JPH06315853A - Detecting method for constituting cutting edge of turning machine - Google Patents

Detecting method for constituting cutting edge of turning machine

Info

Publication number
JPH06315853A
JPH06315853A JP12840993A JP12840993A JPH06315853A JP H06315853 A JPH06315853 A JP H06315853A JP 12840993 A JP12840993 A JP 12840993A JP 12840993 A JP12840993 A JP 12840993A JP H06315853 A JPH06315853 A JP H06315853A
Authority
JP
Japan
Prior art keywords
cutting
force
cutting edge
constituent
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12840993A
Other languages
Japanese (ja)
Inventor
Ichiro Inazaki
一郎 稲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP12840993A priority Critical patent/JPH06315853A/en
Publication of JPH06315853A publication Critical patent/JPH06315853A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect the presence of a constituting cutting edge during cutting under the cutting condition of a wide range by monitoring the thrust force applied to a cutting tool, judging whether the prescribed statistic of the thrust force exceeds the threshold value or not, and judging the presence of the constituting cutting edge. CONSTITUTION:A cutting tool 3 is fitted to a tool rest 1 via a tool holder 2, the front face or the outer shape of a work W held by a spindle 4 is cut, and a tool dynamometer having a piezoelectric element is provided on the tool holder 2 as a thrust force detecting sensor 5. The thrust force Fp among the feed component force Ff, main component force Ft, and thrust force Fp applied to the cutting tool 3 is detected by the sensor 5, and the detected signal is inputted to a calculating means 8 via a charge amplifier 6 and an A/D converter 7. The average value of the sampling data in the average time is determined, and the ratio of the average value against the standard deviation is calculated. When the ratio exceeds the threshold value, the constituting cutting edge detection signal is outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、旋盤等の旋削機械に
おいて、旋削中に切削工具に構成刃先が生じたことを検
出する旋削機械の構成刃先検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turning machine such as a lathe, and a method for detecting a constituent cutting edge of a turning machine for detecting occurrence of a constituent cutting edge of a cutting tool during turning.

【0002】[0002]

【従来の技術】切削加工では、切削熱により被削材の一
部が溶融して工具刃先に付着し、これが硬化して疑似的
に切れ刃の働きをする、いわゆる構成刃先となることが
ある。図15に示すように、構成刃先BUEは、切削工
具Tのすくい面aに生じ、切削工具Tのすくい角αに対
して、実際に被削材Wに作用するすくい角をαa と大き
くする。そのため、構成刃先BUEの発生によって切削
力が低下する。
2. Description of the Related Art In cutting, a part of a work material is melted by cutting heat and adheres to a cutting edge of a tool, which hardens to function as a cutting edge in a pseudo manner. . As shown in FIG. 15, built-up edge BUE arises the rake face a of the cutting tool T, with respect to the rake angle alpha of the cutting tool T, actually increase the rake angle of alpha a acting on the workpiece W . Therefore, the cutting force decreases due to the formation of the constituent cutting edge BUE.

【0003】一般的な傾向として、図16に示すように
構成刃先の形成高さHは切削速度に影響し、ある低い速
度V1で生じて速度の増加と共に高くなり、中間速度V
2で減少し始め、ある程度の高速(速度V3)になると
完全に消失する。切削力Fは構成刃先の形成高さHに比
例して低減する。このように構成刃先の形成は切削力の
低下につながるため、重切削等では積極的に構成刃先を
生じさせて切削する方法も採用されている。
As a general tendency, as shown in FIG. 16, the forming height H of the constituent cutting edge influences the cutting speed, which occurs at a certain low speed V1 and becomes higher as the speed increases, and the intermediate speed V
It starts decreasing at 2 and completely disappears at a certain high speed (speed V3). The cutting force F decreases in proportion to the forming height H of the constituent cutting edge. Since the formation of the constituent cutting edge leads to a reduction in the cutting force in this way, a method of actively generating the constituent cutting edge and cutting is also adopted in heavy cutting and the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、構成刃先が生
じた状態で切削した場合、仕上面の表面粗さ等の品質を
低下させるという問題点がある。そのため、良好な仕上
面が要求される加工では、構成刃先の形成を避ける必要
がある。構成刃先が生じたか否かは、切削工具を目視す
ればわかり、また加工面の面粗さを測定することによっ
てもわかるが、自動運転時、特に無人運転時では構成刃
先を自動的に検出することが要求される。この場合に、
工具の目視や面粗さの測定による検出方法は採用できな
い。そこで、切削力を監視して構成刃先の発生を検出す
ることを考えたが、構成刃先の有無は、切削速度だけで
なく、切込み深さや切削送り等の切削条件によっても変
わる。そのため、広範な切削条件で自動運転する場合
に、構成刃先を自動検出することは難しく、実用可能な
自動検出方法は未だ開発されていない。
However, there is a problem in that, when cutting is performed with the built-up edge, quality such as surface roughness of the finished surface is deteriorated. Therefore, it is necessary to avoid the formation of the constituent cutting edge in the processing that requires a good finished surface. Whether or not a configured cutting edge has occurred can be seen by visually observing the cutting tool and also by measuring the surface roughness of the machined surface, but automatically detects the configured cutting edge during automatic operation, especially during unattended operation. Is required. In this case,
A detection method by visual inspection of the tool or measurement of surface roughness cannot be adopted. Therefore, it was considered to monitor the cutting force to detect the generation of the constituent cutting edge, but the presence or absence of the constituent cutting edge varies depending on not only the cutting speed but also the cutting conditions such as the cutting depth and the cutting feed. Therefore, when automatically operating under a wide range of cutting conditions, it is difficult to automatically detect the constituent cutting edge, and a practical automatic detection method has not yet been developed.

