JPH06319567A - Phosphoenol pyruvic acid carboxylase gene of soybean - Google Patents

Phosphoenol pyruvic acid carboxylase gene of soybean

Info

Publication number
JPH06319567A
JPH06319567A JP3274950A JP27495091A JPH06319567A JP H06319567 A JPH06319567 A JP H06319567A JP 3274950 A JP3274950 A JP 3274950A JP 27495091 A JP27495091 A JP 27495091A JP H06319567 A JPH06319567 A JP H06319567A
Authority
JP
Japan
Prior art keywords
soybean
pepc
gene
cdna
pyruvic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3274950A
Other languages
Japanese (ja)
Other versions
JP3002735B2 (en
Inventor
Yukio Kawamura
幸雄 河村
Toshio Sugimoto
敏男 杉本
Daisuke Shibata
大輔 柴田
Efu Uitsuteia Robaato
エフ ウイッティア ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI GIYOUSAI SHOKUBUTSU BIO
MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK
National Food Research Institute
Original Assignee
MITSUI GIYOUSAI SHOKUBUTSU BIO
MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI GIYOUSAI SHOKUBUTSU BIO, MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK, National Food Research Institute filed Critical MITSUI GIYOUSAI SHOKUBUTSU BIO
Priority to JP3274950A priority Critical patent/JP3002735B2/en
Publication of JPH06319567A publication Critical patent/JPH06319567A/en
Application granted granted Critical
Publication of JP3002735B2 publication Critical patent/JP3002735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

PURPOSE:To provide a novel gene useful for the growth of soybean or other kinds of plants having desirable properties. CONSTITUTION:A gene coding a phosphoenol pyruvic acid carboxylase having an amino acid sequence of the formula. The gene is obtained by cloning a cDNA from a ripened soybean seed and subsequently determining the basic sequence of the clone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、植物の種子、特に大豆
に含まれるホスホエノールピルビン酸カルボキシラーゼ
遺伝子に関するものである。該遺伝子は、タンパク質の
生産増大に関するものであるので、この遺伝子を発現さ
せればタンパク質含量の高い大豆その他の植物を生産す
ることができ、一方遺伝子の発現を抑制すれば大豆その
他の植物での脂肪の生産増大が図られ、本発明を利用す
れば、所望する性質を有する大豆その他各種の植物の育
種が極めて効率的に行われる。
TECHNICAL FIELD The present invention relates to a phosphoenolpyruvate carboxylase gene contained in plant seeds, especially soybeans. Since the gene is associated with increased protein production, expression of this gene can produce soybeans and other plants having a high protein content, while suppression of gene expression can improve soybean and other plants. By increasing the production of fat, and utilizing the present invention, the breeding of soybeans and various plants having desired properties can be carried out extremely efficiently.

【0002】[0002]

【従来の技術】ホスホエノールピルビン酸カルボキシラ
ーゼ(以下、PEPCと略す)は植物の各種の組織に見
いだされる酵素であり、ホスホエノールピルビン酸と炭
酸イオンからオキザロ酢酸とオルトリン酸を生成する反
応を触媒する。
2. Description of the Related Art Phosphoenolpyruvate carboxylase (hereinafter abbreviated as PEPC) is an enzyme found in various tissues of plants and catalyzes the reaction of producing oxaloacetate and orthophosphate from phosphoenolpyruvate and carbonate ions. .

【0003】Sugimotoら(Agric.Bio
l.Chem.53,885,1989)によれば大豆
種子に含まれるPEPCとタンパク質含量、脂肪含量と
の間にはそれぞれ正、および負の相関性があることが報
告されている。すなわちPEPCの発現量を制御すれ
ば、これらの生産量をコントロールできることを示して
いる。従来の研究においてはC4植物であるトウモロコ
シのPEPC遺伝子が単離されているが(Izuiら、
Nucl.Acids Res.14,1615,19
86)、C3植物の種子からの遺伝子の単離は報告され
ていない。
Sugimoto et al. (Agric. Bio
l. Chem. 53 , 885, 1989), it has been reported that there is a positive and negative correlation between PEPC and protein content and fat content contained in soybean seeds, respectively. That is, it is shown that the production amount of these can be controlled by controlling the expression amount of PEPC. Previous studies have isolated the PEPC gene of the C4 plant maize (Izui et al.
Nucl. Acids Res. 14 , 1615, 19
86), the isolation of genes from the seeds of C3 plants has not been reported.

