JPH06321552A - Production of fluorine-doped quartz glass - Google Patents

Production of fluorine-doped quartz glass

Info

Publication number
JPH06321552A
JPH06321552A JP10857493A JP10857493A JPH06321552A JP H06321552 A JPH06321552 A JP H06321552A JP 10857493 A JP10857493 A JP 10857493A JP 10857493 A JP10857493 A JP 10857493A JP H06321552 A JPH06321552 A JP H06321552A
Authority
JP
Japan
Prior art keywords
fluorine
quartz glass
plasma
plasma flame
doped quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10857493A
Other languages
Japanese (ja)
Inventor
Kouji Tsumanuma
孝司 妻沼
Katsuyuki Seto
克之 瀬戸
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10857493A priority Critical patent/JPH06321552A/en
Publication of JPH06321552A publication Critical patent/JPH06321552A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a process for the production of a fluorine-doped quartz glass having high specific refractive index difference at stable deposition rate. CONSTITUTION:A fluorine-doped quartz glass is formed on the circumference of a starting member 10 by plasma outer deposition method. The deposition process is carried out by placing a plasma torch opposite to the starting member 10 and perpendicular to the length of the member and supplying a quartz glass raw material gas coaxially with a plasma flame 11 ejected from the plasma torch simultaneously with the supply of a fluorine-based gas 15 into the plasma flame 11 from a direction different from the direction of the quarts glass raw material. Since the fluorine-based gas is supplied to the plasma flame 11 independent of the supply of the quartz glass raw material gas, the etching of the formed glass with the fluorine-based gas can be inhibited to attain a stable deposition rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ素ドープ石英ガラ
スの製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing fluorine-doped quartz glass.

【0002】[0002]

【従来の技術】一般に、光ファイバは、高屈折率のコア
と、その周囲に設けられた低屈折率のクラッドよりなる
が、その一例として、ゲルマニウムドープ石英ガラスを
コアとし、純粋石英ガラスをクラッドとしたもの、ある
いは純粋石英ガラスをコアとし、フッ素ドープ石英ガラ
スをクラッドとしたものなどがある。純粋石英ガラスを
コアとした光ファイバは、ゲルマニウムドープ石英ガラ
スをコアとした光ファイバに比べ、短波長側で低損失で
あることや、耐放射線特性に優れるなどの点から、その
需要が盛んである。
2. Description of the Related Art Generally, an optical fiber comprises a high-refractive index core and a low-refractive index clad provided around the core. As an example thereof, germanium-doped silica glass is used as the core and pure silica glass is used as the cladding. Or a core made of pure quartz glass and a cladding made of fluorine-doped quartz glass. Optical fiber with a core of pure silica glass is in high demand because of its low loss on the short wavelength side and excellent radiation resistance compared to the optical fiber with a core of germanium-doped silica glass. is there.

【0003】この純粋石英ガラスをコアとし、フッ素ド
ープ石英ガラスをクラッドとした光ファイバ母材を作製
する方法としては、CVD(化学気相沈積)法、VAD
(気相軸付け)法、プラズマ外付け法などが挙げられ
る。
As a method for producing an optical fiber preform having this pure quartz glass as a core and fluorine-doped quartz glass as a clad, a CVD (Chemical Vapor Deposition) method, VAD is used.
(Vapor axis attachment) method, plasma external attachment method and the like.

【0004】ところが、CVD法は、石英管を出発母材
とするため、薄肉クラッドの母材が得難い。またVAD
法では、比屈折率差が0.7%程度が限界であるという
問題があり、特に紫外線透過用または耐放射線光ファイ
バやイメージファイバ用母材の作製には不適当である。
However, in the CVD method, since a quartz tube is used as a starting base material, it is difficult to obtain a base material with a thin clad. Also VAD
The method has a problem that the relative refractive index difference is limited to about 0.7%, and is particularly unsuitable for producing a base material for transmitting ultraviolet light or for a radiation resistant optical fiber or an image fiber.

【0005】一方、プラズマ炎によるプラズマ外付け法
は、比屈折率差が1.0程度と非常に大きな石英ガラス
を得ることができる。
On the other hand, the plasma external attachment method using a plasma flame makes it possible to obtain quartz glass having a very large relative refractive index difference of about 1.0.

