくなると上記効果
がなくなり、やはりメインテナンスが必要な消耗材であ
ることには変わりがないという欠点があった。
As the high temperature portion structural material, the high temperature portion structural material itself or the ceramic coating material of the ceramic layer formed on the surface of the base material is oxidized in a high temperature atmosphere in order to improve oxidation resistance. A so-called self-repairing high temperature part structural material, to which a substance that produces a glassy substance by this is added, is known. However, although such a self-repairing high temperature part structural material has a slightly extended use period in a high temperature atmosphere, the above effect disappears when the added substance is lost, and it is still a consumable material requiring maintenance. It had the drawback of not having it.

【0008】従来の高温部構造材料を用いた高温機器等
は、いずれも高温部構造材料の損傷または消耗は当然で
あるという前提で、その損傷または消耗の割合をいかに
少なくするかという開発が進められていたにすぎない。
In the conventional high-temperature equipment using the high-temperature structural material, it is assumed that the high-temperature structural material is naturally damaged or consumed, and the development of how to reduce the rate of the damage or consumption is advanced. It was just being done.

【0009】[0009]

【発明が解決しようとする課題】上述のように、従来
は、高温で長時間使える高温部構造材料は、実質上開発
されていないため、従来の高温部構造材料を用いた高温
機器等では、定期的なメインテナンスが必要であった。
As described above, since a high temperature part structural material that can be used at a high temperature for a long time has not been substantially developed in the past, in a high temperature device or the like using the conventional high temperature part structural material, Regular maintenance was required.

【0010】本発明者らは、高温酸化雰囲気中でメイン
テナンスを必要とせずに長時間使用することが可能な高
温部構造部材として、この出願に特に興味ある関連技術
として、特願平4−205359に記載される発明を提
案している。
The inventors of the present invention, as a related art particularly interested in this application, as a high-temperature part structural member that can be used for a long time without requiring maintenance in a high-temperature oxidizing atmosphere, as a related art, Japanese Patent Application No. 4-205359. Proposed the invention described in.

【0011】特願平4−205359に記載される耐熱
耐酸化材料は、耐熱性を有するとともに表面と裏面を貫
通する連続気孔を有する多孔質性の基材と、基材の裏面
側に設けられた液状物質供給手段と、液状物質供給手段
内に収容された、ポリシラザン、ポリカルボシラン、ポ
リシロキサン、ポリシラスチレンなどの耐熱セラミック
ス前駆体高分子化合物のうち、少なくとも1種類からな
る液状物質とを備える。
The heat and oxidation resistant material described in Japanese Patent Application No. 4-205359 is provided on the back side of a porous base material having heat resistance and having continuous pores penetrating the front and back surfaces. And a liquid substance made of at least one kind of heat-resistant ceramics precursor polymer compound such as polysilazane, polycarbosilane, polysiloxane, and polysilastyrene contained in the liquid substance supply unit. .

【0012】特願平4−205359に記載される発明
では、多孔質性の基材または、多孔質性基材の表面に設
けられた耐熱耐酸化層が高温での使用時に損傷した場合
に、液状物質が、連続気孔を通って、損傷部より流出
し、高温で耐熱セラミックスとなり、損傷部を覆い塞ぐ
ことができるという長所がある。
In the invention described in Japanese Patent Application No. 4-205359, when the porous base material or the heat resistant and oxidation resistant layer provided on the surface of the porous base material is damaged during use at high temperature, The liquid substance has the advantage that it can flow out of the damaged portion through the continuous pores, become heat resistant ceramics at high temperature, and cover the damaged portion.

【0013】また、特願平4−205359に記載され
る発明では、液状物質の消耗分は、外部より補給するた
め、長期間メインテナンスを行なう必要がないという長
所があった。
In addition, the invention described in Japanese Patent Application No. 4-205359 has an advantage that it is not necessary to perform maintenance for a long period of time because the consumed amount of the liquid substance is supplied from the outside.

【0014】しかしながら、特願平4−205359に
記載される発明では、損傷部を覆い塞ぐ修復材の原料と
して、液状物質を用いているため、気孔の孔径が小さい
および/または気孔率の小さい多孔質性の基材に対して
は、気孔を通って液状物質が基材の裏面側から表面側に
十分供給されず、損傷部の修復がなお十分でないという
問題があった。また、基材の裏面側より供給された液状
物質が、基材の気孔内で、高温雰囲気下にさらされるこ
とにより、熱分解し、セラミックス化し、気孔内で目詰
まりを生じ、その結果、液状物質が、損傷部へ十分に供
給されないという問題があった。また、特願平4−20
5359に記載される発明では、液状物質を用いている
結果、液状物質を基材の裏面から表面へ強制的に加圧注
入させるための装置が必要であるという問題があった。
However, in the invention described in Japanese Patent Application No. 4-205359, since the liquid substance is used as the raw material of the repair material for covering the damaged part, the pore diameter is small and / or the porosity is small. For a qualitative substrate, there has been a problem that the liquid substance is not sufficiently supplied from the rear surface side to the front surface side of the substrate through the pores, and the damaged portion is not sufficiently repaired. Further, the liquid substance supplied from the back surface side of the base material is exposed to a high-temperature atmosphere in the pores of the base material, so that it is thermally decomposed and turned into ceramics, resulting in clogging in the pores. There is a problem that the substance is not sufficiently supplied to the damaged part. Also, Japanese Patent Application No. 4-20
In the invention described in 5359, as a result of using the liquid substance, there is a problem that a device for forcibly injecting the liquid substance from the back surface to the front surface of the base material under pressure is required.

【0015】本発明は以上のような問題を解決するため
になされたものである。すなわち、本発明の目的は、高
温雰囲気中で、メインテナンスをせずに長時間使用する
ことが可能な耐熱複合部材であって、しかも気孔径およ
び/または気孔率の小さい多孔質性の基材を用いても、
基材の表面に形成された耐熱耐酸化層および/または耐
熱層の損傷部を十分に修復することができ、また、多孔
質性の基材の気孔内において目詰まりを生じにくく、ま
た、特に修復材を基材の裏面から表面側に加圧浸透させ
るための装置を用いる必要がない、耐熱複合部材を提供
することを目的とする。
The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a heat-resistant composite member that can be used for a long time in a high-temperature atmosphere without maintenance, and further to provide a porous base material having a small pore diameter and / or porosity. Even if you use
The heat-resistant and oxidation-resistant layer formed on the surface of the base material and / or the damaged portion of the heat-resistant layer can be sufficiently repaired, and clogging is less likely to occur in the pores of the porous base material. An object of the present invention is to provide a heat-resistant composite member that does not require the use of a device for permeating the restorative material from the back surface of the base material under pressure.

【0016】[0016]

【課題を解決するための手段】第1の発明に従う耐熱複
合部材は、表面と裏面とを有し、耐熱性を有するととも
に、表面と裏面とを貫通する連続気孔を有する多孔質性
の基材と、基材の表面を覆うように形成される、気密性
を有する耐熱耐酸化層と、基材の裏面側に設けられた密
封手段と、密封手段内に収容され、耐熱耐酸化層が高温
での使用時に損傷した場合に、連続気孔を通って、損傷
部より流出し、損傷部を覆い塞ぐための修復材の原料と
を備え、修復材の原料は、密封手段内で、高温で気体状
態を保持でき、かつ高温にさらされてセラミックス化が
可能な金属源を含む。
A heat resistant composite member according to a first aspect of the present invention is a porous substrate having a front surface and a back surface, having heat resistance, and having continuous pores penetrating the front surface and the back surface. And a heat-resistant and oxidation-resistant layer having airtightness formed so as to cover the surface of the base material, a sealing means provided on the back surface side of the base material, and the heat- and oxidation-resistant layer which is housed in the sealing means and has a high temperature. When it is damaged during use, the raw material of the restoration material flows through the continuous pores, flows out from the damaged portion, and covers the damaged portion. It includes a metal source capable of maintaining a state and being exposed to a high temperature to form a ceramic.

【0017】修復材の原料は、好ましくは、高温で気体
状態を保持できる炭素源をさらに含む。
The raw material of the restoration material preferably further contains a carbon source capable of maintaining a gaseous state at high temperature.