【0004】[0004]

【発明が解決しようとする課題】人口の増大に伴ない、
食糧の増産は世界的な急務であるが、作付面積の拡大は
森林等自然破壊につながり好ましくない。このような条
件下で食糧増産を図るためには、個々の植物自体を増大
ないし肥大化する方法のほか、植物における特定成分濃
度を特に高める方法が考えられる。
[Problems to be Solved by the Invention] As the population grows,
Although increasing the production of food is an urgent global task, expanding the acreage is not preferable because it leads to the destruction of nature such as forests. In order to increase food production under such conditions, a method of increasing or enlarging individual plants themselves, and a method of particularly increasing the concentration of a specific component in a plant are considered.

【0005】本発明は、後者の考え方にたち、しかもこ
れを遺伝子工学の手法を利用して解決しようとするもの
であって、特にタンパク質と脂肪の増産という観点か
ら、それに関与する遺伝子をクローニングすることを目
的とし、もって所望する植物を育種することを究極の目
的とするものである。
The present invention is based on the latter idea and intends to solve this by utilizing a genetic engineering technique. In particular, from the viewpoint of increasing the production of protein and fat, the gene involved in it is cloned. Therefore, the ultimate purpose is to breed desired plants.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために行われたものであって、本発明者らは植物
種子・葉・培養細胞におけるタンパク質含量の増大ある
いは脂肪生産の増大を図る手段として、大豆からPEP
C遺伝子のクローニングを計画し、大豆登熟期種子より
2種のcDNAをクローニングするのに成功し、更に各
方面から研究の結果、大豆PEPC遺伝子の構造を決定
するのに成功し、遂に本発明の完成に至ったものであ
る。以下、本発明について詳細に説明する。
The present invention was carried out in order to achieve the above object, and the present inventors have found that the protein content or fat production in plant seeds, leaves and cultured cells is increased. As a means to achieve, soybeans to PEP
We planned to clone C gene, succeeded in cloning two kinds of cDNA from soybean ripening stage seeds, and succeeded in determining the structure of soybean PEPC gene as a result of researches from various directions. Has been completed. Hereinafter, the present invention will be described in detail.

【0007】本発明を実施するには、先ず、大豆種子か
らPEPCを分離精製する必要があるが、それには酵素
の精製に用いられる常法が適宜利用され、例えば、大豆
種子を破砕した後、緩衝液に懸濁し、その上清の硫安画
分について、カラムクロマトグラフィー等既知の方法に
したがって精製する。
In order to carry out the present invention, it is first necessary to separate and purify PEPC from soybean seeds. For this purpose, a conventional method used for the purification of enzymes is appropriately used. For example, after crushing soybean seeds, The suspension is suspended in a buffer solution, and the ammonium sulfate fraction in the supernatant is purified according to a known method such as column chromatography.

