JPH06321620A - High toughness ceramic material - Google Patents
High toughness ceramic materialInfo
- Publication number
- JPH06321620A JPH06321620A JP5135046A JP13504693A JPH06321620A JP H06321620 A JPH06321620 A JP H06321620A JP 5135046 A JP5135046 A JP 5135046A JP 13504693 A JP13504693 A JP 13504693A JP H06321620 A JPH06321620 A JP H06321620A
- Authority
- JP
- Japan
- Prior art keywords
- pores
- sintering
- ceramic material
- ceramic
- porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0051—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高靱性セラミック材料
に係り、特にセラミックス中に偏析や結晶成長に由来す
る強度に影響を与えない程度の形状、大きさをもつ気孔
を適当量生成させることにより、従来のセラミックスに
比べて破壊靱性値を大幅に向上させた高靱性セラミック
材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high toughness ceramic material, and in particular, to generate an appropriate amount of pores having a shape and size in ceramics that do not affect the strength derived from segregation or crystal growth. Thus, the present invention relates to a high toughness ceramic material having a fracture toughness value significantly improved as compared with conventional ceramics.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
科学技術の進歩につれて、より苛酷な環境下で使用でき
る材料が必要になってきた。2. Description of the Related Art In recent years,
As technology advances, materials that can be used in more harsh environments are needed.
【0003】セラミックスは高温耐熱、耐蝕、耐摩耗性
等、優れた機能と特性から注目され、これまでに勢力的
に研究されており、特に、高強度を有し、耐熱性に非常
に優れるセラミックス材料は、金属材料に代って、車載
用エンジン部品及び部材をはじめ、各分野で徐々に使用
されつつある。Ceramics have been attracting attention due to their excellent functions and characteristics such as high temperature heat resistance, corrosion resistance, and abrasion resistance, and have been vigorously studied so far. In particular, ceramics having high strength and very excellent heat resistance. Materials are gradually being used in various fields, such as in-vehicle engine parts and members, instead of metal materials.
【0004】しかしながら、セラミックスは金属に比べ
破壊靱性値が非常に低く、破壊が脆性的であり、一旦ど
こかで破壊が始まればそれは止まることなく破滅的に進
行してしまう。すなわち、セラミックスは脆性材料であ
るため、信頼性、安全性に欠ける。セラミックスの最大
の問題はここにあり、多くの研究者によってセラミック
スの高靱化が試みられ、粒子分散型、ウィスカー強
化型、長繊維強化型、等による高靱性材料の研究が行
なわれてきた。However, the fracture toughness value of ceramics is much lower than that of metal, and the fracture is brittle. Once the fracture starts somewhere, it progresses catastrophically without stopping. That is, since ceramics are brittle materials, they lack reliability and safety. This is the biggest problem of ceramics, and many researchers have attempted to increase the toughness of the ceramics, and have researched high toughness materials such as particle dispersion type, whisker reinforced type and long fiber reinforced type.
【0005】例えばではAl2O3/ZrO2、ZnO
/ZrO2、Si3N4/SiC(富田、粒子分散による
セラミックスの高靱化、セラミックス、21、198
6)、ではSi3N4/SiC(W)、Al2O3/SiC
(W)、Al2O3/ZrO2/SiC(W)(井上他、ウィス
カーによるセラミックスの高靱化、セラミックス、2
1、1986)又、においてはSiC/SiC繊維、
SiC/炭素繊維、Si3N4/炭素繊維(新原、スーパ
ーファインセラミックス制御技術ハンドブック、サイエ
ンスフォーラム)等によって高靱化がなされてきた。For example, Al 2 O 3 / ZrO 2 , ZnO
/ ZrO 2 , Si 3 N 4 / SiC (Tomita, Toughening of Ceramics by Particle Dispersion, Ceramics, 21, 198
6), then Si 3 N 4 / SiC (W) , Al 2 O 3 / SiC
(W) , Al 2 O 3 / ZrO 2 / SiC (W) (Inoue et al. Toughening ceramics by whiskers, ceramics, 2
1, 1986), and in SiC / SiC fiber,
High toughness has been achieved by using SiC / carbon fiber, Si 3 N 4 / carbon fiber (Shinbara, Superfine Ceramics Control Technology Handbook, Science Forum) and the like.
【0006】しかしながら、上記の各方法では強化成分
を添加するため、場合によっては従来のセラミックスの
特性を損なう可能性があり、また単一材料ではないため
製造が容易でないという欠点があった。However, in each of the above-mentioned methods, since a reinforcing component is added, there is a possibility that the characteristics of conventional ceramics may be impaired in some cases, and there is a drawback that the production is not easy because it is not a single material.
【0007】一方、従来のセラミックスの焼結において
は焼結体中に残存する気孔は欠陥と見なされ、いかにし
て気孔率を低下させ、緻密な焼結体を得るかということ
を念頭に研究開発が進められてきた。そのため、単一の
セラミック材料では、緻密で高強度な焼結体は得られる
反面、破壊靱性値が上がらないというのが現状であっ
た。On the other hand, in the conventional sintering of ceramics, the pores remaining in the sintered body are regarded as defects, and a study was made with a view to reducing the porosity and obtaining a dense sintered body. Development has been advanced. Therefore, although a single ceramic material can provide a dense and high-strength sintered body, the present situation is that the fracture toughness value does not increase.
【0008】本発明は上記事情に鑑みてなされたもので
あり、高靱性材の様な強化成分を添加することなく単一
材料で高靱化が可能で、製造が極めて容易な高靱性セラ
ミック材料を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is possible to increase the toughness of a single material without adding a reinforcing component such as the high toughness material, and it is extremely easy to manufacture the high toughness ceramic material. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】本発明の高靱性セラミッ
ク材料では、直径が3μm以下で球形の気孔をセラミッ
ク焼成体全体に対し体積比で1〜3%の割合で分散させ
ることを特徴とする(請求項1)。The high toughness ceramic material of the present invention is characterized in that spherical pores having a diameter of 3 .mu.m or less are dispersed in the whole ceramic fired body at a volume ratio of 1 to 3%. (Claim 1).
【0010】本発明のセラミック材料としては、従来よ
り利用されているセラミック構造材料であれば種類を問
わないが、特に、シリコンナイトライド(Si3N4)、
アルミナ(Al2O3)、ムライト(3Al2O3・2Si
O2)であることが好ましい(請求項3〜5)。The ceramic material of the present invention may be of any type as long as it is a ceramic structural material which has been conventionally used. In particular, silicon nitride (Si 3 N 4 ),
Alumina (Al 2 O 3 ), mullite (3Al 2 O 3・ 2Si
O 2 ) is preferable (claims 3 to 5).