【0005】この発明の目的は、広範な切削条件で構成
刃先の有無を自動検出できる旋削機械の構成刃先検出方
法を提供することである。
An object of the present invention is to provide a constituent cutting edge detecting method for a turning machine capable of automatically detecting the presence or absence of the constituent cutting edge under a wide range of cutting conditions.

【0006】[0006]

【課題を解決するための手段】この発明の旋削機械の構
成刃先検出方法は、切削工具に作用する送り分力、主分
力、背分力のうち、背分力を監視し、切削中に背分力の
所定の統計量がしきい値を超えたか否かで構成刃先の有
無を判定する方法である。
A method of detecting a cutting edge of a turning machine according to the present invention monitors a back force component among a feed force component, a main force component and a back force component acting on a cutting tool, and detects the back force force during cutting. This is a method of determining the presence or absence of the constituent cutting edge depending on whether or not a predetermined statistic of the back force exceeds a threshold value.

【0007】請求項2の発明は、請求項1記載の構成刃
先検出方法において、しきい値と比較する統計量とし
て、背分力の平均値の標準偏差に対する比率を用いる方
法である。すなわち、背分力の監視をサンプリングによ
り行い、所定期間毎に期間中の背分力のサンプリングデ
ータについての平均値と、標準偏差と、この平均値の標
準偏差に対する比率とを計算する。この比率の計算値を
しきい値と比較して構成刃先の有無を判定する。
According to a second aspect of the present invention, in the constituent edge detecting method according to the first aspect, the ratio of the average value of the back force to the standard deviation is used as the statistic to be compared with the threshold value. That is, the back force is monitored by sampling, and the average value, the standard deviation, and the ratio of the average value to the standard deviation of the sampled data of the back force during the period are calculated every predetermined period. The presence or absence of the constituent cutting edge is determined by comparing the calculated value of this ratio with a threshold value.

【0008】[0008]

【作用】切削工具に作用する各方向の分力は、被削材や
切削工具が同じであっても、切削速度の他、切込み深さ
や送り等の切削条件によっても変わり、これらの分力を
単に設定値と比較する方法等では広範な切削条件下で構
成刃先を検出することはできない。しかし、いずれの分
力についても、ある種の統計量につき、切削条件が変わ
っても変化せずに、構成刃先の有無によって生じるしき
い値があることが実験の結果わかった。したがって、こ
のしきい値とその統計量とを比較することで、構成刃先
の有無が検出できる。この場合に、構成刃先の有無によ
る統計量の差は、3分力のうち、背分力が最も大きかっ
た。したがって、背分力の統計量を利用することによ
り、最も正確に構成刃先の検出が行える。
[Function] The component force in each direction acting on the cutting tool varies depending on the cutting speed, cutting depth and feed conditions, even if the work material and cutting tool are the same. The configured cutting edge cannot be detected under a wide range of cutting conditions by a method such as simply comparing with a set value. However, as a result of the experiment, it was found that there is a threshold value generated by the presence or absence of the built-up edge, which does not change even if the cutting condition changes, with respect to any component force, for a certain kind of statistic. Therefore, the presence or absence of the constituent cutting edge can be detected by comparing this threshold value with its statistic. In this case, the difference in the statistic amount depending on the presence or absence of the constituent cutting edge was the largest among the three component forces. Therefore, the constituent blade edge can be detected most accurately by using the statistical amount of the back force.

【0009】請求項2の発明では、しきい値と比較する
統計量として、所定期間毎の平均値の標準偏差に対する
比率を用いたが、この比率を用いることより、後に実験
結果を示すように、広範な切削条件で構成刃先の有無の
確実な検出が行える。
In the second aspect of the invention, the ratio of the average value for each predetermined period to the standard deviation is used as the statistic to be compared with the threshold value. However, by using this ratio, experimental results will be shown later. The presence or absence of the constituent cutting edge can be reliably detected under a wide range of cutting conditions.