【0006】従来のプラズマ外付け法によるフッ素ドー
プ石英ガラスの製造方法を図2に示す。図中符号1が出
発石英棒である。この出発石英棒1を回転させつつ左右
に移動させながら、一定方向(直交方向)からプラズマ
炎2を放射する。プラズマ炎2中には、これと同軸方向
から、原料ガスであるSiCl4、O2とSF6を同時に
供給する。
FIG. 2 shows a conventional method for producing fluorine-doped quartz glass by a plasma external attachment method. Reference numeral 1 in the figure is a starting quartz rod. While the starting quartz rod 1 is rotated and moved left and right, the plasma flame 2 is emitted from a fixed direction (orthogonal direction). Raw material gases SiCl 4 , O 2 and SF 6 are simultaneously supplied into the plasma flame 2 in the same direction as the plasma flame 2.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記方法で
は、ディポジション速度が0.05g/min程度と非
常に遅いことが問題であった。その理由としては、一般
にフッ素系ガスがエッチング作用を有するために、石英
ガラス原料ガスと同時にフッ素系ガスをプラズマ炎内に
供給すると、その供給量次第ではガラス生成とエッチン
グが相殺してガラスの成長が遅くなるということが考え
られる。
However, the above-mentioned method has a problem that the deposition speed is very slow at about 0.05 g / min. The reason for this is that, since fluorine-based gas generally has an etching action, when fluorine-based gas is supplied into the plasma flame at the same time as the quartz glass raw material gas, glass generation and etching cancel out depending on the supply amount, and glass growth occurs. Can be slow.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、フッ素系ガスによる生成ガラスのエッ
チングを極力抑制してディポジション速度の低下防止を
図ったフッ素ドープ石英ガラスの製造方法を提供するこ
とを目的としている。
The present invention has been made in view of the above circumstances, and is a method for producing a fluorine-doped quartz glass in which the etching of the produced glass by the fluorine-based gas is suppressed as much as possible to prevent the deposition rate from decreasing. Is intended to provide.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、フッ素ドープ石英ガラスをプラズマ外
付け法で出発部材の周囲に形成するに際し、出発部材の
長さ方向に直交してプラズマトーチを対向させ、このプ
ラズマトーチから放射されるプラズマ炎と同軸上に石英
ガラス原料ガスを供給すると同時に、これと異なる方向
から、プラズマ炎中にフッ素系ガスを供給することを特
徴としている。
In order to achieve the above object, the present invention provides a method of forming a fluorine-doped quartz glass around a starting member by a plasma external attachment method in a direction orthogonal to the longitudinal direction of the starting member. The plasma torch is made to face each other, and the quartz glass raw material gas is supplied coaxially with the plasma flame emitted from the plasma torch, and at the same time, a fluorine-based gas is supplied into the plasma flame from a different direction.

【0010】[0010]

【作用】本発明のフッ素ドープ石英ガラスの製造方法に
よれば、プラズマ炎と同軸上に石英ガラス原料ガスを供
給すると同時に、これと異なる方向から、プラズマ炎中
にフッ素系ガスを供給するので、石英ガラス原料ガスと
フッ素系ガスを同時にプラズマ炎中に供給していた従来
の方法に比べ、フッ素系ガス量を石英ガラス原料ガスと
は別に独立して制御できるため、フッ素系ガスによる生
成ガラスのエッチングを抑制して安定したディポジショ
ン速度を得ることができる。
According to the method for producing fluorine-doped quartz glass of the present invention, the quartz glass raw material gas is fed coaxially with the plasma flame, and at the same time, the fluorine-based gas is fed into the plasma flame from a different direction. Compared to the conventional method in which the quartz glass raw material gas and the fluorine-based gas were simultaneously supplied into the plasma flame, the amount of the fluorine-based gas can be controlled independently of the quartz glass raw material gas, so It is possible to suppress etching and obtain a stable deposition rate.