【0011】また、上記セラミック焼結体の結晶粒径
は、Si3N4では0.3〜2.7μm、Al2O3では
2.0〜6.5μm、3Al2O3・2SiO2では1.
5〜7.2μmの範囲であることが望ましく、特にSi
3N4が0.5〜0.9μm、Al2O3が3.3〜5.8
μm、3Al2O3・2SiO2が3.2〜6.4μmの
範囲であることが強度面からより望ましい。The crystal grain size of the ceramic sintered body is 0.3 to 2.7 μm for Si 3 N 4 , 2.0 to 6.5 μm for Al 2 O 3 , and 3Al 2 O 3 .2SiO 2 1.
The range of 5 to 7.2 μm is desirable, especially Si
3 N 4 is 0.5 to 0.9 μm, and Al 2 O 3 is 3.3 to 5.8.
It is more desirable from the viewpoint of strength that the thickness of 3 μm and 3Al 2 O 3 .2SiO 2 be in the range of 3.2 to 6.4 μm.
【0012】本発明の高靱性セラミック材料は、従来の
セラミック材料を緻密化して製造するプロセスにおい
て、焼成温度を従来より20〜50℃程度低くする、焼
成時間を従来より0.5〜4.5時間程度短くするだけ
で、従来の製造方法と全く同様に製造することが可能で
ある。The high toughness ceramic material of the present invention has a firing temperature of about 20 to 50 ° C. lower than that of the prior art and a firing time of about 0.5 to 4.5 than the prior art in the process of densifying and manufacturing the conventional ceramic material. Only by shortening the time, it is possible to manufacture in exactly the same manner as the conventional manufacturing method.
【0013】また、焼結方法でホットプレス焼結、HI
P焼結を用いる場合には、圧力条件を従来より3〜10
%程度低めに設定することでも同様に製造可能である。[0013] Also, hot pressing sintering, HI
When P sintering is used, the pressure condition is 3-10
Similarly, it can be manufactured by setting it to be lower by about%.
【0014】また、本発明の高靱性セラミック材料にお
ける気孔の分布状態としては、セラミック焼結体中に不
均一に分布している方が、クラックのピン止め効果が働
くため好ましい(請求項2)。As for the distribution of pores in the high toughness ceramic material of the present invention, it is preferable that the pores are distributed non-uniformly in the ceramic sintered body because the pinning effect of cracks works (claim 2). .
【0015】気孔をセラミック焼結体中に不均一に分布
させるには、高融点の焼結助剤を添加することによって
局所的に焼結の進行の速い部分と遅い部分とを形成し、
気孔が排出移動する状況を局部的に変えることによって
達成可能である。具体的に、高融点の焼結助剤として
は、Nd2O3、Al2O3、La2O3、CeO2、Y2O3
等があるが特にNd2O3やLa2O3が好ましく、その添
加量としては全体量に対し8〜12wt%程度が望まし
い。In order to distribute the pores non-uniformly in the ceramic sintered body, a sintering aid having a high melting point is added to locally form a fast sintering portion and a slow sintering portion,
This can be achieved by locally changing the situation in which the pores are discharged and moved. Specifically, as the high melting point sintering aid, Nd 2 O 3 , Al 2 O 3 , La 2 O 3 , CeO 2 , Y 2 O 3 can be used.
However, Nd 2 O 3 and La 2 O 3 are particularly preferable, and the addition amount thereof is preferably about 8 to 12 wt% with respect to the total amount.
【0016】[0016]
【作用】本発明者らは、従来より欠陥とみなされてき
た、セラミックス焼結体中に残存する気孔の大きさ、
形、量を制御することにより、逆に破壊靱性値を高める
事ができるという事実を見い出し、本発明を想到したも
のである。すなわち、今までなされてこなかった、偏析
や結晶成長に由来する強度に影響を与えない程度の形
状、大きさをもつ気孔を意図的に適当量生成させること
により、破壊靱性値を向上させるものである。The present inventors have found that the size of the pores remaining in the ceramic sintered body, which has been regarded as a defect in the past,
The present invention was devised by discovering the fact that the fracture toughness value can be increased by controlling the shape and amount. That is, the fracture toughness value can be improved by intentionally generating an appropriate amount of pores having a shape and size that have not been achieved until now and that do not affect the strength derived from segregation or crystal growth. is there.
【0017】本発明において生成される気孔は、i)強
度に影響を与えない程度の形状で、ii)強度に影響を与
えない程度の大きさを持ち、なおかつiii)強度に影響
を与えない程度の量の範囲でなければならない。The pores generated in the present invention are i) a shape that does not affect the strength, ii) a size that does not affect the strength, and iii) an extent that does not affect the strength. Must be in the amount range.
【0018】以下、上記のi)〜iii)について説明す
る。The above items i) to iii) will be described below.
【0019】i)強度に影響を与えない程度の気孔形状 図1において、気孔径状が球状の場合、応力が等方的に
分散されるのに対し、球形でない場合は、曲率の小さい
部分に応力が集中し、より破壊に至る可能性が高い。従
って強度に影響を与えない程度の形状とは、球形である
ことが必要である。I) Pore shape that does not affect strength In FIG. 1, when the pore diameter is spherical, the stress is isotropically dispersed, whereas when it is not spherical, the stress is distributed in a portion having a small curvature. The stress is concentrated and there is a high possibility of further destruction. Therefore, the shape that does not affect the strength needs to be spherical.
【0020】ii)強度に影響を与えない程度の気孔の大
きさ 線形破壊力学において、図2に示すような半無限媒体に
2aの長さの亀裂が存在する時、この材料を破壊をする
のに必要な応力σfは次式で与えられる。Ii) Pore size that does not affect strength In linear fracture mechanics, when a semi-infinite medium has a crack of length 2a as shown in FIG. 2, this material is destroyed. The required stress σ f is given by the following equation.
【0021】[0021]
【数1】 [Equation 1]
【0022】上記の式より、従来の代表的なセラミック
構造材料の破壊靱性値(KIC)、曲げ強度、2aの値は
表1のようになる。From the above equation, Table 1 shows the fracture toughness value (K IC ), bending strength, and 2a of typical conventional ceramic structural materials.
【0023】[0023]
【表1】 表1より、曲げ強度に影響を与えない程度の気孔サイズ
は3μm以下が好ましいことが分かる。[Table 1] It can be seen from Table 1 that the pore size is preferably 3 μm or less so that the bending strength is not affected.