【0010】[0010]

【実施例】この発明の一実施例を図1および図2に基づ
いて説明する。図1はこの構成刃先検出方法を適用する
旋削機械および検出装置の構成を示す。刃物台1に工具
ホルダ2を介して切削工具3が取付けられており、この
切削工具3により、スピンドル4に把持された被削材W
の正面削りまたは外径切削等の旋削が行われる。刃物台
1はタレット等からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the configuration of a turning machine and a detection device to which the constituent blade edge detection method is applied. A cutting tool 3 is attached to a tool rest 1 via a tool holder 2, and a work material W held by a spindle 4 by the cutting tool 3 is attached.
Face turning or outer diameter cutting is performed. The turret 1 is composed of a turret or the like.

【0011】工具ホルダ2には、背分力検出センサ5と
して、圧電素子を有する工具動力計が設けてある。すな
わち、同図(B)に示す主分力Ft 、送り分力Ff 、お
よび背分力Fp のうちの背分力Fp を検出するセンサ5
を設ける。センサ5の出力は、チャージアンプ6で増幅
された後、A/Dコンバータ7でディジタル値に変換さ
れ、演算手段8に入力される。演算手段8は、専用に設
けたマイクロコンピュータ、または旋削機械を制御する
CNC装置のプログラマブルコントローラ等で構成され
る。演算手段8による背分力測定データの取り込みは、
一定のサンプリングタイムTs(例えば数ミリ秒)毎に
行われ、所定期間Ta(例えば数百ミリ秒)毎にサンプ
リングデータの解析が行われる。
The tool holder 2 is provided with a tool dynamometer having a piezoelectric element as the back force detecting sensor 5. That is, the sensor 5 that detects the back force component F p of the main force component F t , the feed force component F f , and the back force component F p shown in FIG.
To provide. The output of the sensor 5 is amplified by the charge amplifier 6, converted into a digital value by the A / D converter 7, and input to the arithmetic means 8. The computing means 8 is composed of a dedicated microcomputer, a programmable controller of a CNC device for controlling a turning machine, or the like. The calculation of the back force measurement data by the calculation means 8
The sampling data is analyzed every fixed sampling time Ts (several milliseconds), and the sampling data is analyzed every predetermined period Ta (several hundred milliseconds).

【0012】図2は、図1の演算手段8による処理を示
す。まず、所定期間Taにおける背分力のサンプリング
データ(例えば数十個)を入力し(ステップS1)、こ
れらのサンプリングデータの平均値と、標準偏差と、前
記平均値の標準偏差に対する比率Rを演算する(S
2)。平均値、標準偏差、およびその比率Rは、次の計
算式に従って演算される。
FIG. 2 shows the processing by the arithmetic means 8 of FIG. First, sampling data (for example, several tens) of back force in a predetermined period Ta is input (step S1), and an average value of these sampling data, a standard deviation, and a ratio R of the average value to the standard deviation are calculated. Do (S
2). The average value, the standard deviation, and the ratio R thereof are calculated according to the following calculation formula.

【0013】[0013]

【数1】 [Equation 1]

【0014】この演算した比率Rを、予め設定したしき
い値Rt と比較し(S3)、比率Rがしきい値Rt に達
していない場合は、そのままステップS1に戻って次の
所定期間Ta分につき、前記と同様の演算を繰り返す。
ステップS3の判断過程で、比率Rがしきい値Rt より
も大きい場合は、構成刃先検出信号を出力(S4)した
後、ステップS1に戻る。旋削機械のCNC装置では、
例えば構成刃先検出信号に応答して、構成刃先が消失す
るような切削速度、あるいは送り等に切削条件を制御
し、加工を続ける。仕上げ面に高い精度が要求される場
合は、CNC装置は構成刃先検出信号の発生によって加
工中の被削材の加工を停止し、その被削材を不良品とし
て排出処理した後に次の被削材の加工を行う。
This calculated ratio R is compared with a preset threshold value R t (S3). If the ratio R has not reached the threshold value R t , the process directly returns to step S1 and the next predetermined period is reached. For Ta, the same calculation as above is repeated.
If the ratio R is larger than the threshold value R t in the determination process of step S3, the constituent blade edge detection signal is output (S4), and then the process returns to step S1. In the CNC machine of turning machine,
For example, in response to the constituent blade edge detection signal, the cutting condition is controlled such that the constituent blade edge disappears, the cutting speed is controlled, or the feed is continued to continue the machining. When high accuracy is required for the finished surface, the CNC device stops the processing of the work material being processed by the generation of the component edge detection signal, discharges the work material as a defective product, and then performs the next work. The material is processed.