【0008】このようにして、大豆種子からPEPCを
均一にまで精製した後、それを用いてウサギに対する抗
体を作製した。次に、大豆の登熟期の種子からポリ
(A)RNAを調製して、それを鋳型としてcDNAを
合成した。このcDNAをラムダファージベクターλg
t11に組み込みcDNAライブラリーを得た。このラ
イブラリーをさらに大腸菌Y1088株を用いて増幅さ
せてからスクリーニングを行った。スクリーニングは先
に作製したウサギ抗体を用いて行ったところ、この抗体
に特異的に結合するタンパク質を生産するλファージが
6つ得られた。これらがPEPC遺伝子を有するもので
あることを確認するために、これらのλファージが生産
するタンパク質に結合する抗体を精製して、それを用い
てウエスタン分析を行った。その結果、いずれの抗体も
SDS電気泳動で分離した大豆種子タンパク質の中から
PEPCのみを特異的に選択したことからPEPC遺伝
子を含むことを確認した。そこでこれらのλファージか
らλDNAを調製して、制限酵素EcoRIで切断して
からcDNA部分を回収して、プラスミドベクターpK
S+にサブクローニングした。これらの制限酵素地図を
作製したところ、4つは1kbp以下のインサートcD
NAしか含まなかったが、2つは3kbpのインサート
DNAを含んでいた。これら2つのクローンをSPC1
およびSPC16と名付けた。この両者は制限酵素の位
置が異なっており、異なる遺伝子に由来するPEPC遺
伝子であることが判明した。これらの塩基配列を決定し
て2種のPEPC遺伝子のcDNAの塩基配列を得るの
に成功した(配列表、配列番号1及び配列番号2)。
In this manner, PEPC was purified to homogeneity from soybean seeds and then used to prepare an antibody against rabbits. Next, poly (A) RNA was prepared from seeds of soybean during the ripening period, and cDNA was synthesized using the poly (A) RNA as a template. This cDNA is lambda phage vector λg
An integrated cDNA library was obtained at t11. This library was further amplified using Escherichia coli Y1088 strain and then screened. When the screening was carried out using the rabbit antibody prepared above, 6 λ phages producing a protein that specifically binds to this antibody were obtained. In order to confirm that these have the PEPC gene, antibodies that bind to the proteins produced by these λ phages were purified and used for Western analysis. As a result, it was confirmed that all the antibodies contained the PEPC gene because only PEPC was specifically selected from the soybean seed proteins separated by SDS electrophoresis. Therefore, λDNA was prepared from these λ phages, cleaved with the restriction enzyme EcoRI, and the cDNA portion was recovered to obtain the plasmid vector pK.
Subcloned into S +. When these restriction enzyme maps were created, four of them were insert cDs of 1 kbp or less.
Two contained only NA but two contained 3 kbp insert DNA. These two clones are SPC1
And SPC16. It was revealed that the two have different restriction enzyme positions and are PEPC genes derived from different genes. These base sequences were determined, and the base sequences of the cDNAs of the two PEPC genes were successfully obtained (sequence listing, SEQ ID NO: 1 and SEQ ID NO: 2).

【0009】この2種のPEPC遺伝子の配列は既にト
ウモロコシ、マツバギク、ラン藻、大腸菌から単離され
ているPEPC遺伝子と相同性がみとめられるが同一で
はなかった。
The sequences of these two types of PEPC genes were found to be homologous with, but not identical to, the PEPC genes already isolated from maize, sycamore, cyanobacteria, and Escherichia coli.

【0010】以下に本発明を実施例に基づいて詳細に説
明する。
The present invention will be described in detail below based on examples.

【0011】[0011]

【実施例1】[Example 1]

【0012】(1)大豆PEPCの精製 大豆種子(500g)を粉砕して、2リットルの0.1
Mリン酸緩衝液(pH6.8、25mM塩化マグネシウ
ムを含む)を加えてよく混合し、その上清を遠心分離に
よって回収した。この上清から30%から50%の硫安
画分を得た。この硫安沈澱を0.1Mトリス緩衝液(p
H7.5、30%硫安を含む)に溶解したのち、同じ緩
衝液を用いてブチルトヨパールカラム(5×50cm)
に供して、PEPC活性を溶出した。この画分を透析し
た後、DEAEトヨパールカラム(5×50cm)に供
した。このカラムよりPEPC活性を塩化ナトリウムの
濃度勾配により溶出した。この画分を硫安沈澱させたの
ちセファロースCL6Bカラム(2×90cm)を用い
てゲル濾過を行った。この画分をハイドロキシアパタイ
トカラム(1×20cm)に供し、5mMから100m
Mのリン酸緩衝液(pH6.8)にて溶出した。この様
にして均一に精製されたPEPCを得た。
(1) Purification of Soybean PEPC Soybean seeds (500 g) were crushed to obtain 2 liters of 0.1.
M phosphate buffer (pH 6.8, containing 25 mM magnesium chloride) was added and mixed well, and the supernatant was collected by centrifugation. A 30% to 50% ammonium sulfate fraction was obtained from this supernatant. This ammonium sulfate precipitate was mixed with 0.1 M Tris buffer (p
Butyl Toyopearl column (5 x 50 cm) after dissolving in H7.5, containing 30% ammonium sulfate)
Then, the PEPC activity was eluted. After dialyzing this fraction, it was applied to a DEAE Toyopearl column (5 × 50 cm). PEPC activity was eluted from this column by a concentration gradient of sodium chloride. After ammonium sulfate precipitation of this fraction, gel filtration was performed using a Sepharose CL6B column (2 × 90 cm). This fraction was applied to a hydroxyapatite column (1 × 20 cm) and 5 mM to 100 m
Elution was performed with M phosphate buffer (pH 6.8). In this way, uniformly purified PEPC was obtained.