【0018】また、第2の発明に従う耐熱複合部材は、
表面と裏面とを有し、耐熱性を有するとともに、表面と
裏面とを貫通する連続気孔を有する多孔質性の基材と、
基材の表面を覆うように形成される、気密性を有する耐
熱層と、基材の裏面側に設けられた密封手段と、密封手
段内に収容され、耐熱層が高温での使用時に損傷した場
合に、連続気孔を通って、損傷部より流出し、損傷部を
覆い塞ぐための修復材の原料とを備え、修復材の原料
は、密封手段内で、高温で気体状態を保持でき、かつ高
温にさらされて、炭化が可能な炭素源を含む。
The heat resistant composite member according to the second invention is
A porous base material having a front surface and a back surface, having heat resistance, and having continuous pores penetrating the front surface and the back surface,
The heat-resistant layer having airtightness formed so as to cover the surface of the base material, the sealing means provided on the back surface side of the base material, and the heat-resistant layer housed in the sealing means and damaged during use at high temperature. In this case, the raw material of the restoration material, which flows through the continuous pores, flows out from the damaged portion, and covers and closes the damaged portion, the raw material of the restoration material can hold a gas state at a high temperature in the sealing means, and Contains a carbon source capable of carbonization when exposed to high temperatures.

【0019】[0019]

【作用】第1の発明に従う耐熱複合部材は、以下の構成
を備えている。
The heat resistant composite member according to the first aspect of the present invention has the following structure.

【0020】(1) 表面と裏面とを貫通する連続気孔
を有する多孔質性の基材を備えること。
(1) A porous base material having continuous pores penetrating the front surface and the back surface is provided.

【0021】(2) 基材の表面を覆うように形成され
る、気密性を有する耐熱耐酸化層を備えること。
(2) A heat-resistant and oxidation-resistant layer having airtightness is formed so as to cover the surface of the base material.

【0022】(3) 基材の裏面側に設けられた密封手
段を備えること。 (4) 密封手段内に収容され、高温で気体状態を保持
でき、かつ高温にさらされてセラミックス化が可能な金
属源を含む修復材の原料を備えること。
(3) A sealing means provided on the back side of the base material. (4) A raw material of a restoration material containing a metal source that is housed in the sealing means, can maintain a gas state at high temperature, and is exposed to high temperature and can be made into ceramics.

【0023】耐熱耐酸化層に損傷が生じていない場合
は、上記した(1)(2)(3)は、閉じられた空間を
構成している。
When the heat and oxidation resistant layer is not damaged, the above (1), (2) and (3) form a closed space.

【0024】密封手段内に収容された修復材の原料の一
成分として加えられた金属源は、高温で気体状態とな
る。気体状態になった金属源は、一部が熱分解したり、
また、修復材の原料として加えられた他の原料と化学反
応を生じたりして、一部が活性化した状態の金属源、ま
たは、一部がセラミックス化する。
The metal source added as one component of the raw material of the restoration material contained in the sealing means becomes a gas state at a high temperature. Part of the metal source in the gas state is thermally decomposed,
Further, a chemical reaction occurs with other raw material added as a raw material of the restoration material, and a partially activated metal source or a part thereof is made into ceramics.

【0025】上記した(1)(2)(3)により構成さ
れた閉じられた空間内においては、未反応の金属源、活
性化した状態の金属源、セラミックス化した修復材の微
粒子、反応生成ガス等が平衡状態になっている。セラミ
ックス化した微粒子は概ね浮遊している。
In the closed space constituted by the above (1), (2) and (3), the unreacted metal source, the activated metal source, the fine particles of the ceramicized restoration material, and the reaction formation Gas etc. are in equilibrium. The ceramicized fine particles are almost floating.

【0026】特に、高温側表面では、金属源の分解およ
び化学反応の割合が大きいが、密封手段内では、比較的
低温なため、金属源の分解および化学反応があまり進行
しない。また、高温側表面近傍には、不活性な反応生成
ガスが存在するため、修復材の原料は、高温側表面近傍
にあまり流入しない。
Particularly, on the surface on the high temperature side, the rate of decomposition and chemical reaction of the metal source is large, but within the sealing means, the decomposition and chemical reaction of the metal source do not proceed so much because the temperature is relatively low. In addition, since the inert reaction product gas exists near the surface on the high temperature side, the raw material of the restoration material does not flow much into the vicinity of the surface on the high temperature side.

【0027】そして、修復材の原料は、熱膨張または気
化等により、高温雰囲気下では、体積が膨張し、閉じら
れた空間内において、高圧状態に維持される。
The raw material of the restoration material expands in volume in a high temperature atmosphere due to thermal expansion or vaporization, and is maintained in a high pressure state in the closed space.

【0028】耐熱耐酸化層が、高温での使用時に損傷し
た場合は、高温で気体状態に保持された、修復材の原料
が、多孔質性の基材の連続気孔を通って損傷部より流出
すると同時に、上記した閉じられた空間内において平衡
状態にあった修復材の原料の平衡状態が崩れ、修復材の
原料の熱分解および/または化学反応が進行し、損傷部
に、セラミックスが析出し、損傷部を覆い塞ぐことによ
り、損傷部を修復する。
When the heat-resistant and oxidation-resistant layer is damaged at the time of use at high temperature, the raw material of the repair material, which is kept in a gas state at high temperature, flows out from the damaged portion through the continuous pores of the porous base material. At the same time, the equilibrium state of the raw material of the restorative material, which was in the equilibrium state in the above-mentioned closed space, is broken, thermal decomposition and / or chemical reaction of the raw material of the restorative material proceeds, and ceramics are deposited on the damaged portion. , Repair the damaged part by covering the damaged part.

【0029】また、修復材の原料として、高温で気体状
態を保持できる炭素源をさらに含んでいる場合は、セラ
ミックス化が可能な金属源と、炭素源とが化学反応を起
こし、炭素を含有した、非酸化物系セラミックスを主成
分とするセラミックスが損傷部に析出する。非酸化物系
セラミックスは、酸化物系セラミックスに比べ、耐熱衝
撃性が大きく、また、機械的強度も高いため、損傷部を
修復する材料として適している。
When a carbon source capable of maintaining a gas state at a high temperature is further included as a raw material of the restoration material, a metal source capable of ceramization and a carbon source cause a chemical reaction to contain carbon. Ceramics containing non-oxide ceramics as a main component are deposited on the damaged portion. Since non-oxide ceramics have higher thermal shock resistance and higher mechanical strength than oxide ceramics, they are suitable as materials for repairing damaged parts.

【0030】第1の発明に従う耐熱複合部材は、高温酸
化雰囲気中または高温還元雰囲気中で使用できるもので
ある。そして、修復材の原料は、予め密封手段の内部に
および/または密封手段内へ外部から供給されてもよ
い。
The heat resistant composite member according to the first invention can be used in a high temperature oxidizing atmosphere or a high temperature reducing atmosphere. Then, the raw material of the restoration material may be supplied to the inside of the sealing means in advance and / or to the inside of the sealing means from the outside.

【0031】したがって、第1の発明に従う耐熱複合部
材は、長時間高温酸化雰囲気中または長時間高温還元雰
囲気中で使用できる。
Therefore, the heat resistant composite member according to the first invention can be used in a high temperature oxidizing atmosphere for a long time or in a high temperature reducing atmosphere for a long time.

【0032】第1の発明に従う耐熱複合部材において、
修復材が非酸化物系セラミックスの場合は、修復材の非
酸化物系セラミックスが空気中の酸素と化学反応し、修
復材の表面側に酸化物系セラミックスが生成されること
により、耐酸化性が付与される。
In the heat resistant composite member according to the first invention,
When the restorative material is non-oxide ceramics, the non-oxide ceramics in the restorative material chemically react with oxygen in the air to form oxide-based ceramics on the surface side of the restorative material, which results in oxidation resistance. Is given.

【0033】また、第2の発明に従う耐熱複合部材は、
長時間高温還元雰囲気中で使用するものである。そし
て、第2の発明に従う耐熱複合部材は、修復材の原料と
して、高温で気体状態を保持できる炭素源を含んでい
る。したがって、第2の発明に従う耐熱複合部材を、高
温還元雰囲気中で使用すれば、高温で気体状態を維持で
きる炭素源が、還元雰囲気下で炭化して、炭素(黒鉛)
質耐火物が損傷部に析出し、損傷部が覆い塞がれる。炭
素質耐火物は、一般に耐熱衝撃性、耐食性に優れるもの
である。
The heat resistant composite member according to the second invention is
It is intended to be used in a high temperature reducing atmosphere for a long time. The heat-resistant composite member according to the second aspect of the invention includes, as a raw material of the restoration material, a carbon source capable of maintaining a gas state at a high temperature. Therefore, when the heat resistant composite member according to the second invention is used in a high temperature reducing atmosphere, the carbon source capable of maintaining a gas state at a high temperature is carbonized in the reducing atmosphere to form carbon (graphite).
The refractory material deposits on the damaged area and the damaged area is covered and blocked. Carbonaceous refractories are generally excellent in thermal shock resistance and corrosion resistance.