【0015】この構成刃先検出方法によると、このよう
に背分力のサンプリングデータにつき、所定期間毎の平
均値の標準偏差に対する比率Rを求め、この比率Rをし
きい値Rt と比較して構成刃先の有無判定を行うように
したため、後に示す実験結果からわかるように、切込み
深さや送り等の切削条件が種々異なる広範囲の切削条件
下で、構成刃先の有無の自動検出が行える。特に、3分
力のうちの背分力を有無判断に利用しており、背分力は
構成刃先の有無による前記比率Rの差が最も大きいの
で、正確な有無判断が行える。
According to this constitutional edge detecting method, the ratio R to the standard deviation of the average value for each predetermined period is obtained for the sampling data of the back force component, and this ratio R is compared with the threshold value R t. Since the presence / absence of the constituent cutting edge is determined, the presence / absence of the constituent cutting edge can be automatically detected under a wide range of cutting conditions in which the cutting conditions such as the cutting depth and the feed are different, as can be seen from the experimental results described later. In particular, the back force of the three force components is used for the presence / absence determination, and the back force has the largest difference in the ratio R depending on the presence / absence of the constituent cutting edge, so that the accurate presence / absence determination can be performed.

【0016】つぎに、構成刃先検出の実験例を示す。図
3は実験設備を示す。旋削機械にはCNC制御ターニン
グマシン(村田機械株式会社製WSC−6型)を使用し
ており、その主軸モータの最大出力は7.5kWであ
る。被削材Wは主軸14のチャックに把持し、タレット
11に取付けた切削工具13により正面削りを行う。タ
レット11には、切削工具13の主分力Ft ,送り分力
f ,および背分力Fpを各々検出する工具動力計15
を設置する。
Next, an experimental example of detecting the constituent cutting edge will be shown. Figure 3 shows the experimental setup. A CNC control turning machine (WSC-6 type manufactured by Murata Machinery Co., Ltd.) is used as the turning machine, and the maximum output of the spindle motor is 7.5 kW. The workpiece W is gripped by the chuck of the spindle 14, and the cutting tool 13 attached to the turret 11 is used to carry out front face grinding. The turret 11 has a tool dynamometer 15 for detecting a main component force F t , a feed component force F f , and a back component force F p of the cutting tool 13, respectively.
Set up.

【0017】各分力Ft ,Ff ,Fp の検出信号は、各
々チャージアンプ16a〜16cで増幅した後、A/C
コンバータ17でディジタル値に変換し、5m秒のサン
プリングタイムでマイクロコンピュータ18に入力す
る。各分力Ft ,Ff ,Fp のサンプリングデータは、
各々200m秒の設定期間毎に解析する。すなわち、こ
の期間に得られる40個ずつのサンプリングデータにつ
き、各方向の分力の平均値と標準偏差とを演算する。被
削材Wには内径が32mmで外径が100mmの厚肉円筒状
の鉄鋼材(S45C)を用い、切削工具13にはTNM
G332−MF(サンドビィック社)を使用した。スピ
ンドル14の回転速度は800rpm で常に一定とした。
The detection signals of the respective component forces F t , F f and F p are amplified by the charge amplifiers 16a to 16c, respectively, and then A / C.
It is converted into a digital value by the converter 17 and input to the microcomputer 18 at a sampling time of 5 msec. The sampling data of each component F t , F f , F p is
Each set period of 200 msec is analyzed. That is, the average value and the standard deviation of the component forces in each direction are calculated for 40 sampling data obtained during this period. The work material W is a thick cylindrical steel material (S45C) having an inner diameter of 32 mm and an outer diameter of 100 mm, and the cutting tool 13 is TNM.
G332-MF (Sandvik) was used. The rotation speed of the spindle 14 was 800 rpm and was always constant.

【0018】実験結果とその考察を説明する。図4は、
正面削りで切削速度を次第に変化させたときの切削力の
3分力の変化を示す。送りfは0.1mm/rev 、切込み
深さaは0.2mm/rev とし、いずれも一定に保った。
切削工具13の送りは、被削材Wの中心側から外径側へ
行った。したがって、切削速度Vは80〜250m/mi
n.の間で次第に増加する。構成刃先は、切削開始時から
生じて切削速度が153m/min.になったときに消失し
た。この臨界切削速度は、被削材Wの表面性状(表面粗
さ)を測定して容易にわかる(同図(D)参照)。3分
力は、構成刃先の成長に伴って同様な変化を示し、いず
れも前記臨界速度で最大となって、これ以上に切削速度
が増加しても同程度の値が続く。
The experimental results and their consideration will be described. Figure 4
The change in the three-component force of the cutting force when the cutting speed is gradually changed by face milling is shown. The feed f was 0.1 mm / rev and the depth of cut a was 0.2 mm / rev, both of which were kept constant.
The cutting tool 13 was fed from the center side of the work material W to the outer diameter side. Therefore, the cutting speed V is 80 to 250 m / mi
gradually increasing between n. The constituent cutting edge was generated from the start of cutting and disappeared when the cutting speed reached 153 m / min. This critical cutting speed can be easily found by measuring the surface properties (surface roughness) of the work material W (see FIG. 3D). The three-component force shows a similar change with the growth of the constituent cutting edges, and both have the maximum value at the critical speed, and even if the cutting speed is further increased, the same value continues.