【0024】iii)強度に影響を与えない程度の気孔量
(気孔率)の範囲 気孔率とセラミックスの強度の関係は経験的に次式で与
えられる。 Δf=Δf0exp[−kp] Vは気孔率、kは無次元の定数である。Iii) Range of porosity (porosity) that does not affect strength The relationship between porosity and ceramic strength is empirically given by the following equation. Δf = Δf 0 exp [−kp] V is a porosity, and k is a dimensionless constant.
【0025】上式より、気孔率と強度の関係は図3の様
になる。From the above equation, the relationship between porosity and strength is as shown in FIG.
【0026】図3のグラフより、気孔率が0%の状態か
ら急激に強度は低下をし、その低下率は徐々に小さくな
り、ある一定の気孔率(グラフ−A)を超えるとほとん
ど強度の低下はなくなって収束する。From the graph of FIG. 3, the strength sharply decreases from the state where the porosity is 0%, and the decrease rate gradually decreases, and when the porosity exceeds a certain level (Graph-A), the strength is almost the same. The decrease disappears and converges.
【0027】しかしながら、気孔率0%とは単結晶の状
態のことを指しているため多結晶体のセラミックスにお
いてはあり得ず、1%程度の気孔は免れない。又実際、
多くの多結晶体では1〜3%程度の気孔率があっても強
度的にはそれほど大きくは低下しないことが経験上明ら
かであり、図3のグラフにおいてA点の強度よりも十分
大きいと思われる。However, since the porosity of 0% means a single crystal state, it is not possible in a polycrystalline ceramic, and a porosity of about 1% is inevitable. In fact,
It is empirically clear that many polycrystals have a porosity of about 1 to 3%, but the strength does not decrease so much, and it is considered that the strength is sufficiently higher than the strength at point A in the graph of FIG. Be done.
【0028】以上i)〜iii)の条件を満たすような気孔
であれは、セラミックス中に存在していても強度には全
く影響がないことが分る。本発明ではこの様な気孔の生
成を特にその量(気孔率)を制御することにより、セラ
ミックスの高靱化を達成するものである。It can be seen that the pores satisfying the above conditions i) to iii) have no influence on the strength even if they are present in the ceramics. In the present invention, the toughness of ceramics is increased by controlling the amount (porosity) of the generation of such pores.
【0029】次に、破壊靱性値を向上させる要因は下記
の2つに大別することができる。 (1)主クラックと分散粒子との直接的な相互作用 (2)主クラック先端付近にプロセスゾーンを形成する
機構Next, the factors for improving the fracture toughness value can be roughly classified into the following two. (1) Direct interaction between main crack and dispersed particles (2) Mechanism of forming process zone near the tip of main crack
【0030】(1)としては主クラック前縁の湾曲、主
クラック面の偏向、クラックのピン止め作用等があり、
(2)ではマイクロクラッキング、応力誘起相転移、破
面架橋等がある。(1) is the curvature of the leading edge of the main crack, the deflection of the main crack surface, the crack pinning action, etc.
In (2), there are microcracking, stress-induced phase transition, fracture surface crosslinking, and the like.
【0031】本発明の、セラミックス中に偏析や結晶成
長に由来する強度に影響を与えない程度の形状、大きさ
をもつ気孔を適当量生成させたセラミックスにおいて、
その破壊靱性向上に寄与する要因は気孔によるクラック
のピン止めと偏向であると推定される。In the ceramic of the present invention, an appropriate amount of pores having a shape and a size that do not affect the strength derived from segregation or crystal growth are generated in the ceramic.
It is presumed that the factors contributing to the improvement of the fracture toughness are pinning and deflection of cracks due to pores.
【0032】次に、気孔率と強度、破壊靱性値との関係
を図4に示す。ここで、図4における気孔率とは上記の
iii)に定義した範囲の気孔率である。Next, FIG. 4 shows the relationship among the porosity, strength and fracture toughness value. Here, the porosity in FIG.
The porosity is in the range defined in iii).
【0033】セラミックス中における気孔は欠陥の一種
と捕えることができる。従って従来の焼結技術はいかに
して緻密な焼結体を得るかということを念頭に進歩して
きた。しかしながら、上述したように、セラミックス中
に残存する気孔が強度に影響を与えない形状と大きさで
あれば一定範囲内の気孔は強度に影響を与えない。Porosity in ceramics can be regarded as a kind of defects. Therefore, the conventional sintering technology has been advanced in consideration of how to obtain a dense sintered body. However, as described above, as long as the pores remaining in the ceramic have a shape and size that do not affect the strength, pores within a certain range do not affect the strength.
【0034】一方、破壊靱性値も緻密化するに従い上昇
するが、気孔を一定以下にしてしまうと逆に低下してし
まう。(図−C点)何故なら適当量の気孔が存在してい
るとクラックはそこでピン止めされ、更には偏向しなが
ら進行するが、気孔が少すぎるとクラックは停止させる
ことなく脆性的に破壊に至るからである。したがって、
強度の低下を最小限に抑え、破壊靱性値が最も高くなる
気孔率の範囲が存在する。(図A〜B点)On the other hand, the fracture toughness value also increases as the density increases, but decreases if the pores are kept below a certain level. (Fig.-C point) Because cracks are pinned there if there is an appropriate amount of pores, and proceed while deflecting, but if there are too few pores, the cracks break brittlely without stopping. Because it reaches. Therefore,
There is a range of porosities that minimizes strength loss and has the highest fracture toughness values. (Points A to B in the figure)
【0035】本発明では焼結条件を制御することによ
り、セラミックス中に強度に影響を与えない程度の形
状、大きさをもつ気孔を適当量意図的に生成することに
より、高靱化を達成した。In the present invention, by increasing the toughness by controlling the sintering conditions, an appropriate amount of pores having a shape and a size that do not affect the strength are intentionally formed in the ceramic. .
【0036】[0036]
【実施例1】 Si3N4−1 Si3N4原料は宇部興産(株)製SN−E10(中心粒
径0.79μm、α分率>95%)と電気化学(株)製SN
−P21C(中心粒径0.69μm、α分率93.1%)を使用
した。Example 1 Si 3 N 4 -1 Si 3 N 4 raw materials were SN-E10 (center particle size 0.79 μm, α fraction> 95%) manufactured by Ube Industries, Ltd. and SN manufactured by Electrochemical Co., Ltd.
-P21C (center particle size: 0.69 μm, α fraction: 93.1%) was used.