【0034】なお、第2の発明に従う耐熱複合部材は、
上述したように高温還元雰囲気中で使用するものである
ため、基材の表面側に形成される気密性を有する層とし
ては、耐熱性が付与されていれば十分である。
The heat resistant composite member according to the second invention is
Since it is used in a high-temperature reducing atmosphere as described above, it is sufficient that the layer having airtightness formed on the surface side of the base material has heat resistance.

【0035】なお、第2の発明に従う耐熱複合部材は、
基材の表面側に形成される気密性を有する耐熱層と、修
復材の原料として、炭素源を含んでいる以外は、第1の
発明の構成と同様である。
The heat resistant composite member according to the second invention is
The configuration is the same as that of the first invention except that the heat-resistant layer having airtightness formed on the front surface side of the base material and the carbon source as a raw material of the restoration material are included.

【0036】したがって、第2の発明に従う耐熱複合部
材は、長時間高温還元雰囲気中で使用することができ
る。
Therefore, the heat resistant composite member according to the second invention can be used in a high temperature reducing atmosphere for a long time.

【0037】また、第1および第2の発明に従う耐熱複
合部材は、基材の裏面側より供給された修復材の原料
が、高温雰囲気下で、基材の気孔内を気相状態で速やか
に通過するため、気孔内で目詰まりを生じにくい。
Further, in the heat-resistant composite member according to the first and second aspects of the invention, the raw material of the restoration material supplied from the back surface side of the base material is quickly in a gas phase state in the pores of the base material under a high temperature atmosphere. Since it passes through, pores are less likely to be clogged.

【0038】また、第1および第2の発明に従う耐熱複
合部材は、基材の裏面側より供給される修復材の原料
が、高温雰囲気下で、基材の気孔内を気相状態で速やか
に通過するため、基材の気孔径を小さくしても、修復材
の原料を損傷部へ十分供給することができる。
In the heat-resistant composite member according to the first and second aspects of the present invention, the raw material of the restoration material supplied from the back surface side of the base material is quickly in a gas phase state in the pores of the base material under a high temperature atmosphere. Since it passes through, the raw material of the restoration material can be sufficiently supplied to the damaged portion even if the pore diameter of the base material is reduced.

【0039】[0039]

【実施例】以下、本発明の実施例を示すが、以下の実施
例は、単に本発明を説明するためにのみ用いられるもの
であって、本発明は、以下の実施例によって何ら限定さ
れるものではない。
EXAMPLES Examples of the present invention will be shown below, but the following examples are used only for explaining the present invention, and the present invention is not limited by the following examples. Not a thing.

【0040】図1は、本発明に従う耐熱複合部材の一具
体例を概略的に示す模式図である。図1を参照して、こ
の耐熱複合部材1は、本発明の効果を確認するためのパ
イロット試験として用いた耐熱複合部材を示しており、
多孔質性の基材2と、基材2の表面2aを覆うように形
成されたコーティング層(緻密層)3と、基材2の裏面
2b側に設けられた、中空部4を有するジャケット5を
含む。
FIG. 1 is a schematic view schematically showing a specific example of the heat resistant composite member according to the present invention. Referring to FIG. 1, the heat resistant composite member 1 shows a heat resistant composite member used as a pilot test for confirming the effect of the present invention.
A porous base material 2, a coating layer (dense layer) 3 formed so as to cover the front surface 2a of the base material 2, and a jacket 5 having a hollow portion 4 provided on the back surface 2b side of the base material 2. including.

【0041】多孔質性の基材2は、耐熱性を有する材料
から構成されており、表面2aと裏面2bを貫通する連
続気孔2hを有する。
The porous substrate 2 is made of a heat-resistant material and has continuous pores 2h penetrating the front surface 2a and the back surface 2b.

【0042】コーティング層3は、気密性を有する耐熱
耐酸化材で形成される。ジャケット5の表面5a側に
は、修復材の原料を基材2側へ供給するための穴部5h
aが設けられる。他方、ジャケット5の裏面5b側に
は、修復材の原料を中空部4へ供給するための穴部5h
bが設けられる。穴部5hbには、たとえば、バルブ
(図示せず)などが設けられており、穴部5hbを開閉
できる構造になっている。
The coating layer 3 is formed of a heat resistant and oxidation resistant material having airtightness. On the surface 5a side of the jacket 5, there is a hole 5h for supplying the raw material of the restoration material to the base material 2 side.
a is provided. On the other hand, on the back surface 5b side of the jacket 5, a hole 5h for supplying the raw material of the restoration material to the hollow portion 4 is formed.
b is provided. The hole 5hb is provided with, for example, a valve (not shown) and has a structure capable of opening and closing the hole 5hb.

【0043】穴部5hbは、修復材の原料貯蔵槽(図示
せず)へ連結される。 中空部4は、基材2、コーティ
ング層3およびジャケット5により密封された構造にな
っている。
The hole 5hb is connected to a restoration material raw material storage tank (not shown). The hollow portion 4 has a structure in which it is sealed by the base material 2, the coating layer 3, and the jacket 5.

【0044】修復材の原料は、耐熱複合部材1の高温で
の使用時において、ジャケット5の穴部5hbを通じ
て、外部より、中空部4内に常に供給されるようになっ
ている。
The raw material of the restorative material is always supplied from the outside into the hollow portion 4 through the hole 5hb of the jacket 5 when the heat resistant composite member 1 is used at high temperature.

【0045】また、修復材の原料は、耐熱複合部材1の
高温での使用時において、中空部4内において、気体状
態となり、また高圧状態に維持される。
The raw material of the restorative material is in a gas state and maintained in a high pressure state in the hollow portion 4 when the heat resistant composite member 1 is used at high temperature.

【0046】次に、図1を参照しながら、この耐熱複合
部材1の作用機構について以下に説明する。
Next, the working mechanism of the heat-resistant composite member 1 will be described below with reference to FIG.

【0047】耐熱複合部材1が、高温で使用され、コー
ティング層3にクラック8が生じた場合を想定する。コ
ーティング層3に、クラック8が生じると、中空部4内
で、高温で気体状態にされ、高圧状態に維持された修復
材の原料が、多孔質性の基材2の連続気孔2hを通っ
て、クラック8より流出すると同時に、中空部4内にお
いて平衡状態にあった修復材の原料の平衡状態が崩れ、
修復材の原料の熱分解および/または化学反応が進行
し、クラック8にセラミックス9が析出し、クラック8
が覆い塞がれる。
It is assumed that the heat resistant composite member 1 is used at a high temperature and cracks 8 occur in the coating layer 3. When the crack 8 is generated in the coating layer 3, the raw material of the restoration material, which is in a gas state at a high temperature and is maintained in a high pressure state in the hollow portion 4, passes through the continuous pores 2h of the porous substrate 2. At the same time as flowing out from the crack 8, the equilibrium state of the raw material for the restoration material, which was in the equilibrium state in the hollow portion 4, collapses,
The thermal decomposition and / or chemical reaction of the raw material of the restoration material progresses, the ceramics 9 is deposited in the cracks 8, and the cracks 8
Is covered and blocked.

【0048】次に、具体的な実験データを用いて説明す
る。 実施例1 多孔質性の基材2として、表面2aから裏面2bに対し
て連続的な貫通孔を有するSiC基材を準備した。この
SiC基材は、空隙率が50%であり、厚みこが10m
m、直径が50mmの円板形状を有していた。
Next, description will be made using concrete experimental data. Example 1 As the porous base material 2, a SiC base material having continuous through holes from the front surface 2a to the back surface 2b was prepared. This SiC substrate has a porosity of 50% and a thickness of 10 m.
It had a disk shape of m and a diameter of 50 mm.