【0019】図5は、送りfを次第に変化させて切削速
度Vを変えたときに構成刃先が生じる境界を切込み深さ
別に示した図である。同図(A)は切込み深さaが0.
2mm、(B)は0.4mm、(C)は0.6mmの場合を各
々示す。同図から構成刃先の生じる境界は、切削速度と
送りだけでなく、切込み深さも影響することがわかる。
FIG. 5 is a diagram showing the boundaries of the constituent cutting edges when the feed f is gradually changed and the cutting speed V is changed according to the cutting depth. In the same figure (A), the cutting depth a is 0.
2 mm, (B) is 0.4 mm, and (C) is 0.6 mm. From the figure, it can be seen that the boundary formed by the constituent cutting edges affects not only the cutting speed and the feed but also the cutting depth.

【0020】構成刃先の有無判断に利用し得る切削力の
特徴的な統計量としては、平均値と標準偏差の二つが考
えられる。そこで、各分力につき、所定期間毎に前記の
ように得られる40個ずつのサンプリングデータにつき
計算した平均値と標準偏差(S.T.D)とを図6に示
す。同図は図4のデータから計算した結果である。同図
から、切削力の大きさとその変化の様子とが構成刃先の
有無判断に使い得ることがわかる。
As a characteristic statistic of the cutting force that can be used for determining the presence or absence of the constituent cutting edge, there are two possible values, an average value and a standard deviation. Therefore, FIG. 6 shows the average value and the standard deviation (STD) calculated for each of the 40 sampling data obtained as described above for each predetermined force for each predetermined period. The figure shows the results calculated from the data of FIG. From the figure, it can be seen that the magnitude of the cutting force and the state of its change can be used to determine the presence or absence of the constituent cutting edge.

【0021】しかし、切削力の大きさとその変化とは、
切削条件や工具形状等によっても異なるため、広範な切
削条件下で構成刃先の検出を行うためのしきい値を決定
することは難しい。例えば、図7〜図9は、切込み深さ
aを一定(0.4mm)として、送りfを0.1、0.1
5、および0.20mm/rev に設定したときの各分力の
標準偏差を各々示す。これらの図を比較してわかるよう
に、各分力の標準偏差についてのしきいσt 値は、切込
み深さが深くなるに従って大きくなっている。したがっ
て、切削力の標準偏差の監視だけでは広範な切削条件下
で構成刃先の検出を行うには不十分である。
However, the magnitude of the cutting force and its change are
Since it varies depending on the cutting conditions, the tool shape, etc., it is difficult to determine the threshold value for detecting the constituent cutting edge under a wide range of cutting conditions. For example, in FIGS. 7 to 9, the feed depth f is 0.1, 0.1 with the cutting depth a being constant (0.4 mm).
The standard deviation of each component force when set to 5 and 0.20 mm / rev is shown, respectively. As can be seen by comparing these figures, the threshold σ t value for the standard deviation of each component force increases as the cutting depth increases. Therefore, monitoring the standard deviation of the cutting force is not sufficient to detect the built-up edge under a wide range of cutting conditions.

【0022】しかしながら、この問題は、平均値の標準
偏差に対する比率Rを計算することで解消される。図1
0の各グラフは、切込み深さを一定(0.4mm)とし
て、送りfを0.10、0.15、0.20mm/rev と
した場合の各分力についての前記比率Rを各々示す。同
図の各グラフは、いずれも横軸に切削速度V(m/min)
を取り、縦軸に比率Rを示している。同図によれば、切
込み深さaが一定であれば、いずれの切削分力について
も、前記比率RのしきいRt 値は、広範な切削速度Vお
よび送りfの条件下で一定値として決定できることがわ
かる。
However, this problem is solved by calculating the ratio R to the standard deviation of the mean value. Figure 1
Each graph of 0 shows the ratio R for each component force when the cutting depth is constant (0.4 mm) and the feed f is 0.10, 0.15, and 0.20 mm / rev. In each graph in the figure, the horizontal axis is the cutting speed V (m / min)
Is taken and the vertical axis shows the ratio R. According to the figure, if the cutting depth a is constant, the threshold R t value of the ratio R is a constant value under a wide range of cutting speed V and feed f for any cutting component force. I know that I can make a decision.