【0011】[0011]

【実施例】以下、本発明について詳しく説明する。図1
は、本発明のフッ素ドープ石英ガラス製造方法を示す図
である。図中符号10は石英棒(出発部材)である。こ
の石英棒10をその軸の周りに回転させつつ長手方向に
移動させながら、この移動方向に直交する方向から、石
英棒10の表面に、プラズマ炎11を放射する。プラズ
マ炎11は、石英棒10の長手方向に対して直交方向に
配置されプラズマ発生用のガスを含んだプラズマトーチ
12の外周にコイル13を巻き付け、そのコイル13を
高周波電源14に接続して電流を流すことによって発生
し、このプラズマトーチ12先端より放射される。
The present invention will be described in detail below. Figure 1
FIG. 3 is a diagram showing a method for producing fluorine-doped quartz glass of the present invention. In the figure, reference numeral 10 is a quartz rod (starting member). While rotating the quartz rod 10 around its axis in the longitudinal direction, a plasma flame 11 is radiated onto the surface of the quartz rod 10 from a direction orthogonal to the moving direction. The plasma flame 11 has a coil 13 wound around the outer circumference of a plasma torch 12 which is arranged in a direction orthogonal to the longitudinal direction of the quartz rod 10 and which contains a gas for plasma generation. Is generated by flowing the magnetic field and is radiated from the tip of the plasma torch 12.

【0012】このプラズマ炎11中には、プラズマ炎1
1と同軸上に、石英ガラス原料ガス(SiCl4、O2
を供給する。SiCl4の供給量は、100〜500m
l/min程度、O2の供給量は、200〜1000m
l/min程度とするのが好ましい。
In the plasma flame 11, the plasma flame 1
Quartz glass source gas (SiCl 4 , O 2 ) coaxial with 1
To supply. The supply amount of SiCl 4 is 100 to 500 m
About 1 / min, the supply amount of O 2 is 200 to 1000 m
It is preferably about 1 / min.

【0013】またこれと同時に、プラズマ炎11中に
は、プラズマ炎11の軸に対して直交方向に配されたノ
ズル15から、フッ素系ガス(SF6)を噴射する。S
6の供給量は、10〜200ml/min程度とする
のが好ましい。なお、ノズル15は、プラズマ炎11の
軸に対して直交方向に配置するに限らず、プラズマ炎1
1中に効率良くガスを供給できれば、プラズマ炎11に
対して適当な角度を付けて配置してもよい。
At the same time, a fluorine-based gas (SF 6 ) is injected into the plasma flame 11 from a nozzle 15 arranged in a direction orthogonal to the axis of the plasma flame 11. S
The supply amount of F 6 is preferably about 10 to 200 ml / min. The nozzle 15 is not limited to be arranged in a direction orthogonal to the axis of the plasma flame 11, but the plasma flame 1
As long as the gas can be efficiently supplied into 1, the plasma flame 11 may be arranged at an appropriate angle.

【0014】この方法によれば、プラズマ炎11中で、
SiCl4はO2と反応して直接ガラス化されSiO2
形成される。また、SF6は分解してFが生成し、この
Fがプラズマ炎11中でSiO2にドープされる。こう
して生成されたFドープSiO2が、石英棒10の表面
に堆積される。
According to this method, in the plasma flame 11,
SiCl 4 reacts with O 2 to directly vitrify and form SiO 2 . Further, SF 6 is decomposed to generate F, and this F is doped into SiO 2 in the plasma flame 11. The F-doped SiO 2 thus produced is deposited on the surface of the quartz rod 10.

【0015】このように、本実施例の方法では、プラズ
マ炎11と同軸上にSiCl4とO2を供給すると同時
に、これと異なる方向から、プラズマ炎11中にSF6
を供給するので、SiCl4とSF6を同時にプラズマ炎
中に供給していた従来の方法に比べ、SF6量のコント
ロールが容易であり、そのためにSF6による生成ガラ
スのエッチングを極力抑制して、安定したディポジショ
ン速度を得ることができる。
As described above, according to the method of this embodiment, SiCl 4 and O 2 are supplied coaxially with the plasma flame 11 and, at the same time, SF 6 is introduced into the plasma flame 11 from a different direction.
As compared with the conventional method in which SiCl 4 and SF 6 are simultaneously supplied into the plasma flame, it is easier to control the amount of SF 6 and therefore the etching of the produced glass by SF 6 is suppressed as much as possible. , You can get a stable deposition speed.