【0049】次に、SiC基材の表面2a側となる片面
に、コーティング層3として、公知の化学的蒸着法(C
VD)を用いて、気密性を有するSiC層を約200μ
mの膜厚で析出させた。また、SiC基材の側面からの
酸化を防ぐこと等を目的として、SiC基材の側面に
も、約200μmの膜厚のSiC層をコーティングし
た。この操作により、SiC基材の片面に開口する連続
的な貫通孔の開口部は、気密性を有するSiC層によ
り、ほぼ完全に密封された。
Next, as a coating layer 3, a known chemical vapor deposition method (C
VD) to form an airtight SiC layer with a thickness of about 200μ
It was deposited to a film thickness of m. Further, for the purpose of preventing oxidation from the side surface of the SiC base material, the side surface of the SiC base material was also coated with a SiC layer having a film thickness of about 200 μm. By this operation, the opening portion of the continuous through-hole opening on one surface of the SiC base material was almost completely sealed by the SiC layer having airtightness.

【0050】次に、SiC層のクラックをホウ珪酸ガラ
スによりシールした。次に、修復材の原料として、四塩
化ケイ素(SiCl4 )、メタン(CH4 )、キャリア
ガスとして水素(H2 )を含む混合ガスを約1.0kg
/cm2 の圧力で、ジャケット5の穴部5hbより注入
した。
Next, cracks in the SiC layer were sealed with borosilicate glass. Next, about 1.0 kg of a mixed gas containing silicon tetrachloride (SiCl 4 ), methane (CH 4 ), and hydrogen (H 2 ) as a carrier gas is used as a raw material of the restoration material.
It was injected through the hole 5hb of the jacket 5 at a pressure of / cm 2 .

【0051】混合ガスの組成比は、四塩化ケイ素(Si
Cl4 )、メタン(CH4 )、水素(H2 )のモル比と
して、4:4:1に調整されていた。
The composition ratio of the mixed gas is silicon tetrachloride (Si
The molar ratio of Cl 4 ), methane (CH 4 ) and hydrogen (H 2 ) was adjusted to 4: 4: 1.

【0052】なお、本実施例では、修復材の原料を中空
部4内に供給した後、ジャケット5の穴部5hbを密閉
した。
In this embodiment, after the raw material of the restorative material was supplied into the hollow portion 4, the hole 5hb of the jacket 5 was closed.

【0053】実施例2 多孔性の基材2として、表面2aから裏面2bに対して
連続的な貫通孔を有するC/SiCコンポジット基材を
準備した。このC/SiCコンポジット基材は、空隙率
が約40%であり、厚みが10mm、直径が50mmの
円板形状を有していた。
Example 2 As the porous base material 2, a C / SiC composite base material having continuous through holes from the front surface 2a to the back surface 2b was prepared. This C / SiC composite substrate had a porosity of about 40%, a disc shape with a thickness of 10 mm and a diameter of 50 mm.

【0054】次に、C/SiCコンポジット基材の表面
2a側となる片面に、コーティング層3として公知の化
学的蒸着法(CVD)を用いて、気密性を有するSiC
層を約200μmの膜厚で析出させた。また、C/Si
Cコンポジット基材側面からの酸化を防ぐこと等を目的
として、C/SiCコンポジット基材の側面にも約20
0μmの膜厚のSiC層をコーティングした。この操作
により、C/SiCコンポジット基材の片面に開口する
連続的な貫通孔の開口部は、気密性を有するSiC層に
より、ほぼ完全に密封された。
Next, on one surface of the C / SiC composite base material, which is the surface 2a side, by using a known chemical vapor deposition (CVD) method as the coating layer 3, SiC having airtightness is formed.
The layer was deposited to a thickness of about 200 μm. In addition, C / Si
For the purpose of preventing oxidation from the side surface of the C composite base material, the side surface of the C / SiC composite base material also has about 20
A 0 μm thick SiC layer was coated. By this operation, the opening of the continuous through-hole opening on one surface of the C / SiC composite substrate was almost completely sealed by the SiC layer having airtightness.

【0055】次に、SiC層のクラックをホウ珪酸ガラ
スによりシールした。次に、修復材の原料として、四塩
化チタン(TiCl4 )、メタン(CH4 )、キャリア
ガスとして水素(H2 )を含む混合ガスを約1.0kg
/cm2 の圧力で、ジャケット5の穴部5hbより注入
した。
Next, cracks in the SiC layer were sealed with borosilicate glass. Next, about 1.0 kg of a mixed gas containing titanium tetrachloride (TiCl 4 ), methane (CH 4 ), and hydrogen (H 2 ) as a carrier gas was used as a raw material of the restoration material.
It was injected through the hole 5hb of the jacket 5 at a pressure of / cm 2 .

【0056】混合ガスの組成比は、四塩化チタン(Ti
Cl4 )、メタン(CH4 )、水素(H2 )のモル重量
比として、4:4:1に調整されていた。
The composition ratio of the mixed gas is titanium tetrachloride (Ti
Cl 4), methane (CH 4), the molar weight ratio of the hydrogen (H 2), 4: 4 : was adjusted to 1.

【0057】なお、本実施例では、修復材の原料を中空
部4内に供給した後、ジャケット5の穴部5hbを密閉
した。
In this embodiment, after the raw material of the restorative material was supplied into the hollow portion 4, the hole 5hb of the jacket 5 was sealed.

【0058】比較例1 実施例1と同様のSiC基材を準備した。次に、実施例
1と同様にして、SiC基材の表面側となる片面に、公
知のCVDを用いて、気密性を有するSiC層を約20
0μmの膜厚で析出させた。また、SiC基材の側面か
らの酸化を防ぐことと等を目的として、SiC基材の側
面にも約200μmの膜厚のSiC層をコーティングし
た。次に、SiC層のクラックをホウ珪酸ガラスにより
シールした。
Comparative Example 1 The same SiC substrate as in Example 1 was prepared. Next, in the same manner as in Example 1, an SiC layer having airtightness was formed on one surface of the SiC substrate, which was the front surface side, by using known CVD to about 20.
It was deposited to a film thickness of 0 μm. Further, for the purpose of preventing oxidation from the side surface of the SiC base material, etc., the side surface of the SiC base material was also coated with a SiC layer having a thickness of about 200 μm. Next, the cracks in the SiC layer were sealed with borosilicate glass.

【0059】次に、修復材の原料を中空部4内に注入す
ることなく、ジャケット5の穴部5hbを密閉した。
Next, the hole 5hb of the jacket 5 was sealed without injecting the raw material of the restoration material into the hollow portion 4.

【0060】比較例2 実施例2と同様のC/SiCコンポジット基材を準備し
た。次に、実施例2と同様にして、C/SiCコンポジ
ット基材の表面側となる片面に、公知のCVDを用い
て、気密性を有するSiC層を約200μmの膜厚で析
出させた。また、C/SiCコンポジット基材の側面か
らの酸化を防ぐこと等を目的として、C/SiCコンポ
ジット基材の側面にも約200μmの膜厚のSiC層を
コーティングした。次に、SiC層のクラックをホウ珪
酸ガラスによりシールした。
Comparative Example 2 The same C / SiC composite substrate as in Example 2 was prepared. Next, in the same manner as in Example 2, a known CVD was used to deposit an airtight SiC layer with a thickness of about 200 μm on one surface of the C / SiC composite substrate. Further, for the purpose of preventing oxidation from the side surface of the C / SiC composite base material, the side surface of the C / SiC composite base material was coated with a SiC layer having a thickness of about 200 μm. Next, the cracks in the SiC layer were sealed with borosilicate glass.

【0061】次に、修復材の原料を中空部4内に注入す
ることなく、ジャケット5の穴部5hbを密閉した。
Next, the hole 5hb of the jacket 5 was sealed without injecting the raw material for the restoration material into the hollow portion 4.

【0062】次に、実施例1〜2および比較例1〜2の
それぞれについて、耐熱耐酸化試験を行なった。
Next, a heat and oxidation resistance test was conducted on each of Examples 1 and 2 and Comparative Examples 1 and 2.

【0063】耐熱耐酸化試験は以下の条件で行なった。 試料の形状:厚み×直径=10mm×φ50mm 加熱法:酸素過多の炭化水素による炎(加熱領域φ10
mm、約1500℃) 加熱時間:1時間 上述した試験の結果、以下の表1に示すような結果が得
られた。
The heat and oxidation resistance test was conducted under the following conditions. Sample shape: thickness x diameter = 10 mm x φ50 mm Heating method: flame with a hydrocarbon containing excess oxygen (heating region φ10
mm, about 1500 ° C.) Heating time: 1 hour As a result of the above-mentioned test, the results shown in Table 1 below were obtained.