【0023】図11の各グラフは、送りfを一定(0.
1mm/rev )として、切込み深さaを各々0.2、0.
4、0.6mmとした場合の各分力についての前記比率R
を各々示す。同図によれば、送りfが一定であれば、い
ずれの切削分力についても、前記比率Rのしきい値Rt
は、広範な切削速度Vおよび切込み深さaの条件下で一
定値として決定できることがわかる。しかも、図10お
よび図11に示される同じ切削分力についてのしきい値
tは同じ値となっている。このことは、切削工具と被
削材の組み合わせが同じであれば、広範な切削条件下で
前記比率Rのしきい値Rt を一定値に決定できることを
意味する。
In each graph of FIG. 11, the feed f is constant (0.
1 mm / rev) and the cutting depths a are 0.2, 0.
The ratio R for each component force when 4 and 0.6 mm
Are shown respectively. According to the figure, if the feed f is constant, the threshold value R t of the ratio R is set for any cutting component force.
It can be seen that can be determined as a constant value under a wide range of cutting speed V and cutting depth a. Moreover, the threshold value R t for the same cutting component force shown in FIGS. 10 and 11 is the same value. This means that the threshold value R t of the ratio R can be determined to be a constant value under a wide range of cutting conditions if the combination of the cutting tool and the work material is the same.

【0024】3分力のなかで、構成刃先の検出に対して
最も感度の良い分力がいずれであるかは、構成刃先が有
るときと無いときとで、前記比率Rの平均値がどれだけ
違うかを求めることによってわかる。図12は、各送り
速度の場合につき、構成刃先の有無別に計算した前記比
率Rの平均値を示す。同図によれば、構成刃先の有無に
よる比率Rの違いは、背分力が最も大きいことがわか
る。同様な結果は図13においても示されている。同図
は、構成刃先の有無による比率Rの違いを、切込み深さ
を異ならせた場合につき示している。これらの結果か
ら、背分力についての平均値の標準偏差に対する比率R
を、構成刃先の有無の検出に用いれば良いことがわか
る。
Of the three component forces, which component force has the highest sensitivity to the detection of the component cutting edge is what the average value of the ratio R is with and without the component cutting edge. You can tell by asking for the difference. FIG. 12 shows the average value of the ratio R calculated for the presence or absence of the constituent cutting edge for each feed rate. According to the figure, the difference in the ratio R depending on the presence or absence of the constituent cutting edge is the largest in the back force. Similar results are shown in FIG. The figure shows the difference in the ratio R depending on the presence or absence of the constituent cutting edge when the cutting depth is different. From these results, the ratio R to the standard deviation of the mean value of the back force is
It can be seen that can be used to detect the presence or absence of the constituent cutting edge.

【0025】図14は、背分力を監視して、前記所定期
間毎の平均値の標準偏差に対する比率Rを演算し、構成
刃先の有無検出を実際に行った結果を示す。この切削試
験は、正面削りを、スピンドルの回転速度が800rpm
、送りが0.1mm/rev 、切込深さが0.4mmの条件
で行った。構成刃先の有無判断の結果は、同図(B)に
示すようになった。この結果が正しいことは、被削材の
表面性状(同図(C))を直接に測定することで証明さ
れる。
FIG. 14 shows the result of actually detecting the presence or absence of the constituent cutting edge by monitoring the back force and calculating the ratio R of the average value to the standard deviation for each predetermined period. In this cutting test, face grinding was performed and the spindle rotation speed was 800 rpm.
The feed was 0.1 mm / rev and the depth of cut was 0.4 mm. The result of the presence / absence judgment of the constituent cutting edge is shown in FIG. The fact that this result is correct is proved by directly measuring the surface texture of the work material (FIG. 7C).

【0026】これらの実験結果から、この発明の構成刃
先検出方法は、広範な切削条件下での構成刃先の検出に
実際に適用できることが証明される。なお、前記の実験
例は、正面削りの場合のみを示したが、外径切削の場合
にも同様な結果が得られる。前記の実施例は被削材Wの
表面性状(表面粗さ)から、サンプリングデータ中にお
ける構成刃先の消失時点を求める方法でしきい値を決定
したが、これとは逆に、切削速度を高速から徐々に減速
して行く過程での構成刃先発生時点を求める方法で決定
したしきい値も略同様の値であった。また、前記実施例
は、構成刃先の有無判断のためにしきい値と比較する統
計量として、平均値の標準偏差に対する比率を使用した
が、しきい値を一定値に定められる統計量であれば、前
記比率以外の統計量を構成刃先の有無判断に使用しても
良い。
From these experimental results, it is proved that the method for detecting the built-up edge of the present invention can be actually applied to the detection of the built-up edge under a wide range of cutting conditions. In addition, although the above-mentioned experimental example shows only the case of face-cutting, the same result can be obtained also in the case of outer-diameter cutting. In the above-mentioned embodiment, the threshold value is determined from the surface property (surface roughness) of the work material W by the method of determining the disappearance time of the constituent cutting edge in the sampling data. The threshold value determined by the method of obtaining the point of time at which the constituent cutting edge occurred in the process of gradually decelerating from was approximately the same value. Further, in the embodiment, as the statistic amount to be compared with the threshold value for determining the presence or absence of the constituent cutting edge, the ratio of the average value to the standard deviation is used, but if the statistic amount is set to a fixed value for the threshold value. Alternatively, a statistic other than the above ratio may be used for determining the presence or absence of the constituent cutting edge.