【0013】(2)大豆PEPCに対する抗体の作製 以上の方法で得た大豆PEPCの1mgを2.5mlの
アジュバントとよく混合したのち、ウサギの表皮に注射
した。60日間の後に再度、同じウサギに同様にして大
豆PEPCを注射して抗体価を高めた。この後、60日
間たってからこのウサギから血液を採取し、等量の50
mMクエン酸ナトリウムを加えて、その上清を抗体とし
て用いた。
(2) Preparation of antibody against soybean PEPC 1 mg of soybean PEPC obtained by the above method was well mixed with 2.5 ml of adjuvant and then injected into the epidermis of rabbits. After 60 days, the same rabbit was again injected with soybean PEPC to increase the antibody titer. After this, 60 days later, blood was collected from the rabbit and an equal volume of 50
mM sodium citrate was added and the supernatant was used as the antibody.

【0014】(3)大豆登熟期種子からのポリ(A)R
NAの調製 登熟期の大豆種子をすぐさま液体窒素に投入して、凍結
して、使用までは−135℃で保存した。この大豆種子
(50g)を液体窒素の存在下で乳鉢を用いて、粉末状
になるまで破砕した。これに200mlの抽出緩衝液
(20mMのバナジルコンプレックス、2%SDS、ト
リス塩酸、pH8.0)を加えて、すぐさま500×g
で遠心してその上清を回収した。この上清に等量のフェ
ノール・トリス(pH8.0)を加えて、約10分間攪
拌してから2000×gで遠心して、その上清を回収し
た。この上清に10分の1量の3M酢酸ナトリウム(p
H5.2)および2倍量のエタノールを加えて、−20
℃で30分間おいた。これを2000×gで遠心して核
酸の沈澱を得た。これを5mlのトリス緩衝液に溶解
後、等量のフェノール・トリスを加えて、10分間攪拌
した。この上清を遠心で回収して、このフェノール抽出
をさらに5回繰り返した。得られた上清をエタノールで
沈澱させ、このRNAを蒸留水に溶解し、RNA濃度が
1mg/ml、塩化リチウム濃度が2Mとなるようにし
たのち、氷上で8時間静置した。これを2000×gで
遠心してから、沈澱を回収した。このRNA沈澱を蒸留
水に溶解した。ポリ(A)RNAの調製は、オリゴdT
スピンカラム(ファルマシア社製)を用いて、このカラ
ムの使用説明書に従って行った。100μgのポリ
(A)RNAを得ることができた。
(3) Poly (A) R from soybean ripening seeds
Preparation of NA Soybean seeds at the ripening stage were immediately put into liquid nitrogen, frozen, and stored at -135 ° C until use. This soybean seed (50 g) was crushed in the presence of liquid nitrogen using a mortar until it became powdery. To this, 200 ml of extraction buffer (20 mM vanadyl complex, 2% SDS, Tris-HCl, pH 8.0) was added, and immediately 500 × g.
The supernatant was recovered by centrifugation at. An equal amount of phenol tris (pH 8.0) was added to this supernatant, and the mixture was stirred for about 10 minutes and then centrifuged at 2000 × g to collect the supernatant. This supernatant was mixed with 1/10 volume of 3M sodium acetate (p
H5.2) and 2 volumes of ethanol were added to give -20
Let stand at ℃ for 30 minutes. This was centrifuged at 2000 × g to obtain a nucleic acid precipitate. After dissolving this in 5 ml of Tris buffer, an equal amount of phenol-Tris was added and stirred for 10 minutes. The supernatant was collected by centrifugation and the phenol extraction was repeated 5 more times. The obtained supernatant was precipitated with ethanol, the RNA was dissolved in distilled water so that the RNA concentration was 1 mg / ml and the lithium chloride concentration was 2 M, and then the mixture was allowed to stand on ice for 8 hours. This was centrifuged at 2000 xg and the precipitate was collected. This RNA precipitate was dissolved in distilled water. Preparation of poly (A) RNA was performed using oligo dT
A spin column (manufactured by Pharmacia) was used according to the instruction manual for this column. It was possible to obtain 100 μg of poly (A) RNA.