【0064】[0064]

【表1】 [Table 1]

【0065】なお表1中、評価は、試験前後での加熱面
の凹部(最初の平面を基準点0,窪んだ場合をプラスと
する)を測定することによって行なった。
In Table 1, the evaluation was carried out by measuring the concave portion of the heating surface before and after the test (the initial plane is the reference point 0, and the concave portion is positive).

【0066】表1を参照して、比較例1では、気密性を
有するSiC層および多孔質性のSiC基材の一部が完
全に焼失し、ジャケット5として用いたタングステン台
が剥き出しになっていた。又、比較例2では、気密性を
有するSiC層および多孔質性のC/SiCコンポジッ
ト基材の一部が完全に消失し、ジャケット5として用い
たタングステン台が剥き出しになっていた。
Referring to Table 1, in Comparative Example 1, the SiC layer having airtightness and the porous SiC base material were partially burned off, and the tungsten base used as the jacket 5 was exposed. It was Moreover, in Comparative Example 2, the SiC layer having airtightness and the porous C / SiC composite base material were partially disappeared, and the tungsten base used as the jacket 5 was exposed.

【0067】他方、実施例1では、SiC基材の表面に
SiC基材の表面に形成されたSiC層の加熱により焼
失した部分より、SiC基材の連続気孔を通って、選択
的に修復材の原料ガスが流出し、SiCを主成分とする
セラミックスが、損傷部を覆い塞いでいることが観察さ
れた。また、損傷部を覆い塞いでいるSiCを主成分と
するセラミックスは、高温酸化雰囲気中で、表面側が酸
化され、SiO2 を主成分とするガラス状物質が形成さ
れていた。SiCを主成分とするセラミックスは、耐熱
衝撃性に優れ、また、SiCを主成分とするセラミック
スは、その表面が酸化されることにより耐酸化性が付与
されていた。
On the other hand, in Example 1, the restoration material is selectively applied to the surface of the SiC base material through the continuous pores of the SiC base material from the portion of the SiC layer formed on the surface of the SiC base material that has been burned down by heating. It was observed that the raw material gas of (3) flowed out and the ceramics containing SiC as a main component covered and closed the damaged portion. Further, the ceramics containing SiC as a main component that covers the damaged portion was oxidized on the surface side in a high temperature oxidizing atmosphere to form a glassy substance containing SiO 2 as a main component. Ceramics containing SiC as a main component have excellent thermal shock resistance, and ceramics containing SiC as a main component have been given oxidation resistance by being oxidized on the surface.

【0068】また、実施例2では、C/SiCコンポジ
ット基材の表面に形成されたSiC層の加熱により焼失
した部分より、C/SiCコンポジット基材の連続気孔
を通って、選択的に修復材の原料ガスが流出し、TiC
を主成分とするセラミックスが損傷部を覆い塞いでいる
ことが観察された。また、損傷部を覆い塞いでいるTi
Cを主成分とするセラミックスは、高温酸化雰囲気中
で、表面側が酸化され、TiO2 を主成分とする酸化物
系セラミックスが形成されていた。TiCを主成分とす
るセラミックスは、耐熱衝撃性に優れ、また、TiCを
主成分とするセラミックスは、その表面が酸化されるこ
とにより耐酸化性が付与されていた。
In Example 2, the restoration material was selectively removed from the portion of the SiC layer formed on the surface of the C / SiC composite substrate which was burned down by heating, through the continuous pores of the C / SiC composite substrate. Raw material gas flows out and TiC
It was observed that the ceramics containing as a main component covered and covered the damaged part. Also, Ti covering and covering the damaged part
The ceramics containing C as a main component were oxidized on the surface side in a high temperature oxidizing atmosphere to form oxide ceramics containing TiO 2 as a main component. The ceramic containing TiC as a main component has excellent thermal shock resistance, and the ceramic containing TiC as a main component is endowed with oxidation resistance by oxidizing the surface thereof.

【0069】なお、以上の実施例に関する開示は、本発
明の単なる具体例にすぎず、本発明の技術的範囲を何ら
制限するものではない。
It should be noted that the disclosure of the above embodiments is merely specific examples of the present invention and does not limit the technical scope of the present invention.

【0070】第1の発明において、表面と裏面とを有
し、耐熱性を有するとともに、表面と裏面とを貫通する
連続気孔を有する多孔質性の基材の材質としては、Si
C、Si3 4 、ZrC、HfC等の非酸化物系セラミ
ックス材や、ZrO2 、Al23 、ムライトセラミッ
クスなどの酸化物系セラミックス材、炭素、または、
W、Mo、Ta、Nbなどの耐熱材料として用いること
のできる金属などを挙げることができる。このような材
質は、1種類または2種類以上組合わせて用いてもよ
い。
In the first invention, the material of the porous base material having a front surface and a back surface, having heat resistance, and having continuous pores penetrating the front surface and the back surface is Si.
Non-oxide ceramic materials such as C, Si 3 N 4 , ZrC and HfC, oxide ceramic materials such as ZrO 2 , Al 2 O 3 and mullite ceramics, carbon, or
Examples thereof include metals that can be used as heat resistant materials such as W, Mo, Ta, and Nb. Such materials may be used alone or in combination of two or more.

【0071】また、本明細書で用いる用語「耐熱性を有
する」とは、耐熱性でかつ高強度であることを意味し、
特に以下の場合に限定されることはないが、たとえば、
約1000℃以上で高強度であることを意味する。より
詳しくは、特に以下の場合に限定されることはないが、
たとえば、多孔質性の基材の耐熱温度は、1000℃あ
ればよく、また、本発明に従う耐熱複合部材の耐熱温度
は、約1500℃以上2200℃以下である。
The term "having heat resistance" as used in the present specification means that it has heat resistance and high strength,
Although not particularly limited to the following cases, for example,
It means high strength at about 1000 ° C or higher. More specifically, although not particularly limited to the following cases,
For example, the heat resistant temperature of the porous base material may be 1000 ° C., and the heat resistant temperature of the heat resistant composite member according to the present invention is about 1500 ° C. or more and 2200 ° C. or less.

【0072】また、本明細書で用いる用語「表面と裏面
とを貫通する連続気孔」とは、流体が通り抜けることの
できる貫通細孔を意味する。
The term "continuous pores penetrating the front surface and the back surface" used in the present specification means penetrating pores through which a fluid can pass.

【0073】また、多孔質性の基材の形態としては、た
とえば、発泡金属や微小金属粒の焼結体のような海綿構
造を持つようなものでもよいし、C/Cコンポジットな
どの繊維強化複合部材でもよい。さらに、極端な場合
は、繊維の焼結体であってもよい。
The form of the porous base material may be, for example, one having a sponge structure such as a foam metal or a sintered body of fine metal particles, or a fiber reinforced such as C / C composite. It may be a composite member. Further, in an extreme case, it may be a sintered body of fibers.

【0074】基材の空隙率、気孔径は、基材および修復
材の原料と使用条件と、用途目的によって決定される。
気孔径は、特に以下の場合に限定されることはないが、
たとえば、平均孔径が0.1μm以上100μm以下程
度であることが好ましい。
The porosity and pore diameter of the base material are determined by the raw materials of the base material and the restorative material, the conditions of use, and the purpose of use.
The pore size is not particularly limited to the following cases,
For example, the average pore diameter is preferably about 0.1 μm or more and 100 μm or less.

【0075】また、基材の表面を覆うように形成され
る、気密性を有する耐熱耐酸化層の材質としては、Si
C、Si3 4 、ZrC、HfCなどの非酸化物系セラ
ミックス材、または、SiO2 、ZrO2 、Al2 3
などの酸化物系セラミックス材などを用いることができ
る。耐熱耐酸化層としては、修復材の原料の不必要な流
出を防ぐため、緻密な層、すなわち透気度の低い耐熱耐
酸化層であることが好ましい。耐熱耐酸化層として、多
孔体を用いる場合は、細孔は、閉口、または入口があっ
ても出口を持たない入口細孔等で概ね形成されているこ
とが好ましい。耐熱耐酸化層の空隙率、細孔径は、多孔
質性の基材、修復材の原料および/または使用条件によ
って決定される。
The material of the heat-resistant and oxidation-resistant layer having airtightness, which is formed so as to cover the surface of the base material, is Si.
Non-oxide ceramic materials such as C, Si 3 N 4 , ZrC, HfC, or SiO 2 , ZrO 2 , Al 2 O 3
An oxide-based ceramic material or the like can be used. The heat-resistant and oxidation-resistant layer is preferably a dense layer, that is, a heat-resistant and oxidation-resistant layer having a low air permeability, in order to prevent unnecessary outflow of the raw material of the restorative material. When a porous body is used as the heat-resistant and oxidation-resistant layer, it is preferable that the pores are generally formed by closed pores or inlet pores that have an entrance but no exit. The porosity and pore size of the heat-resistant and oxidation-resistant layer are determined by the porous base material, the raw material of the restorative material, and / or the use conditions.