【0027】[0027]

【発明の効果】この発明の旋削機械の構成刃先検出方法
は、切削工具に作用する背分力を監視し、背分力の所定
の統計量がしきい値を超えたか否かで構成刃先の有無を
判定するようにしたため、広範囲の切削条件下で、切削
中における構成刃先の有無検出を自動的にかつ正確に行
うことができる。
EFFECT OF THE INVENTION The method of detecting the constituent cutting edge of the turning machine according to the present invention monitors the back force acting on the cutting tool, and determines whether the predetermined cutting force of the back force exceeds a threshold value. Since the presence / absence is determined, it is possible to automatically and accurately detect the presence / absence of the constituent cutting edge during cutting under a wide range of cutting conditions.

【0028】特に、請求項2の構成の場合は、背分力の
サンプリングデータにつき、所定期間毎に平均値と標準
偏差と、この平均値の標準偏差に対する比率とを演算
し、その比率の計算値である統計量をしきい値と比較し
て構成刃先の有無判断を行うため、実験結果からも証明
されるように、広範囲の切削条件下で一定したしきい値
が設定でき、切削中における構成刃先の有無検出を容易
に精度良く行うことができる。
In particular, in the case of the structure of claim 2, the average value and the standard deviation and the ratio of the average value to the standard deviation are calculated for each sampling period of the back force component, and the ratio is calculated. Since the presence or absence of the component cutting edge is judged by comparing the statistical amount, which is the value, with the threshold value, a constant threshold value can be set under a wide range of cutting conditions, as evidenced by experimental results, and It is possible to easily and accurately detect the presence or absence of the constituent cutting edge.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施例にかかる構成刃先
検出方法を適用する検出装置の概念図、(B)は構成刃
先の切削分力を示す説明図である。
FIG. 1A is a conceptual diagram of a detection device to which a constituent blade edge detecting method according to an embodiment of the present invention is applied, and FIG. 1B is an explanatory diagram showing a cutting component force of a constituent blade edge.

【図2】同実施例の構成刃先検出方法におけるデータ処
理過程を示す流れ図である。
FIG. 2 is a flowchart showing a data processing process in the constituent blade edge detection method of the embodiment.

【図3】構成刃先の検出実験に用いた設備の説明図であ
る。
FIG. 3 is an explanatory diagram of equipment used for an experiment for detecting a configured cutting edge.

【図4】同検出実験における切削力の3方向分力と表面
粗さの検出結果を示すグラフである。
FIG. 4 is a graph showing detection results of three-dimensional component force of cutting force and surface roughness in the same detection experiment.

【図5】切削条件の構成刃先の形成に対する影響を示す
グラフである。
FIG. 5 is a graph showing the influence of cutting conditions on the formation of constituent cutting edges.

【図6】構成刃先の形成に伴う切削力の平均値と標準偏
差の変化を示すグラフである。
FIG. 6 is a graph showing changes in the average value and standard deviation of the cutting force associated with the formation of the constituent cutting edges.

【図7】送りを0.10mmとした場合の構成刃先の発生
に伴う切削力の標準偏差の変化を示すグラフである。
FIG. 7 is a graph showing a change in the standard deviation of the cutting force due to the generation of the constituent cutting edge when the feed is 0.10 mm.

【図8】送りを0.15mmとした場合の構成刃先の発生
に伴う切削力の標準偏差の変化を示すグラフである。
FIG. 8 is a graph showing changes in the standard deviation of the cutting force due to the generation of constituent blade edges when the feed is set to 0.15 mm.

【図9】送りを0.20mmとした場合の構成刃先の発生
に伴う切削力の標準偏差の変化を示すグラフである。
FIG. 9 is a graph showing changes in the standard deviation of the cutting force due to the generation of the constituent cutting edge when the feed is 0.20 mm.

【図10】切削力の平均値の標準偏差に対する比率の変
化を、3種類の送りにつき各々示すグラフである。
FIG. 10 is a graph showing changes in the ratio of the average value of the cutting force to the standard deviation for each of three types of feed.