【0015】(4)cDNAライブラリーの作製 上記の方法で得たポリ(A)RNAを5μg用い、cD
NA合成キット(ファルマシア社製)を用い、このキッ
トの説明書に従ってcDNAを合成した。このキットに
よるcDNA合成では合成されたcDNAの両末端にE
coRIアダプターをライゲーションキット(宝酒造社
製)を用いて、その説明書に従って、連結反応を行わせ
た。このようにして得られたλDNAをパッケージング
キット(ストラタジーン社製)を用いて、そのキットの
説明書に従ってファージ粒子を再構成させ、cDNAラ
イブラリーとした。このライブラリーには約100万の
組換体が含まれていた。このライブラリーをスクリーニ
ングする前に、このライブラリーに含まれる全てのファ
ージを大腸菌Y1088株に感染させ、これを42℃で
寒天培地上で培養して、6時間後に出現したファージプ
ラークからファージをSM溶液を用いて回収した。この
回収液にクロロフォルムを少量くわえて4℃で保存し
た。以下のスクリーニングではこのファージ液をcDN
Aライブラリーとして用いた。
(4) Preparation of cDNA library Using 5 μg of poly (A) RNA obtained by the above method, cD
Using an NA synthesis kit (Pharmacia), cDNA was synthesized according to the instructions of the kit. In the cDNA synthesis using this kit, E was added to both ends of the synthesized cDNA.
Ligation kit (manufactured by Takara Shuzo Co., Ltd.) was used for the coRI adapter, and the ligation reaction was performed according to the instruction. The λDNA thus obtained was used as a cDNA library by reconstituting phage particles using a packaging kit (manufactured by Stratagene) according to the instructions of the kit. This library contained approximately 1 million recombinants. Before screening this library, all the phages contained in this library were infected with Escherichia coli Y1088 strain, which was cultivated on agar medium at 42 ° C., and phages were smeared from phage plaques that appeared after 6 hours. Recovered using the solution. A small amount of chloroform was added to this recovered solution and the mixture was stored at 4 ° C. In the following screening, this phage solution was used for cDNA
Used as A library.