【0076】また、基材の裏面側に設けられた密封手段
としては、密封された中空部を有する多孔質性の基材、
または、外壁材と内壁材とを有し、内壁材が多孔質性の
基材で形成され、外壁材と内壁材とにより密封された空
間が形成されている構造、たとえばサンドイッチ構造な
どを挙げることができる。
As the sealing means provided on the back surface side of the base material, a porous base material having a sealed hollow portion,
Alternatively, a structure having an outer wall material and an inner wall material, the inner wall material being formed of a porous base material, and a space sealed by the outer wall material and the inner wall material being formed, for example, a sandwich structure, etc. You can

【0077】また、密封手段内に収容され、耐熱耐酸化
層が高温での使用時に損傷した場合に、連続気孔を通っ
て、損傷部より流出し、損傷部を覆い塞ぐための修復材
の原料としては、密封手段内で、高温で気体状態を保持
でき、高温にさらされてセラミックス化が可能な金属源
を用いることができる。
In addition, when the heat-resistant and oxidation-resistant layer is housed in the sealing means and damaged during use at high temperatures, the raw material of the restoration material for flowing out from the damaged portion through continuous pores and covering the damaged portion. As the above, a metal source capable of maintaining a gas state at a high temperature in the sealing means and capable of being formed into a ceramic by being exposed to a high temperature can be used.

【0078】そのような金属源としては、特に以下の場
合に限定されることはないが、ハロゲン化金属等を挙げ
ることができる。ハロゲン化金属源としては、四塩化ケ
イ素(SiCl4 )、六塩化二ケイ素(Si2 Cl6
等、一般式Sin Cl2n+2で示される塩化ケイ素、三塩
化チタン(TiCl3 )、四塩化チタン(TiCl4
等の塩化チタンなどを挙げることができる。
The metal source is not particularly limited to the following cases, but metal halides and the like can be mentioned. As a metal halide source, silicon tetrachloride (SiCl 4 ), disilicon hexachloride (Si 2 Cl 6 )
Etc., silicon chloride represented by the general formula Si n Cl 2n + 2 , titanium trichloride (TiCl 3 ), titanium tetrachloride (TiCl 4 ).
And the like, such as titanium chloride.

【0079】ところで、塩化ケイ素(Sin Cl2n+2
の沸点は、一般に下記式によって示される。
By the way, silicon chloride (Si n Cl 2n + 2 )
The boiling point of is generally represented by the following formula.

【0080】Ts (K)=81.5n+249 したがって、金属源として塩化ケイ素を用いる場合は、
用途目的に応じて、上述の式に従って修復材の原料の金
属源を選択することができる。
Ts (K) = 81.5n + 249 Therefore, when silicon chloride is used as the metal source,
Depending on the purpose of use, the metal source of the restorative material can be selected according to the above formula.

【0081】また、修復材の原料としては、上述した金
属源は単独または水素(H2 )ガス等のキャリアガスと
ともに用いることができる。
As the raw material of the restoration material, the above-mentioned metal sources can be used alone or together with a carrier gas such as hydrogen (H 2 ) gas.

【0082】修復材の原料は、高温で気体状態を保持で
きる炭素源をさらに含むことが好ましい。そのような炭
素源としては炭化水素を挙げることができる。炭化水素
は飽和炭化水素であっても、また不飽和炭化水素であっ
てもよい。飽和炭化水素としては、メタン(CH4 )、
エタン(C2 6 )、プロパン(C3 8 )などを挙げ
ることができ、また、不飽和炭化水素としてはエチレン
(C2 4 )、プロピレン(C3 6 )、アセチレン
(C2 2 )などを挙げることができる。
The raw material of the restoration material preferably further contains a carbon source capable of maintaining a gas state at a high temperature. Hydrocarbons can be mentioned as such a carbon source. The hydrocarbon may be a saturated hydrocarbon or an unsaturated hydrocarbon. Saturated hydrocarbons include methane (CH 4 ),
Ethane (C 2 H 6), mention may be made of propane (C 3 H 8), also, ethylene (C 2 H 4) as the unsaturated hydrocarbons, propylene (C 3 H 6), acetylene (C 2 H 2 ) and the like.

【0083】修復材の原料として、密封手段内で、高温
で気体状態を保持でき、かつ高温にさらされてセラミッ
クス化が可能な金属源と、密封手段内で、高温で気体状
態を保持できる炭素源を含んでいるのが好ましいとする
のは、以下の理由からである。
As a raw material for the restoration material, a metal source capable of maintaining a gas state at a high temperature in the sealing means and capable of forming a ceramic by being exposed to a high temperature, and carbon capable of maintaining a gas state at a high temperature in the sealing means. The inclusion of the source is preferable for the following reasons.

【0084】すなわち、上述した金属源と、上述した炭
素源とを含む場合は、高温にさらされることにより金属
源および炭素源のそれぞれが熱分解したり、または化学
反応により、損傷部において、たとえば、SiCやTi
Cを主成分とする非酸化物系セラミックスが析出する。
このようなSiC、TiC等の非酸化物系セラミックス
は、SiO2 、TiO2 を主成分とする酸化物系セラミ
ックスに比べ耐熱衝撃性に優れ、また、機械的強度にも
優れるからである。そして、SiC、TiC等の非酸化
物系セラミックスでは、高温酸化雰囲気中で、その表面
側が酸化され、酸化物系セラミックスとなり、耐熱衝撃
性、優れた機械的特性のほか、耐酸化特性が付与され
る。他方、修復材の原料として、金属源および/または
金属源とキャリアガスとを含む原料では、損傷部に、直
接、酸化物系セラミックスが析出するが、このような酸
化物系セラミックスは、機械的特性が、非酸化物系セラ
ミックスに比べ低いものである。
That is, in the case where the above-mentioned metal source and the above-mentioned carbon source are included, each of the metal source and the carbon source is thermally decomposed by being exposed to a high temperature, or by a chemical reaction, at a damaged portion, for example, , SiC and Ti
Non-oxide ceramics containing C as a main component are deposited.
This is because such non-oxide ceramics such as SiC and TiC are more excellent in thermal shock resistance and mechanical strength than oxide ceramics containing SiO 2 or TiO 2 as a main component. Then, in non-oxide ceramics such as SiC and TiC, the surface side thereof is oxidized in a high temperature oxidizing atmosphere to become oxide ceramics, and in addition to thermal shock resistance, excellent mechanical properties, oxidation resistance is imparted. It On the other hand, when a metal source and / or a raw material containing a metal source and a carrier gas is used as the raw material of the restoration material, oxide-based ceramics are directly deposited on the damaged portion. The characteristics are lower than those of non-oxide ceramics.

【0085】また、密封手段内で、高温で気体状態を保
持でき、高温にさらされてセラミックス化が可能な金属
源は、常温下においては、気体、液体、固体のいずれで
あってもよい。常温で液体または気体の金属源を用いた
場合は、高温で気体状態になる際にその気化熱により、
多孔質性の基材を冷却する作用を発揮する。
The metal source capable of maintaining a gas state at a high temperature in the sealing means and capable of being made into ceramic by being exposed to a high temperature may be a gas, a liquid or a solid at room temperature. When using a metal source that is liquid or gas at room temperature, the heat of vaporization when it becomes a gas at high temperature causes
It exerts the action of cooling the porous base material.