【0037】焼結助剤はE10にはAl2O3(住友化学
(株)製AKP−30、中心粒径0.37μm)とY2O
3(三菱化成(株)製YF、中心粒径1.46μm)をそれ
ぞれ3mol%、5mol%添加、或いはNd2O3(日
産希元素化学(株))とY2O3(YF)をそれぞれ5m
ol%、3mol%づつ添加し、P21Cには、CeO
2(日産希元素化学(株)製) とY2O3(YF)をそれ
ぞれ5mol%、3mol%添加、あるいはLa2O
3(日本イットリウム(株)製)とY2O3(YF)をそ
れぞれ4mol%、4mol%づつ添加した。As the sintering aid, E2 was Al 2 O 3 (AKP-30 manufactured by Sumitomo Chemical Co., Ltd., central particle size: 0.37 μm) and Y 2 O.
3 (Mitsubishi Chemical Co., Ltd. YF, central particle size 1.46 μm) was added at 3 mol% and 5 mol% respectively, or Nd 2 O 3 (Nissan Rare Element Chemical Co., Ltd.) and Y 2 O 3 (YF) were added at 5 m each.
ol%, 3 mol% each, and P21C contains CeO
2 (manufactured by Nissan Rare Element Chemicals Co., Ltd.) and Y 2 O 3 (YF) at 5 mol% and 3 mol%, respectively, or La 2 O
3 (manufactured by Japan Yttrium Co., Ltd.) and Y 2 O 3 (YF) were added at 4 mol% and 4 mol% respectively.
【0038】上記原料を表2に示すように所定量秤量し
た後、トリクレン(東亜合成(株)、トリクレンR)に
て湿式混合を16時間行った。この際、分散剤としてA
L−M(味の素(株))を使用し、玉石はSi3N4製、φ
15mm(ニッカトー(株))、玉石比を1.5とした。The above raw materials were weighed in predetermined amounts as shown in Table 2 and wet-mixed with trichlene (Toa Gosei Co., Ltd., trichlene R) for 16 hours. At this time, as a dispersant, A
LM (Ajinomoto Co., Inc.) is used, and the cobblestone is made of Si 3 N 4 , φ
15 mm (Nikkato Co., Ltd.) and the boulder ratio was 1.5.
【0039】[0039]
【表2】 [Table 2]
【0040】湿式混合後100℃のオーブン中で18時
間乾燥し、その後乾式粉砕を48時間行った。この時湿
式混合時に使用した玉石を同一比にて使用した。更に目
開き500μmのステンレス製の篩を通し、これを坏土
とした。After wet mixing, it was dried in an oven at 100 ° C. for 18 hours, and then dry pulverization was carried out for 48 hours. At this time, the boulders used in the wet mixing were used in the same ratio. Further, it was passed through a stainless steel sieve having an opening of 500 μm to obtain a kneaded clay.
【0041】得られた坏土は温度1750℃、圧力33
0kg/cm2、時間1時間(Nd2O3−Y2O3系)或
いは2時間(Al2O3−Y2O3、La2O3−Y2O3、C
eO2−Y2O3系)HP焼結を行った(No.1〜
4)。The kneaded material obtained had a temperature of 1750 ° C. and a pressure of 33.
0 kg / cm 2, time 1 hour (Nd 2 O 3 -Y 2 O 3 system) or 2 hours (Al 2 O 3 -Y 2 O 3, La 2 O 3 -Y 2 O 3, C
eO 2 —Y 2 O 3 system) HP sintering was performed (No. 1 to No. 1).
4).
【0042】なお、比較例として、温度1800℃、圧
力330kg/cm2、時間2時間(Nd2O3−Y2O3
系)或いは3時間(Al2O3−Y2O3、La2O3−Y2
O3、CeO2−Y2O3系)の条件でHP焼結して、気孔
率を1%未満にしたもの(No.5〜8)、温度175
0℃、圧力330kg/cm2、時間45分(Nd2O3
−Y2O3系)或いは90分(Al2O3−Y2O3、La2
O3−Y2O3、CeO2−Y2O3系)の条件でHP焼結を
行い気孔率を4%以上にしたもの(No.9〜12)も
併せて製造した。As a comparative example, the temperature is 1800 ° C., the pressure is 330 kg / cm 2 , the time is 2 hours (Nd 2 O 3 —Y 2 O 3
System) or 3 hours (Al 2 O 3 —Y 2 O 3 , La 2 O 3 —Y 2
O 3 and CeO 2 —Y 2 O 3 system) HP sintered under conditions of porosity less than 1% (No. 5-8), temperature 175
0 ° C., pressure 330 kg / cm 2 , time 45 minutes (Nd 2 O 3
-Y 2 O 3 system) or 90 minutes (Al 2 O 3 -Y 2 O 3, La 2
O 3 —Y 2 O 3 and CeO 2 —Y 2 O 3 system) were also sintered, and HP sintering was performed to make the porosity 4% or more (No. 9 to 12).
【0043】得られた焼結体は走査型電子顕微鏡(日立
製作所(株)製、S−450)にて100個の気孔形
状、大きさを評価し、気孔率は画像処理装置(オリンパ
ス光学工業(株)、XL−500)を用いて気孔部と緻
密部との面積比により算出した。更に、3点曲げ強度
(JIS R1601)と破壊靱性値(JIS R16
07)の測定を行った。The obtained sintered body was evaluated for the shape and size of 100 pores with a scanning electron microscope (S-450, manufactured by Hitachi, Ltd.), and the porosity was measured by an image processing apparatus (Olympus Optical Industry Co., Ltd.). It was calculated from the area ratio of the pores and the dense parts using XL-500). Furthermore, three-point bending strength (JIS R1601) and fracture toughness value (JIS R16
07) was measured.
【0044】以下、表3に本実施例のSi3N4と従来S
i3N4の特性比較を示す。Table 3 below shows Si 3 N 4 of this embodiment and conventional S.
i 3 shows a characteristic comparison of N 4.
【0045】[0045]
【表3】 [Table 3]
【0046】ここで、気孔率はアルキメデス法による
気孔率、気孔率は画像解析装置を使用した測定値であ
る。気孔率が気孔率に比べ約1/10程度にすぎな
いのはアルキメデス法では開気孔を全体積中のポアと想
定するのに対し、画像処理装置を用いた測定法は閉気孔
をも含めた気孔率を算出できるためである。以後、セラ
ミックスの特性表にはアルキメデス法による気孔率を気
孔率、画像処理装置を用いた気孔率を気孔率として
付記する。(なお、本発明で規定する気孔率1〜3%は
画像処理装置を用いた気孔率を意味する。)Here, the porosity is a porosity by the Archimedes method, and the porosity is a value measured by using an image analyzer. In the Archimedes method, the porosity is only about 1/10 that of the porosity, while the open pores are assumed to be the pores in the total volume, while the measurement method using the image processing device includes the closed pores. This is because the porosity can be calculated. Hereinafter, in the characteristic table of ceramics, the porosity by the Archimedes method is shown as the porosity, and the porosity using the image processing apparatus is shown as the porosity. (Note that the porosity of 1 to 3% specified in the present invention means the porosity using an image processing apparatus.)