【0016】(5)cDNAのスクリーニング 以上のようにして得られたcDNAライブラリーに含ま
れるファージ液の一部を大腸菌(Y1090株)と混合
して37℃で15分間培養することによって、ファージ
を大腸菌に感染させた。これを50℃で溶解した10m
lの軟寒天と混合してから、LB寒天培地(直径15c
mのシャーレ)に重層させ、軟寒天を固化させた。この
際、一枚のシャーレあたり10万個のプラークが生じる
ように大腸菌とファージ液の量を調節した。このように
して調製した10枚のシャーレを3時間、42℃で培養
後、10mMのIPTG溶液をしみこませてから乾燥し
ておいたニトロセルロースフィルターを寒天培地上にか
ぶせ、さらに3時間、37℃で培養を行った。その後、
これらのフィルターを注意深く寒天培地から剥し、1%
のBSA溶液に16時間浸した。PEPCのウサギ抗体
(0.1ml)を100mlのBSA溶液に加えて混合
したのち、この溶液に先のフィルターを浸して、緩く揺
すりながら室温で1時間抗体と反応させた。発色反応は
アルカリフォスファターゼをもちいる2次抗体法のキッ
ト(プロメガ社、ピコブルー)をその説明書に従って行
った。フィルター上に現れた6個の紫色のスポットの位
置をそのフィルターが由来した寒天培地と照らし合わせ
て、対応する位置のファージを1mlのSM溶液に回収
した。これら6種のファージ液には目的以外のファージ
が多数混在しているので、今度はシャーレ1枚当り約1
00のファージのプラークが生じるように寒天培地にま
いて、同様にしてそれぞれのファージ液から紫色のスポ
ットを与えるファージのプラークを回収した(2次スク
リーニング)。さらに同様にして3次スクリーニングを
行い、最終的に6種のファージ液を得た。
(5) Screening of cDNA A part of the phage solution contained in the cDNA library obtained as described above was mixed with Escherichia coli (Y1090 strain) and incubated at 37 ° C. for 15 minutes to screen the phage. E. coli was infected. 10m which melted this at 50 degrees Celsius
l soft agar and then mixed with LB agar (diameter 15c
m petri dish) to solidify the soft agar. At this time, the amounts of Escherichia coli and the phage solution were adjusted so that 100,000 plaques were produced per dish. The 10 dishes thus prepared were incubated at 42 ° C. for 3 hours, and then the dried nitrocellulose filter was soaked in 10 mM IPTG solution, and the dried nitrocellulose filter was covered on the agar medium for another 3 hours at 37 ° C. Culture was carried out in. afterwards,
Carefully remove these filters from the agar and remove 1%
It was soaked in the BSA solution for 16 hours. After adding PEPC rabbit antibody (0.1 ml) to 100 ml of BSA solution and mixing, the above filter was dipped in this solution and reacted with the antibody for 1 hour at room temperature while gently shaking. The color reaction was carried out using a secondary antibody method kit (Promega, Picoblue) using alkaline phosphatase according to the instructions. The positions of the 6 purple spots appearing on the filter were compared with the agar medium from which the filter was derived, and the phage at the corresponding position was recovered in 1 ml of SM solution. Since a large number of non-target phages are mixed in these 6 types of phage liquids, this time, about 1 phage per plate was used.
The plaques of phages that gave purple spots were collected from each phage solution in the same manner as above, and the plaques of phages that gave purple spots were collected (secondary screening). Further, the third screening was carried out in the same manner to finally obtain 6 kinds of phage solutions.

【0017】(6)塩基配列の決定 このようにして得られた6種のファージからGross
bergerの方法(Nuc.Acids Res.
,6737,1987)に従って、λDNAをそれぞ
れ調製した。このλDNAを制限酵素EcoRIで消化
してから、すでにEcoRIで消化しCIP処理を施し
たプラスミドベクターpKS+(ストラタジーン社)と
ライゲーションキット(宝酒造社製)の説明書に従っ
て、連結した。これを用いて大腸菌(XL1−Blue
株)を形質転換した。得られたコロニーからプラスミド
を調製して、各種の制限酵素で消化して、それぞれの制
限酵素地図を作製した。これらを比較して、2種の全長
と考えられるcDNAを見いだした。これらをSPC1
およびSPC16と名付けた。これらは類似した制限酵
素地図を示すが、いくつかの点で異なっており、異なる
PEPC遺伝子から由来していることが判明した。そこ
でこれらの塩基配列を決定するため、SPC1に関して
はインサートcDNAを別のプラスミドベクターpUC
118にサブクローニングした。これらをプロメガ社の
イレース・ア・ベース・キットを用い、その説明書に従
って、デリーションクローンを作製した。これらのクロ
ーンから一本鎖DNAを調製して、ジデオキシ法により
塩基配列を決定した。その結果、2つのPEPCクロー
ンはいずれも翻訳開始部位を含む全長のcDNAインサ
ートを有することが明らかとなった。
(6) Determination of nucleotide sequence From the 6 kinds of phages thus obtained, Gross
Berger's method (Nuc. Acids Res. 1
5 , 6737, 1987), respectively, to prepare λDNA. This λDNA was digested with the restriction enzyme EcoRI, and then ligated with the plasmid vector pKS + (Stratagene), which had been digested with EcoRI and subjected to CIP treatment, according to the instruction of the ligation kit (Takara Shuzo). Using this, E. coli (XL1-Blue
Strain). Plasmids were prepared from the obtained colonies and digested with various restriction enzymes to prepare respective restriction enzyme maps. By comparing these, two types of cDNA considered to be full length were found. These are SPC1
And SPC16. They show similar restriction maps but differ in some respects and were found to be derived from different PEPC genes. Therefore, in order to determine these nucleotide sequences, for SPC1, the insert cDNA was replaced with another plasmid vector pUC.
Subcloned into 118. Using these Erase A Base Kit from Promega, a deletion clone was prepared according to the instruction. Single-stranded DNA was prepared from these clones and the nucleotide sequence was determined by the dideoxy method. As a result, it was revealed that each of the two PEPC clones had a full-length cDNA insert containing a translation initiation site.