【0086】また、上述した金属源および/または炭素
源から生成されるセラミックスの耐熱性(融点、分解
点、昇華点など)、耐酸化性は、多孔質性基材と同様で
あるか、もしくは、多孔質性の基材に比べ低い方が好ま
しい。多孔質性の基材が、金属源および/または炭素源
から生成されるセラミックスより耐熱性、耐酸化性に優
れている場合は、多孔質性の基材が、高温酸化雰囲気下
で消耗する前に、耐熱耐酸化層が高温での使用時に損傷
した場合に、連続気孔を通って、損傷部より修復材の原
料が流出し、損傷部を覆い塞ぐため、多孔質性の基材の
原型が保持されるからである。
The ceramics produced from the above metal source and / or carbon source have the same heat resistance (melting point, decomposition point, sublimation point, etc.) and oxidation resistance as those of the porous substrate, or It is preferably lower than that of the porous substrate. Before the porous base material is consumed in a high temperature oxidizing atmosphere, when the porous base material has higher heat resistance and oxidation resistance than the ceramics generated from the metal source and / or the carbon source. In addition, when the heat-resistant and oxidation-resistant layer is damaged during use at high temperature, the raw material of the restoration material flows out from the damaged part through continuous pores and covers the damaged part, so that the prototype of the porous base material is used. Because it is held.

【0087】また、密封手段内に収容される修復材の原
料の量、組成、高温時の密封手段内における気体状態の
修復材の原料の浸透注入圧は、多孔質性の基材、耐熱複
合部材の用途目的により決定され、特に限定されること
はない。
Further, the amount and composition of the raw material of the restoration material housed in the sealing means and the permeation injection pressure of the raw material of the restoration material in the gaseous state inside the sealing means at high temperature are determined by the porous base material and the heat-resistant composite material. It is determined according to the purpose of use of the member and is not particularly limited.

【0088】また、密封手段内に修復材の原料は、予め
収容されていてもよいし、また、密封手段内に収容可能
なように、密封手段の外部に設けられたボンベ等の修復
材の原料収容手段より供給されてもよい。
The raw material of the restoration material may be stored in advance in the sealing means, or the restoration material such as a cylinder provided outside the sealing means may be stored in the sealing means. It may be supplied from the raw material storage means.

【0089】また、修復材の原料は、必ずしも常温で気
体である必要はなく、液体もしくは固体であってもよ
い。この場合、密封手段内に、外部から熱流入させるこ
とにより、多孔質性の基材が大幅に損傷しない温度で、
修復材の原料を気化させるようにすれば、気化熱を多孔
質性の基材の冷却に用いることができ、かつ、修復材の
原料が気体になるときの体積膨張により密封手段内の気
体状態の修復材の原料の圧力を高め、耐熱耐酸化層に損
傷が生じた場合、気体状態の修復材の原料を選択的に損
傷部に効率よく流出させることができる。
Further, the raw material of the restorative material does not necessarily have to be a gas at room temperature and may be a liquid or a solid. In this case, heat is introduced from the outside into the sealing means at a temperature at which the porous base material is not significantly damaged,
If the raw material of the restoration material is vaporized, the heat of vaporization can be used for cooling the porous base material, and the gas state in the sealing means due to the volume expansion when the raw material of the restoration material becomes gas. When the pressure of the raw material of the restorative material is increased and the heat-resistant and oxidation-resistant layer is damaged, the raw material of the restorative material in a gas state can be selectively and efficiently discharged to the damaged portion.

【0090】また、第2の発明に従う耐熱複合部材は、
高温還元雰囲気下で使用するものであって、上述した第
1の発明に従う耐熱複合部材の材料等を好適に用いるこ
とができる。さらに、第2の発明では、多孔質性の基材
の表面に形成される気密性を有する層としては、耐酸化
性が要求されないので、気密性を有する耐熱層であれ
ば、好適に用いることができる。そのような耐熱層の材
料としては、たとえば、第1の発明で用いることのでき
る耐熱耐酸化層の材料の他、炭素質耐火物を用いること
ができる。また、修復材の原料としては、密封手段内で
高温で気体状態を保持でき、かつ高温にさらされて炭化
が可能な炭素源を用いることができる。そのような炭素
源は、高温還元雰囲気下で、熱分解および/または還元
反応により炭化するものであれば特に限定されることは
ない。そのような炭化物としては、たとえば、炭化水素
を挙げることができる。炭化水素は、飽和炭化水素であ
っても不飽和炭化水素であってもよい。飽和炭化水素と
しては、たとえば、メタン(CH4 )、エタン(C2
6 )、またはプロパン(C3 8 )などを挙げることが
でき、また、不飽和炭化水素としては、エチレン(C2
4 )、プロピレン(C3 6 )、アセチレン(C2
2 )などを挙げることができる。
Further, the heat resistant composite member according to the second invention is
It is used in a high-temperature reducing atmosphere, and the material of the heat-resistant composite member according to the above-mentioned first invention can be preferably used. Further, in the second invention, the layer having airtightness formed on the surface of the porous substrate is not required to have oxidation resistance, so that a heat-resistant layer having airtightness is preferably used. You can As a material for such a heat resistant layer, for example, a carbonaceous refractory can be used in addition to the material for the heat resistant and oxidation resistant layer that can be used in the first invention. Further, as a raw material of the restoration material, a carbon source which can maintain a gas state at a high temperature in the sealing means and can be carbonized by being exposed to the high temperature can be used. The carbon source is not particularly limited as long as it is carbonized by thermal decomposition and / or reduction reaction in a high temperature reducing atmosphere. Examples of such carbides include hydrocarbons. The hydrocarbon may be a saturated hydrocarbon or an unsaturated hydrocarbon. Examples of the saturated hydrocarbon include methane (CH 4 ), ethane (C 2 H
6 ) or propane (C 3 H 8 ), and the unsaturated hydrocarbon may be ethylene (C 2 H 2).
H 4 ), propylene (C 3 H 6 ), acetylene (C 2 H
2 ) etc. can be mentioned.

【0091】[0091]

【発明の効果】第1の発明に従う耐熱複合部材は、上記
した構成を有する結果、修復材の原料を、たとえば、外
部より供給することによって、高温酸化雰囲気中および
/または高温還元雰囲気中で、メインテナンスをせずに
長時間連続的に使用することができる。
The heat-resistant composite member according to the first aspect of the present invention has the above-described structure. As a result, by supplying the raw material of the restoration material from the outside, for example, in a high temperature oxidizing atmosphere and / or a high temperature reducing atmosphere, It can be used continuously for a long time without maintenance.

【0092】また、第1の発明に従う他耐熱複合部材
は、修復材の原料として、高温で気体状態を保持でき、
かつ高温にさらされてセラミックス化が可能な金属源を
用いた結果、多孔質性の基材の連続気孔内における目詰
まりを防ぐことができる。したがって、第1の発明に従
う耐熱複合部材は、耐熱耐酸化層が高温使用時において
損傷した場合、該損傷部の修復能に優れている。
Further, the other heat-resistant composite member according to the first aspect of the present invention can maintain a gaseous state at a high temperature as a raw material for a restorative material,
Moreover, as a result of using the metal source which is exposed to high temperature and can be made into ceramics, it is possible to prevent clogging of the porous substrate in the continuous pores. Therefore, the heat resistant composite member according to the first aspect of the present invention is excellent in the ability to repair the damaged portion when the heat resistant and oxidation resistant layer is damaged during use at high temperature.

【0093】第2の発明に従う耐熱複合部材は、上記し
た構成を有する結果、修復材の原料を、たとえば外部よ
り供給することによって、長時間連続的に高温還元雰囲
気中で使用することができる。
The heat-resistant composite member according to the second aspect of the present invention has the above-mentioned structure. As a result, by supplying the raw material of the restoration material from the outside, for example, it can be continuously used in a high-temperature reducing atmosphere for a long time.

【0094】また、第2の発明に従う耐熱複合部材は、
修復材の原料として、高温で気体状態を保持でき、かつ
高温にさらされて炭化が可能な炭素源を用いた結果、多
孔質性の基材の連続気孔内における目詰まりを防ぐこと
ができる。したがって、第2の発明に従う耐熱複合部材
は、耐熱層が高温使用時において損傷した場合、該損傷
部の修復能に優れている。
The heat-resistant composite member according to the second invention is
As a result of using a carbon source that can maintain a gas state at high temperature and can be carbonized by being exposed to high temperature as a raw material of the restorative material, it is possible to prevent clogging in the continuous pores of the porous base material. Therefore, when the heat resistant composite member according to the second aspect of the present invention is damaged during use of the heat resistant layer at high temperatures, the heat resistant composite member has excellent ability to repair the damaged portion.

【0095】また、第1および第2の耐熱複合部材は、
高温で気体状態を保持できる修復材の原料を用いた結
果、多孔質性の基材として、気孔率の小さいおよび/ま
たは気孔径の小さい基材を用いた場合にも適用可能であ
る。
Further, the first and second heat resistant composite members are
As a result of using the raw material of the restorative material that can maintain the gas state at high temperature, it can be applied to the case where a porous base material having a small porosity and / or a small pore diameter is used.