【0016】以下、具体的な実施例を示して、本発明の
効果を明らかにする。 (実施例1)出発石英棒に、径50mmのものを使用
し、プラズマ炎と同軸上にSiCl4を100ml/m
in、O2を200ml/min供給し、同時にこのプ
ラズマ炎中に、このプラズマ炎の直交方向からSF6
50ml/minで噴射した。こうして、石英棒の表面
にFドープ石英ガラスを堆積させ。
Hereinafter, the effects of the present invention will be clarified by showing concrete examples. (Example 1) A starting quartz rod having a diameter of 50 mm was used, and SiCl 4 was 100 ml / m coaxially with the plasma flame.
In, O 2 was supplied at 200 ml / min, and at the same time, SF 6 was injected into this plasma flame at a rate of 50 ml / min from the direction orthogonal to this plasma flame. Thus, F-doped quartz glass was deposited on the surface of the quartz rod.

【0017】(比較例1)SiCl4、SF6とO2をと
もにプラズマ炎と同軸上にそれぞれ実施例1と同量供給
し、従来法によりフッ素ドープ石英ガラスを得た。
(Comparative Example 1) SiCl 4 , SF 6 and O 2 were all supplied in the same amount as in Example 1 coaxially with the plasma flame, and a fluorine-doped quartz glass was obtained by a conventional method.

【0018】実施例および比較例で得られたフッ素ドー
プ石英ガラスの比屈折率差(石英ガラスとの)を測定
し、結果を表1に示す。また、各例におけるディポジシ
ョン速度を測定し、表1に示す。
The relative refractive index difference (with respect to quartz glass) of the fluorine-doped quartz glass obtained in Examples and Comparative Examples was measured, and the results are shown in Table 1. In addition, the deposition speed in each example was measured and is shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の結果から、実施例において、ディポ
ジション速度の安定したフッ素ドープ石英ガラスが得ら
れることが明らかとなった。
From the results shown in Table 1, it was revealed that in the Examples, fluorine-doped quartz glass having a stable deposition rate was obtained.

【0021】なお、実施例で用いた石英棒10として高
純度のものを用いれば、これが光ファイバ用のコアとな
り、その周りに形成されたフッ素ドープ石英ガラスがク
ラッドとなる光ファイバ母材を得ることができる。さら
に石英棒10として、Geなどのドーパントを含ませた
ものを使用することもできる。
If a high-purity quartz rod 10 is used in the embodiment, this serves as a core for an optical fiber, and an optical fiber preform having a fluorine-doped quartz glass formed around it as a clad is obtained. be able to. Further, as the quartz rod 10, a substance containing a dopant such as Ge can be used.

【0022】[0022]

【発明の効果】以上説明したように、本発明のフッ素ド
ープ石英ガラスの製造方法によれば、高い比屈折率差を
有するフッ素ドープ石英ガラスを、安定したディポジシ
ョン速度で製造することができる。
As described above, according to the method for producing fluorine-doped quartz glass of the present invention, fluorine-doped quartz glass having a high relative refractive index difference can be produced at a stable deposition rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフッ素ドープ石英ガラスの製造方法の
一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a method for producing a fluorine-doped quartz glass of the present invention.

【図2】従来のフッ素ドープ石英ガラスの製造方法の例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a conventional method for producing fluorine-doped quartz glass.

【符号の説明】[Explanation of symbols]

10 石英棒(出発部材) 11 プラズマ炎 10 Quartz rod (starting member) 11 Plasma flame

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ素ドープ石英ガラスをプラズマ外付
け法で出発部材の周囲に形成するに際し、 出発部材の長さ方向に直交してプラズマトーチを対向さ
せ、このプラズマトーチから放射されるプラズマ炎と同
軸上に石英ガラス原料ガスを供給すると同時に、これと
異なる方向から、プラズマ炎中にフッ素系ガスを供給す
ることを特徴とするフッ素ドープ石英ガラスの製造方
法。
1. When a fluorine-doped quartz glass is formed around a starting member by a plasma external attachment method, a plasma torch is opposed to the starting member at right angles to a lengthwise direction of the starting member, and a plasma flame emitted from the plasma torch. A method for producing a fluorine-doped quartz glass, which comprises supplying a quartz glass raw material gas coaxially and at the same time, supplying a fluorine-based gas into a plasma flame from a different direction.
JP10857493A 1993-05-10 1993-05-10 Production of fluorine-doped quartz glass Pending JPH06321552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10857493A JPH06321552A (en) 1993-05-10 1993-05-10 Production of fluorine-doped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10857493A JPH06321552A (en) 1993-05-10 1993-05-10 Production of fluorine-doped quartz glass