【0047】1〜4は本実施例によって得られたSi3
N4であり、5〜8は従来の気孔率が1%未満のSi3N
4である。表3より本実施例のものでは、曲げ強度はほ
ぼ同程度でありながら破壊靱性値が大幅に向上した。特
にNd2O3−Y2O3系、La2O3−Y2O3系の焼結助剤
系を利用したSi3N4はその向上が著しい。1 to 4 are Si 3 obtained by this embodiment
N 4 and 5 to 8 are Si 3 N having a conventional porosity of less than 1%
Is 4 . From Table 3, in the case of this example, the fracture toughness value was significantly improved while the bending strength was almost the same. In particular, Si 3 N 4 using Nd 2 O 3 —Y 2 O 3 system and La 2 O 3 —Y 2 O 3 system sintering aid system is remarkably improved.
【0048】1〜4のSi3N4と5〜8のSi3N4を比
較すると、気孔径は2〜3μm程度で一致しているのに
対し、気孔率は1〜4のSi3N4の方がわずかながら高
いこと(1.8〜2.4%)が特徴的である。[0048] Comparing the 1-4 the Si 3 N 4 and Si 3 N 4 5-8, while the pore size is consistent with the order of 2 to 3 [mu] m, porosity of from 1 to 4 Si 3 N 4 is slightly higher (1.8 to 2.4%), which is characteristic.
【0049】また、9〜12は、気孔率が3%を超える
ものであり、曲げ強度、破壊靱性値が本実施例のものに
比べて共に低下していることが分かる。Further, 9 to 12 have a porosity of more than 3%, and it can be seen that the flexural strength and the fracture toughness values are both lower than those of this example.
【0050】従って本実施例のSi3N4では、従来の緻
密化Si3N4の焼成条件と比較して焼成温度を50℃低
下させ、焼成時間を1時間低下させて気孔率を1〜3%
にすることにより高靱化を達成できることが判明した。Therefore, in the case of Si 3 N 4 of the present embodiment, the firing temperature is lowered by 50 ° C. and the firing time is reduced by 1 hour, so that the porosity is 1 to 1, as compared with the firing conditions of the conventional densified Si 3 N 4 . 3%
It was found that high toughness can be achieved by
【0051】以下、本発明による気孔生成のプロセス
と、高靱化のプロセスを示す。 (i) Si3N4を焼結する場合、Si3N4のSiと焼結助
剤中のOとが反応してSiO2を生成し、液相となる。
気孔は液相を通して系外へ排出されるが、完全に緻密化
する前に焼結を止めれば気孔は残る。そこで焼結条件を
制御することで適当量の気孔を残存させることができ
る。Hereinafter, the process of generating pores and the process of increasing toughness according to the present invention will be described. (i) When Si 3 N 4 is sintered, Si in Si 3 N 4 reacts with O in the sintering aid to form SiO 2 and become a liquid phase.
The pores are discharged through the liquid phase to the outside of the system, but the pores remain if the sintering is stopped before it is completely densified. Therefore, an appropriate amount of pores can be left by controlling the sintering conditions.
【0052】このような気孔が残存した焼結体におい
て、クラックは図5に示す様に気孔にぶつかって停止
し、(ピン止め効果)偏向しながら進行するため、破壊
靱性値を向上できる。In the sintered body in which such pores remain, the cracks stop by hitting the pores as shown in FIG. 5 and proceed while deflecting (pinning effect), so that the fracture toughness value can be improved.
【0053】(ii)表4にSi3N4の焼結に使用した焼結
助剤のおおよその融点を示した。(Ii) Table 4 shows the approximate melting points of the sintering aids used for sintering Si 3 N 4 .
【0054】[0054]
【表4】 [Table 4]
【0055】Nd2O3とLa2O3の2つはSi3N4の焼
結温度1750℃に比べ、かなり高い融点をもつ。Si
3N4の焼結はSi3N4と焼結助剤の表面が十分活性化さ
れなければならない。Al2O3やCeO2は融点が焼結
温度に近いため、十分活性化され、 一様に焼結が進行
する。それに対し、Nd2O3やLa2O3は融点がかなり
高いため、局所的に焼結の進行の早い部分と遅い部分が
現われる。気孔は液相を通して排出されるため、進行の
早い部分から先に排出され、遅い部分へ追い出される。
したがって焼結体の気孔の分布が不均一になる。 Two of Nd 2 O 3 and La 2 O 3 have considerably higher melting points than the sintering temperature of Si 3 N 4 of 1750 ° C. Si
3 Sintering of N 4 is the surface of the Si 3 N 4 and sintering aids must be sufficiently activated. Since the melting points of Al 2 O 3 and CeO 2 are close to the sintering temperature, they are sufficiently activated and the sintering proceeds uniformly. On the other hand, since Nd 2 O 3 and La 2 O 3 have considerably high melting points, locally the part where the sintering progresses early and the part where the sintering progresses slowly appear. Since the pores are discharged through the liquid phase, they are discharged first in the part that progresses first and then in the slow part.
Therefore, the distribution of pores in the sintered body becomes non-uniform.
【0056】図6に、気孔を不均一に分布させたSi3
N4と均一に分散させたSi3N4のクラックの進展状況
を示す。FIG. 6 shows Si 3 having non-uniformly distributed pores.
4 shows the progress of cracking of Si 3 N 4 uniformly dispersed with N 4 .
【0057】図6より気孔が均一に分布しているSi3
N4においてはクラックはほぼ直線的に進行しているの
に対し(図6(b))、不均一に分布させたSi3N4で
はクラックは偏向を起こしている(図6(a))。As shown in FIG. 6, Si 3 with uniformly distributed pores
In N 4 , the crack progresses almost linearly (FIG. 6 (b)), whereas in the unevenly distributed Si 3 N 4 , the crack is deflected (FIG. 6 (a)). .
【0058】これは、図7(a),(b)に示すよう
に、気孔の多い部分(B)を進行するクラックは緻密な
部分(A)にぶつかると停止し(ピン止め効果)、更に
負荷が加わると偏向して進むためと考えられる。As shown in FIGS. 7 (a) and 7 (b), the cracks progressing in the portion (B) having many pores stop when they hit the dense portion (A) (pinning effect). It is thought that when a load is applied, it will deflect and proceed.