【0096】また、第1および第2の耐熱複合部材は、
高温で気体状態を保持できる修復材の原料を用いた結
果、基材の連続気孔に強制的に修復材の原料を注入する
手段をあえて用いる必要のないものである。
Further, the first and second heat resistant composite members are
As a result of using the raw material of the restorative material that can maintain the gas state at high temperature, it is not necessary to use a means for forcibly injecting the raw material of the restorative material into the continuous pores of the base material.

【0097】本発明に従う耐熱複合部材は、セラミック
ス層を再コーティングする等のメインテナンス作業をす
ることなく、長時間連続的に高温雰囲気下での使用がで
きるため、特に以下の場合に限定されることはないが、
たとえば、宇宙航空用耐熱壁、ロケットエンジン等のノ
ズルライナー等の高温機器、または高温炉の炉壁材等と
して好適に用いることができる。
The heat-resistant composite member according to the present invention can be continuously used in a high temperature atmosphere for a long time without performing maintenance work such as recoating of a ceramics layer, so that it is particularly limited to the following cases. But not
For example, it can be suitably used as a heat resistant wall for aerospace, high temperature equipment such as a rocket engine nozzle liner, or a furnace wall material of a high temperature furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う耐熱複合部材の一具体例を概略的
に示す模式図である。
FIG. 1 is a schematic view schematically showing a specific example of a heat resistant composite member according to the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱複合部材 2 多孔質性の基材 2a 基材2の表面 2b 基材2の裏面 2h 連続気孔 3 コーティング層 4 中空部 5 ジャケット 5a ジャケット5の表面 5b ジャケット5の裏面 5ha、5hb 穴部 8 クラック 9 セラミックス DESCRIPTION OF SYMBOLS 1 Heat resistant composite member 2 Porous base material 2a Front surface of base material 2b Back surface of base material 2h Continuous pores 3 Coating layer 4 Hollow part 5 Jacket 5a Surface of jacket 5 5b Back surface of jacket 5 5ha, 5hb Hole part 8 Crack 9 ceramics

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面と裏面とを有し、耐熱性を有すると
ともに、前記表面と裏面とを貫通する連続気孔を有する
多孔質性の基材と、 前記基材の表面を覆うように形成される、気密性を有す
る耐熱耐酸化層と、 前記基材の裏面側に設けられた密封手段と、 前記密封手段内に収容され、前記耐熱耐酸化層が高温で
の使用時に損傷した場合に、前記連続気孔を通って、損
傷部より流出し、前記損傷部を覆い塞ぐための修復材の
原料とを備え、 前記修復材の原料は、前記密封21内で、高温で気体状
態を保持でき、かつ高温にさらされてセラミックス化が
可能な金属源を含む、耐熱複合部材。
1. A porous base material having a front surface and a back surface, having heat resistance, and having continuous pores penetrating the front surface and the back surface, and formed so as to cover the surface of the base material. A heat-resistant and oxidation-resistant layer having airtightness, sealing means provided on the back surface side of the base material, and housed in the sealing means, and when the heat-resistant and oxidation-resistant layer is damaged during use at high temperature, The raw material of the restoration material, which flows out from the damaged portion and flows out from the damaged portion and covers the damaged portion, can be kept in a gas state at a high temperature in the seal 21. A heat-resistant composite member including a metal source that can be made into ceramic by being exposed to high temperatures.
【請求項2】 前記修復材の原料は、高温で気体状態を
保持できる炭素源をさらに含む、請求項1に記載の耐熱
複合部材。
2. The heat resistant composite member according to claim 1, wherein the raw material of the restorative material further includes a carbon source capable of maintaining a gas state at a high temperature.
【請求項3】 表面と裏面とを有し、耐熱性を有すると
ともに、前記表面と裏面とを貫通する連続気孔を有する
多孔質性の基材と、 前記基材の表面を覆うように形成される、気密性を有す
る耐熱層と、 前記基材の裏面側に設けられた密封手段と、 前記密封手段内に収容され、前記耐熱層が高温での使用
時に損傷した場合に、前記連続気孔を通って、損傷部よ
り流出し、前記損傷部を覆い塞ぐための修復材の原料と
を備え、 前記修復材の原料は、前記密封手段内で、高温で気体状
態を保持でき、かつ高温にさらされて、炭化が可能な炭
素源を含む、耐熱複合部材。
3. A porous base material having a front surface and a back surface, having heat resistance, and having continuous pores penetrating the front surface and the back surface, and formed so as to cover the surface of the base material. A heat-resistant layer having an airtightness, a sealing means provided on the back surface side of the base material, and the continuous pores, which are housed in the sealing means and are damaged when the heat-resistant layer is used at high temperature. The raw material of the restoration material, which flows out from the damaged portion and covers and covers the damaged portion, can hold a gas state at a high temperature in the sealing means and is exposed to the high temperature. A heat-resistant composite member containing a carbon source capable of being carbonized.
JP11456393A 1993-05-17 1993-05-17 Heat-resistant composite member Withdrawn JPH06321652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11456393A JPH06321652A (en) 1993-05-17 1993-05-17 Heat-resistant composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456393A JPH06321652A (en) 1993-05-17 1993-05-17 Heat-resistant composite member

Publications (1)

Publication Number Publication Date
JPH06321652A true JPH06321652A (en) 1994-11-22

Family

ID=14640952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456393A Withdrawn JPH06321652A (en) 1993-05-17 1993-05-17 Heat-resistant composite member

Country Status (1)

Country Link
JP (1) JPH06321652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152093A (en) * 2015-02-16 2016-08-22 三菱日立パワーシステムズ株式会社 Fuel cell power generation device and operational method of fuel cell power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152093A (en) * 2015-02-16 2016-08-22 三菱日立パワーシステムズ株式会社 Fuel cell power generation device and operational method of fuel cell power generation device

Similar Documents

Publication Publication Date Title
Wang et al. Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch
Wang et al. SiC/HfC/SiC ablation resistant coating for carbon/carbon composites
Naslain et al. CVD-processing of ceramic-ceramic composite materials
EP3026035B1 (en) Coated substrate
CZ298649B6 (en) Method to reduce material loss of silicon-containing ceramics and silicon-containing ceramic composites and component manufactured from such materials
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
CN111183125B (en) Component protected by an environmental barrier
US11473432B2 (en) Anti-CMAS coating with enhanced efficiency
US20030021901A1 (en) Method for coating parts made of material based on sic, coating compositions, and resulting coated parts
US8980434B2 (en) Mo—Si—B—based coatings for ceramic base substrates
Zhu et al. An oxidation protective coating prepared by SiC densifying HfB2-SiC skeleton for SiC-coated C/C composites at 1473, 1773, and 1973 K
Zhang et al. Ablation behavior of CVD-TaC coatings with different crystal structures for C/C composites under oxyacetylene flame
Xu et al. Microstructure and ablation behaviour of a strong, dense, and thick interfacial ZrxHf1-xC/SiC multiphase bilayer coating prepared by a new simple one-step method
Murthy et al. Role of rare earth oxide particles on the oxidation behaviour of silicon carbide coated 2.5 D carbon fibre preforms
Jiang et al. Multiphase composite Hf0. 8Ti0· 2B2–SiC–Si coating providing oxidation and ablation protection for graphite under different high temperature oxygen-containing environments
JP6763547B2 (en) Bond coating with molten silicon phase contained between refractory layers
Zhang et al. Influence of sublayer number on the ablative behaviors and synergistic effect of CVD-TaC/SiC alternate coatings
Yang et al. Ablation behavior and mechanism of SiC/Zr–Si–C multilayer coating for PIP-C/SiC composites under oxyacetylene torch flame
JPH06321652A (en) Heat-resistant composite member
CN112679232A (en) Ceramic composite material with intermediate layer containing carbon sink material for high temperature applications
Semchenko et al. Protection of graphite and graphite-containing materials from oxidation.
WO2019235624A1 (en) Ceramic matrix composite material
Zhang et al. Effect of curvature radius on the oxidation protective ability of HfB2-SiC-MoSi2-Si/SiC-Si coating for C/C composites
Perepezko et al. Mo-Si-B-Based Coatings for Ceramic Base Substrates
JP2003527294A (en) Method for coating materials based on silicon carbide, coating compounds and coated parts obtained by the above method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801