Publications (1)

Publication Number Publication Date
JPH06321552A true JPH06321552A (en) 1994-11-22

Family

ID=14488272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10857493A Pending JPH06321552A (en) 1993-05-10 1993-05-10 Production of fluorine-doped quartz glass

Country Status (1)

Country Link
JP (1) JPH06321552A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322820A (en) * 2000-03-06 2001-11-20 Shin Etsu Chem Co Ltd Fluorine-containing synthetic quartz glass and its manufacturing method
FR2847893A1 (en) * 2002-12-02 2004-06-04 Cit Alcatel METHOD AND DEVICE FOR PLASMA RECHARGING OF A PREFORM FOR OPTICAL FIBER WITH REDUCED NITROGEN OXIDES
KR100695036B1 (en) * 2006-02-20 2007-03-14 엄환섭 High-temperature large-volume plasma gas-scrubber
EP2206689A1 (en) * 2008-12-26 2010-07-14 Shin-Etsu Chemical Co., Ltd. Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2012512798A (en) * 2008-12-19 2012-06-07 ジェイ−ファイバー ゲーエムベーハー Multi-nozzle tubular plasma deposition burner for producing preforms as semi-finished products for optical fibers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322820A (en) * 2000-03-06 2001-11-20 Shin Etsu Chem Co Ltd Fluorine-containing synthetic quartz glass and its manufacturing method
FR2847893A1 (en) * 2002-12-02 2004-06-04 Cit Alcatel METHOD AND DEVICE FOR PLASMA RECHARGING OF A PREFORM FOR OPTICAL FIBER WITH REDUCED NITROGEN OXIDES
EP1426340A1 (en) 2002-12-02 2004-06-09 Alcatel Process and apparatus for overcladding an optical fibre preform by plasma
KR100695036B1 (en) * 2006-02-20 2007-03-14 엄환섭 High-temperature large-volume plasma gas-scrubber
JP2012512798A (en) * 2008-12-19 2012-06-07 ジェイ−ファイバー ゲーエムベーハー Multi-nozzle tubular plasma deposition burner for producing preforms as semi-finished products for optical fibers
EP2206689A1 (en) * 2008-12-26 2010-07-14 Shin-Etsu Chemical Co., Ltd. Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch

Similar Documents

Publication Publication Date Title
US4345928A (en) Fabrication method of single-mode optical fiber preforms
US3966446A (en) Axial fabrication of optical fibers
EP0185106B1 (en) Method of producing a rod containing fluorine
US5110335A (en) Method of glass soot deposition using ultrasonic nozzle
US4145458A (en) Method of producing internally coated glass tubes for the drawing of fiber-optic light conductors
US4737179A (en) Method for producing glass preform for optical fiber
GB2128981A (en) Fabrication method of optical fiber preforms
US20110162413A1 (en) Method of manufacturing optical fiber base material
US20020162359A1 (en) Method and feedstock for making silica
US11117825B2 (en) Method for activating an inner surface of a hollow glass substrate tube for the manufacturing of an optical fiber preform
JPH06321552A (en) Production of fluorine-doped quartz glass
JP4359183B2 (en) Correction method of ellipticity of optical fiber preform
KR20050028606A (en) Low loss optical fiber and method for fabricating optical fiber preform
US20020162357A1 (en) Method and feedstock for making silica by flame combustion
US5850497A (en) Method for stretching refractory bodies
Geisler et al. Optical Fibres: EPO Applied Technology Series
JP3428066B2 (en) Method for producing fluorine-doped quartz glass
JPH06321551A (en) Production of fluorine-doped quartz glass
EP3118172B1 (en) Method for activating an inner surface of a substrate tube for the manufacturing of an optical fiber preform
JPS63319231A (en) Production of glass containing rare earth element
CN112456782B (en) Preparation method of optical fiber stress rod
WO1999032413A1 (en) Method of making large scale optical fiber preforms with improved properties
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP2004002117A (en) Manufacture method of preform for optical fibers
JPH0656448A (en) Production of optical fiber preform