【0018】すなわち、本発明は、下記の表1〜16に
示される配列表の配列番号1、2に示す大豆のPEPC
をコードする遺伝子に関するものである。
That is, the present invention relates to soybean PEPCs shown in SEQ ID NOS: 1 and 2 of the sequence listings shown in Tables 1 to 16 below.
It relates to the gene that encodes.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】[0026]

【表8】 [Table 8]

【0027】[0027]

【表9】 [Table 9]

【0028】[0028]

【表10】 [Table 10]

【0029】[0029]

【表11】 [Table 11]

【0030】[0030]

【表12】 [Table 12]

【0031】[0031]

【表13】 [Table 13]

【0032】[0032]

【表14】 [Table 14]

【0033】[0033]

【表15】 [Table 15]

【0034】[0034]

【表16】 [Table 16]

【0035】[0035]

【発明の効果】PEPC活性が高い植物細胞では脂肪の
合成に較べてタンパク質の生産量が増加するという観点
から、PEPCを利用してタンパク質の生産の増大、あ
るいは逆にPEPCの発現を抑えることにより脂肪の生
産増大に用いることができる。本発明により大豆種子で
のタンパク質生産増大に係わるPEPCの遺伝子が単離
されたことにより、遺伝子組換え技術を用いて植物種
子、葉・培養細胞などにおいてタンパク質含量を増大さ
せた植物の作製や、逆に脂肪含量を増大させた植物の作
製が期待できる。
EFFECTS OF THE INVENTION From the viewpoint that plant cells with high PEPC activity produce more protein than fat synthesis, PEPC is used to increase protein production, or conversely to suppress PEPC expression. It can be used to increase fat production. By isolating the PEPC gene involved in increasing protein production in soybean seeds according to the present invention, the production of plants having increased protein content in plant seeds, leaves, cultured cells, etc. using gene recombination technology, On the contrary, it can be expected to produce plants with increased fat content.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 大輔 茨城県土浦市永国1153−7 (72)発明者 ロバート エフ ウイッティア 茨城県土浦市桜ケ丘31−14 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Daisuke Shibata 1153-7 Nagakuni, Tsuchiura-shi, Ibaraki Prefecture (72) Inventor Robert F Whittier 31-14 Sakuragaoka, Tsuchiura-shi, Ibaraki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1及び/又は配列番号
2に示すアミノ酸配列を有するホスホエノールピルビン
酸カルボキシラーゼをコードする遺伝子。
1. A gene encoding phosphoenolpyruvate carboxylase having the amino acid sequence shown in SEQ ID NO: 1 and / or SEQ ID NO: 2.
JP3274950A 1991-09-27 1991-09-27 Soybean phosphoenolpyruvate carboxylase gene Expired - Fee Related JP3002735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274950A JP3002735B2 (en) 1991-09-27 1991-09-27 Soybean phosphoenolpyruvate carboxylase gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274950A JP3002735B2 (en) 1991-09-27 1991-09-27 Soybean phosphoenolpyruvate carboxylase gene

Publications (2)

Publication Number Publication Date
JPH06319567A true JPH06319567A (en) 1994-11-22
JP3002735B2 JP3002735B2 (en) 2000-01-24

Family

ID=17548820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274950A Expired - Fee Related JP3002735B2 (en) 1991-09-27 1991-09-27 Soybean phosphoenolpyruvate carboxylase gene

Country Status (1)