【0059】従って融点の高い焼結助剤を使用し、焼結
条件を制御することによって気孔を不均一に分散させる
ことによっても、マクロ的にもミクロ的にも破壊靱性値
の向上に効果がある。Therefore, by using a sintering aid having a high melting point and controlling the sintering conditions to disperse the pores non-uniformly, it is effective in improving the fracture toughness value both macroscopically and microscopically. is there.
【0060】[0060]
【実施例2】 Si3N4−鋳込み成形品 Si3N4原料は宇部興産(株)製SN−ESP(中心粒
径0.75μm、α分布率>95%)とSN−E10を使用
した。Example 2 Si 3 N 4 -Casting Molded Product As the Si 3 N 4 raw material, SN-ESP (center particle size 0.75 μm, α distribution rate> 95%) and SN-E10 manufactured by Ube Industries, Ltd. were used.
【0061】焼結助剤はAl2O3(AKP−30)とY
2O3(YF)を5mol%:3mol%にて添加した。The sintering aids were Al 2 O 3 (AKP-30) and Y.
2 O 3 (YF) was added at 5 mol%: 3 mol%.
【0062】上記原料を表5に示すように所定量秤量し
た後、有機バインダー(中京油脂(株)、バインドセラ
ム)を添加し、水中にて湿式混合を16時間行った。こ
の際玉石はAl2O3製、φ12×13.5lのシリンダー形
状の物(日本化学陶業)を使用し、玉石比は1とした。After predetermined amounts of the above raw materials were weighed as shown in Table 5, an organic binder (Chukyo Yushi Co., Ltd., Bind Serum) was added, and wet mixing was performed for 16 hours in water. At this time, the boulders were made of Al 2 O 3 and had a cylinder shape of φ12 × 13.5 l (Nippon Kagaku Sangyo), and the boulder ratio was 1.
【0063】[0063]
【表5】 [Table 5]
【0064】得られた泥漿は石膏型(日東石膏製、特級
石膏)へ流し込み、成形、乾燥後、温度550℃にて2
時間脱脂を行ったThe obtained slurry is poured into a gypsum mold (Nitto Gypsum, special grade gypsum), molded, dried and then heated at 550 ° C. for 2 hours.
Degreased for hours
【0065】脱脂済の成形体は温度1750℃、N2雰
囲気下で1.5時間常圧焼結した(No.1,2)。The degreased compact was sintered under normal pressure at 1750 ° C. in an N 2 atmosphere for 1.5 hours (Nos. 1 and 2).
【0066】なお、比較例として温度1750℃、N2
雰囲気下で6時間常圧焼結して緻密化させた従来のSi
3N4も併せて製造した(No.3、4)。As a comparative example, the temperature was 1750 ° C., N 2
Conventional Si densified by pressureless sintering for 6 hours in atmosphere
3 N 4 was also manufactured (No. 3, 4 ).
【0067】焼結体の評価方法は実施例の場合と同様
にした。表6に本実施例により得られたSi3N4(1〜
2)と従来Si3N4(3〜4)の特性表を示す。尚、
1、3はESP、2、4はE10使用。The evaluation method of the sintered body was the same as that of the example. Table 6 shows Si 3 N 4 (1 to 3 obtained by this example.
2) and conventional Si 3 N 4 (3 to 4) characteristic tables are shown. still,
1 and 3 use ESP, 2 and 4 use E10.
【0068】[0068]
【表6】 [Table 6]
【0069】本焼結体の高靱化のメカニズムは実施例
の(i)と同様である。The mechanism of increasing the toughness of the present sintered body is the same as in (i) of the example.
【0070】[0070]
【実施例3】 Al2O3 Al2O3粉末は昭和電工(株)製AC160(中心粒径
0.41μm)を用いた。Example 3 Al 2 O 3 Al 2 O 3 powder was AC160 (central particle size) manufactured by Showa Denko KK
0.41 μm) was used.
【0071】Al2O3粉末を25×60×15mm形状
になる様に200kg/cm2の圧力で金型を用いて成
形し、更に、冷間静水圧プレスで1500kg/cm2
の圧力を加え、成形体とした。Al 2 O 3 powder was molded with a mold at a pressure of 200 kg / cm 2 so as to have a shape of 25 × 60 × 15 mm, and further 1500 kg / cm 2 by a cold isostatic press.
Was applied to form a molded body.
【0072】成形体は400℃にて2時間脱脂した後、
大気雰囲気下で1650℃、1時間常圧焼結を行った。After degreasing the molded body at 400 ° C. for 2 hours,
Sintering was carried out under atmospheric pressure at 1650 ° C for 1 hour.
【0073】なお、比較例として大気雰囲気下で167
0℃、2時間常圧焼結を行った従来Al2O3も併せて製
造した。As a comparative example, 167
A conventional Al 2 O 3 obtained by performing normal pressure sintering at 0 ° C. for 2 hours was also manufactured.
【0074】得られた焼結体は実施例と同様の評価方
法を用いて評価した。The obtained sintered body was evaluated by using the same evaluation method as in the examples.
【0075】表7に、本実施例のAl2O3(1)と比較
例のAl2O3(2)の特性表を示す。Table 7 shows a characteristic table of Al 2 O 3 (1) of this example and Al 2 O 3 (2) of the comparative example.
【0076】[0076]
【表7】 [Table 7]
【0077】Al2O3の様な酸化物セラミックスの場
合、焼結の過程で粒成長が起こり、気孔は粒界へ排出さ
れる。粒界の気孔は容易に拡散して網の目の様になって
粒界を通路として焼結体の外へ拡散され、結果として無
気孔の焼結体が得られる。In the case of oxide ceramics such as Al 2 O 3 , grain growth occurs during the sintering process and the pores are discharged to the grain boundaries. The pores at the grain boundaries are easily diffused to form a mesh and are diffused out of the sintered body through the grain boundaries as passages. As a result, a sintered body having no pores is obtained.
【0078】焼結条件を制御し(本実施例では焼成温度
を20℃低下させ、かつ焼成時間を1時間減少させた)
完全に緻密化する前に、適当量の気孔を残して焼結を完
了すれば気孔によってクラックはピン止め、偏向の効果
を受けて破壊靱性値は向上する。The sintering conditions were controlled (in this example, the firing temperature was lowered by 20 ° C. and the firing time was reduced by 1 hour).
If sintering is completed while leaving an appropriate amount of pores before completely densifying, cracks are pinned by the pores and the fracture toughness value is improved by the effect of deflection.