Country Link
JP (1) JP3002735B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787801A3 (en) * 1996-02-01 1998-05-06 Mitsubishi Corporation Method for increasing storage lipid content in plant seed
WO2000046378A3 (en) * 1999-02-05 2000-11-30 Biotechnolog Forschung Gmbh Method of improving the primary energy metabolism of mammalian cell lines
EP1229120A1 (en) * 1999-11-09 2002-08-07 Zhejiang Academy of Agricultural Sciences A method for producing seeds having altered protein/fatty acid composition
US6610913B1 (en) 1997-02-10 2003-08-26 Japan Tobacco, Inc. Rice plants transformed to provide a PCK-type C4 cycle and methods of making
AU2013202738A1 (en) * 2003-04-14 2013-05-02 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion (4)
US9394527B2 (en) 2003-04-14 2016-07-19 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787801A3 (en) * 1996-02-01 1998-05-06 Mitsubishi Corporation Method for increasing storage lipid content in plant seed
US5914449A (en) * 1996-02-01 1999-06-22 Mitsubishi Corporation Method for increasing storage lipid content in plant seed
US6610913B1 (en) 1997-02-10 2003-08-26 Japan Tobacco, Inc. Rice plants transformed to provide a PCK-type C4 cycle and methods of making
WO2000046378A3 (en) * 1999-02-05 2000-11-30 Biotechnolog Forschung Gmbh Method of improving the primary energy metabolism of mammalian cell lines
EP1229120A1 (en) * 1999-11-09 2002-08-07 Zhejiang Academy of Agricultural Sciences A method for producing seeds having altered protein/fatty acid composition
EP1229120A4 (en) * 1999-11-09 2004-10-06 Zhejiang Acad Agricultural Sci A method for producing seeds having altered protein/fatty acid composition
AU2013202738A1 (en) * 2003-04-14 2013-05-02 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion (4)
AU2013202738B2 (en) * 2003-04-14 2016-06-30 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion (4)
US9394527B2 (en) 2003-04-14 2016-07-19 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion
AU2013202738C1 (en) * 2003-04-14 2017-01-19 Agriculture Victoria Services Pty Ltd Manipulation of organic acid biosynthesis and secretion (4)

Also Published As

Publication number Publication date
JP3002735B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
JP3469902B2 (en) Cold-inducible promoter sequence
JPH0662870A (en) Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region
JPS6322191A (en) Development of gene
JPS61501490A (en) recombinant DNA molecule
JPH06502759A (en) Recombinant ACC synthase
JP3002735B2 (en) Soybean phosphoenolpyruvate carboxylase gene
JPH0279979A (en) Self-incompatible gene
EP0708112B1 (en) RPDL protein and DNA encoding the same
JPH0690766A (en) Phosphoenol pyruvic acid carboxylase gene of brassics napus
WO2021155753A1 (en) Herbicide-resistant gene, polypeptide, and application thereof in plant breeding
KR20110099111A (en) Process for the enzymatic production of cyclic diguanosine monophosphate employing a diguanylate cyclase comprising a mutated rxxd motif
WO2011069459A1 (en) Seed-specific expression vector and its construction methods and applications
CN114656532B (en) Application of CBL9 and coding gene thereof in regulation and control of saline-alkali tolerance of plants
CN111118029B (en) Key gene PmARF6 for regulating and controlling blossoming of masson pine and application thereof
JPH09224672A (en) Dna coding new dna-connected protein
EP4119507A1 (en) Use of flavonoid glycoside substance and glycosyltransferase gene therefor in regulating resistance of plant to weeds
JP3335194B2 (en) Plant disease resistance specific lipoxygenase gene
US5523391A (en) DNA fragment encoding tumor cell growth inhibitors
JPS60232097A (en) Preparation of human tumor necrotic factor polypeptide
JPH0965886A (en) Dna of gene relating to photosynthesis of plant and plant introduced with the same
SU1436887A3 (en) Method of producing recombination plasmodium dna encoding growth hormone of rat or human being
JP2681253B2 (en) Peroxidase transcription regulatory gene and method of using the same
JP3564537B2 (en) Plant Ran gene mutant and method for promoting plant flowering time using the mutant
JPH06153963A (en) Rice seed specific protein kinase gene
KR20200111121A (en) Transgenic plants with inhibited expression of cgl1 and cgl2 and method for producing target protein using the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

LAPS Cancellation because of no payment of annual fees
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350