【0079】[0079]
【実施例4】 3Al2O3・2SiO2 3Al2O3・2SiO2原料は秩父セメント(株)製M
P40(中心粒径1.54μm、Al2O3/SiO2モル比
=1.50)を用いた。Example 4 3Al 2 O 3 .2SiO 2 3Al 2 O 3 .2SiO 2 raw material was M manufactured by Chichibu Cement Co., Ltd.
P40 (central particle size 1.54 μm, Al 2 O 3 / SiO 2 molar ratio = 1.50) was used.
【0080】3Al2O3・2SiO2粉末を25×60
×15mm形状になる様に200kg/cm2の圧力で
金型を用いて成形し、更に冷間静水圧プレスで1500
kg/cm2の圧力を加え、成形体とした。25 × 60 3Al 2 O 3 .2SiO 2 powder
Molded with a mold at a pressure of 200 kg / cm 2 so as to have a shape of × 15 mm, and further 1500 at a cold isostatic press.
A pressure of kg / cm 2 was applied to obtain a molded body.
【0081】成形体は400℃にて2時間脱脂した後、
大気雰囲気下で1650℃、1時間常圧焼結を行った。The molded body was degreased at 400 ° C. for 2 hours, and then
Sintering was carried out under atmospheric pressure at 1650 ° C for 1 hour.
【0082】得られた焼結体は実施例と同様の評価方
法を用いて評価した。The obtained sintered body was evaluated by the same evaluation method as in the examples.
【0083】表8に、本実施例の3Al2O3・2SiO
2(1)と従来3A l2O3・2SiO2(2)(大気雰
囲気下で1650℃、90分常圧焼結を行ったもの)の
特性表を示す。Table 8 shows 3Al 2 O 3 .2SiO of this example.
2 (1) and a conventional 3A 1 2 O 3 .2SiO 2 (2) (those subjected to atmospheric pressure sintering at 1650 ° C. for 90 minutes in an air atmosphere) are shown in characteristic tables.
【0084】[0084]
【表8】 [Table 8]
【0085】本焼結体の破壊靱性向上のメカニズムは実
施例と同様である。The mechanism for improving the fracture toughness of the present sintered body is the same as in the example.
【0086】[0086]
【発明の効果】本発明によれは、偏析による強度に影響
を与えない程度の気孔を生成することにより高靱性のセ
ラミックスが得られる。このセラミックスは強度や耐熱
性等従来のセラミックスの持っていた特性を損ねること
はないので、その用途は車載用エンジン部品をはじめ多
岐にわたると考えられる。According to the present invention, high toughness ceramics can be obtained by forming pores to the extent that they do not affect the strength due to segregation. Since this ceramic does not impair the properties of conventional ceramics such as strength and heat resistance, it can be used for a wide variety of applications including in-vehicle engine parts.
【0087】更に、本発明により得られたセラミックス
は、その構造からKICの向上以外に次の様な効果が得ら
れる。Further, the ceramics obtained by the present invention have the following effects in addition to the improvement of K IC due to its structure.
【0088】耐摩耗性の向上 本発明によって得られたセラミックスには数μm程度の
気孔が存在している。こうした材料を潤滑剤と共に摺動
部材として使用した場合、気孔中に潤滑剤が保存され
る。この潤滑剤は部品の摺動中に極微量ずつ気孔より供
給され、その結果セラミック部品の耐摩耗性が向上す
る。Improvement of abrasion resistance The ceramics obtained by the present invention have pores of about several μm. When such a material is used as a sliding member with a lubricant, the lubricant is stored in the pores. This lubricant is supplied from the pores in extremely small amounts during sliding of the component, and as a result, the wear resistance of the ceramic component is improved.
【0089】耐熱衝撃性の向上 本発明によって生成された気孔は応力に対して最も効果
的にそれを分散させ得る形状を持っている。したがって
熱衝撃による応力が発生した場合、気孔が応力を分散、
吸収し破壊に至りにくい。Improvement of thermal shock resistance The pores generated by the present invention have a shape that can most effectively disperse stress with respect to stress. Therefore, when stress due to thermal shock occurs, the pores disperse the stress,
Less likely to be absorbed and destroyed.
【0090】この様な特性を生かし、構造材料を始め、
加工用超硬工具、摺動部材、溶融金属用ダイカスト部材
等の用途展開が可能である。Taking advantage of such characteristics, starting with structural materials,
It is possible to develop applications such as cemented carbide tools for processing, sliding members, and die casting members for molten metal.
【0091】また本発明の高靱性セラミック材料は、焼
結条件をのみを制御することにより容易に得られるた
め、従来のホットプレス焼結、HIP焼結、常圧焼結等
の焼結方法を利用して容易に製造することができる。さ
らにプレス成形、鋳込み成形等の成形プロセスも、成形
体中に気孔が存在していれば利用することができる。Further, since the high toughness ceramic material of the present invention can be easily obtained by controlling only the sintering conditions, the conventional sintering methods such as hot press sintering, HIP sintering and atmospheric pressure sintering can be applied. It can be easily manufactured by utilizing. Further, a molding process such as press molding or cast molding can be used as long as pores are present in the molded body.
【図1】気孔形状と強度との関係を説明するための図で
ある。FIG. 1 is a diagram for explaining the relationship between pore shape and strength.
【図2】気孔の大きさと強度との関係を説明するための
図である。FIG. 2 is a diagram for explaining the relationship between pore size and strength.
【図3】気孔率と強度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between porosity and strength.
【図4】気孔率と強度、破壊靱性値との関係を示すグラ
フである。FIG. 4 is a graph showing the relationship between porosity, strength, and fracture toughness value.
【図5】気孔によるクラックの進行方向を示す図であ
る。FIG. 5 is a view showing a traveling direction of a crack due to pores.
【図6】Si3N4のクラック進展状況を示す組織写真で
あり、(a)は気孔を不均一に分布させたSi3N4、
(b)は気孔を均一に分散させたSi3N4である。FIG. 6 is a micrograph showing the progress of cracking in Si 3 N 4 , where (a) is Si 3 N 4 with non-uniformly distributed pores,
(B) is Si 3 N 4 in which pores are uniformly dispersed.
【図7】(a)は気孔の多い部分と緻密な部分とが有る
場合のクラックの進展状況を示す図であり、(b)は
(a)のC部分の拡大図である。FIG. 7A is a diagram showing the progress of cracks when there are a lot of pores and a dense portion, and FIG. 7B is an enlarged view of a portion C of FIG. 7A.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 承央 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 齋藤 政彦 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 島ノ上 誠司 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 岩田 美佐男 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inoue, Seio No. 1-36 Noritake Shinmachi, Nishi-ku, Nagoya-shi, Aichi Prefecture Noritake Company Limited Limited (72) Inventor Masahiko Saito 3-chome, Noritake-shinmachi, Nishi-ku, Nagoya, Aichi Prefecture No. 1-36 Noritake Company Limited (72) Inventor Seiji Shimanoue No. 1-336 Noritake Shinmachi, Nishi-ku, Nagoya-shi Aichi Prefecture No. 1-36 Noritake Company Limited (72) Inventor Misao Iwata Nishi-ku, Nagoya, Aichi Prefecture Noritake Shinmachi 3-chome 1-36 Noritake Company Limited Limited
Claims (5)
ク焼結体全体に対し体積比で1〜3%の割合で分散して
いることを特徴とする高靱性セラミック材料。1. A high toughness ceramic material, characterized in that spherical pores having a diameter of 3 μm or less are dispersed in a volume ratio of 1 to 3% with respect to the entire ceramic sintered body.
分散していることを特徴とする請求項1記載の高靱性セ
ラミック材料。2. The high toughness ceramic material according to claim 1, wherein the pores are nonuniformly dispersed in the ceramic sintered body.
イド(Si3N4)であることを特徴とする請求項1又は
2記載の高靱性セラミック材料。3. The high toughness ceramic material according to claim 1, wherein the ceramic sintered body is silicon nitride (Si 3 N 4 ).
O3)であることを特徴とする請求項1又は2記載の高
靱性セラミック材料。4. The ceramic sintered body is made of alumina (Al 2
The high toughness ceramic material according to claim 1 or 2, which is O 3 ).
2O3・2SiO2)であることを特徴とする請求項1又
は2記載の高靱性セラミック材料。5. The ceramic sintered body is mullite (3Al
The high toughness ceramic material according to claim 1 or 2, wherein the high toughness ceramic material is 2 O 3 · 2SiO 2 ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5135046A JPH06321620A (en) | 1993-05-14 | 1993-05-14 | High toughness ceramic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5135046A JPH06321620A (en) | 1993-05-14 | 1993-05-14 | High toughness ceramic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06321620A true JPH06321620A (en) | 1994-11-22 |
Family
ID=15142672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5135046A Withdrawn JPH06321620A (en) | 1993-05-14 | 1993-05-14 | High toughness ceramic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06321620A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000247729A (en) * | 1999-02-23 | 2000-09-12 | Ngk Spark Plug Co Ltd | Alumina base sintered compact |
JP2001302337A (en) * | 2000-04-25 | 2001-10-31 | Nitsukatoo:Kk | Ceramic-made heat treating member excellent in thermal shock resistance |
JP2002128563A (en) * | 2000-10-23 | 2002-05-09 | Nitsukatoo:Kk | Ceramic member for thermal treatment which has good thermal shock resistance |
JP2002137962A (en) * | 2000-10-24 | 2002-05-14 | Nitsukatoo:Kk | Component for heat treatment consisting of mullite-based sintered compact |
JP2006118541A (en) * | 2004-10-19 | 2006-05-11 | Nitsukatoo:Kk | Impact resistant bumper formed of ceramic sintered body containing mullite crystal phase |
-
1993
- 1993-05-14 JP JP5135046A patent/JPH06321620A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000247729A (en) * | 1999-02-23 | 2000-09-12 | Ngk Spark Plug Co Ltd | Alumina base sintered compact |
JP2001302337A (en) * | 2000-04-25 | 2001-10-31 | Nitsukatoo:Kk | Ceramic-made heat treating member excellent in thermal shock resistance |
JP4546609B2 (en) * | 2000-04-25 | 2010-09-15 | 株式会社ニッカトー | Ceramic heat treatment material with excellent thermal shock resistance |
JP2002128563A (en) * | 2000-10-23 | 2002-05-09 | Nitsukatoo:Kk | Ceramic member for thermal treatment which has good thermal shock resistance |
JP4560199B2 (en) * | 2000-10-23 | 2010-10-13 | 株式会社ニッカトー | Ceramic heat treatment material with excellent thermal shock resistance |
JP2002137962A (en) * | 2000-10-24 | 2002-05-14 | Nitsukatoo:Kk | Component for heat treatment consisting of mullite-based sintered compact |
JP2006118541A (en) * | 2004-10-19 | 2006-05-11 | Nitsukatoo:Kk | Impact resistant bumper formed of ceramic sintered body containing mullite crystal phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bunsell et al. | Fine diameter ceramic fibres | |
Warren | Ceramic-matrix composites | |
Lee et al. | Microstructural development and mechanical properties of pressureless-sintered SiC with plate-like grains using Al 2 O 3-Y 2 O 3 additives | |
EP0282879B1 (en) | Composite ceramic sintered body and process for production thereof | |
Perevislov et al. | Hot-pressed ceramic SiC–YAG materials | |
JPH08104571A (en) | Silicon nitride-based ceramic and method for forming same | |
RU2744543C1 (en) | Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers | |
JPH1135376A (en) | Silicon-silicon carbide material with silicon concentration gradient and silicon carbide fiber reinforced silicon-silicon carbide composite material with silicon concentration gradient and their production | |
Peng et al. | Mechanical properties of ceramic–metal composites by pressure infiltration of metal into porous ceramics | |
Chen et al. | Microstructure and properties of SiCw/SiC composites prepared by gel-casting combined with precursor infiltration and pyrolysis | |
EP0659708B1 (en) | Alumina based ceramic material and method of manufacturing the same | |
Zhou et al. | Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure | |
Perevislov et al. | Silicon carbide liquid-phase sintering with various activating agents | |
Cho et al. | In situ enhancement of toughness of SiC—TiB2 composites | |
JPH06321620A (en) | High toughness ceramic material | |
JPH0157075B2 (en) | ||
JPH06340475A (en) | Fiber reinforced ceramic composite material and its production | |
JPH06287061A (en) | Sic-based composite ceramic and its production | |
JPH06287070A (en) | Composite reinforced ceramics | |
Mitomo et al. | Sintering anisotropy in slip-cast SiC-whisker/Si 3 N 4-powder compacts | |
JP4217278B2 (en) | Method for producing metal-ceramic composite material | |
Lu et al. | Microstructure of Silicon Nitride Containing β‐Phase Seeds: II | |
US5324693A (en) | Ceramic composites and process for manufacturing the same | |
JPH05194022A (en) | Ceramic composite material and its production | |
JPH06157152A (en) | Fiber reinforced composite gradient material and it production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000801 |