【図11】切削力の平均値の標準偏差に対する比率の変
化を、3種類の切込みにつき各々示すグラフである。
FIG. 11 is a graph showing changes in the ratio of the average value of the cutting force to the standard deviation for each of three types of cuts.

【図12】前記比率の構成刃先の有無別の平均値を、送
りを変化させた場合につき示すグラフである。
FIG. 12 is a graph showing an average value of the above ratios with and without a constituent cutting edge, when the feed is changed.

【図13】前記比率の構成刃先の有無別の平均値を、切
込み深さを変化させた場合につき示すグラフである。
FIG. 13 is a graph showing an average value of the ratios according to presence or absence of a constituent cutting edge when the cutting depth is changed.

【図14】実施例の方法で構成刃先の検出を行った実験
結果の説明図である。
FIG. 14 is an explanatory diagram of an experimental result in which the constituent blade edge is detected by the method of the embodiment.

【図15】一般的な構成刃先の形成状態とすくい角の変
化とを示す説明図である。
FIG. 15 is an explanatory diagram showing a general state of formation of a cutting edge and a change in rake angle.

【図16】切削速度の変化に伴う切削力と構成刃先の高
さ変化とにつき、一般的な関係を示すグラフである。
FIG. 16 is a graph showing a general relationship between a cutting force and a change in height of a constituent cutting edge with a change in cutting speed.

【符号の説明】[Explanation of symbols]

1…刃物台、3…切削工具、4…スピンドル、5…背分
力センサ、8…演算手段、W…被削材、Fp …背分力
1 ... tool rest, 3 ... cutting tool, 4 ... spindle, 5 ... back component force sensor, 8 ... operation unit, W ... workpiece, F p ... back component force

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 切削工具に作用する送り分力、主分力、
背分力のうち、背分力を監視し、切削中に背分力の所定
の統計量がしきい値を超えたか否かで構成刃先の有無を
判定する旋削機械の構成刃先検出方法。
1. A feed component force, a main component force, which acts on a cutting tool,
Of the back force components, a back force component is monitored, and a component cutting edge detection method for a turning machine that determines the presence or absence of a component blade edge based on whether or not a predetermined statistic of the back component force exceeds a threshold value during cutting.
【請求項2】 請求項1記載の構成刃先検出方法におい
て、背分力の監視をサンプリングにより行い、所定期間
毎にその期間中の背分力のサンプリングデータについて
の平均値と、標準偏差と、この平均値の標準偏差に対す
る比率とを計算し、この比率の計算値を、前記しきい値
との比較に用いる統計量とする旋削機械の構成刃先検出
方法。
2. The constituent blade edge detection method according to claim 1, wherein the back force component is monitored by sampling, and an average value and a standard deviation of the back force component sampling data during the period are provided. A method of detecting a constituent cutting edge of a turning machine, wherein a ratio of the average value to a standard deviation is calculated, and the calculated value of the ratio is used as a statistic used for comparison with the threshold value.
JP12840993A 1993-04-30 1993-04-30 Detecting method for constituting cutting edge of turning machine Pending JPH06315853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12840993A JPH06315853A (en) 1993-04-30 1993-04-30 Detecting method for constituting cutting edge of turning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12840993A JPH06315853A (en) 1993-04-30 1993-04-30 Detecting method for constituting cutting edge of turning machine

Publications (1)

Publication Number Publication Date
JPH06315853A true JPH06315853A (en) 1994-11-15

Family

ID=14984071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12840993A Pending JPH06315853A (en) 1993-04-30 1993-04-30 Detecting method for constituting cutting edge of turning machine

Country Status (1)

Country Link
JP (1) JPH06315853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039202A (en) * 2001-07-30 2003-02-12 Nissan Motor Co Ltd Cutting working method and cutting working system
CN105150028A (en) * 2015-04-24 2015-12-16 张萍 Novel pressure detection device
WO2022149322A1 (en) 2021-01-07 2022-07-14 Dmg森精機株式会社 Machine tool, method for estimating force acting on tool, and program for estimating force acting on tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039202A (en) * 2001-07-30 2003-02-12 Nissan Motor Co Ltd Cutting working method and cutting working system
CN105150028A (en) * 2015-04-24 2015-12-16 张萍 Novel pressure detection device
WO2022149322A1 (en) 2021-01-07 2022-07-14 Dmg森精機株式会社 Machine tool, method for estimating force acting on tool, and program for estimating force acting on tool

Similar Documents

Publication Publication Date Title
US6085121A (en) Device and method for recommending dynamically preferred speeds for machining
US7101126B2 (en) Cutting force detection method and machining control method and apparatus based on detected cutting force
JP3446518B2 (en) Rotary tool abnormality detection method and device
JP3421562B2 (en) Cutting tool runout detection method
Yeh et al. A study of the monitoring and suppression system for turning slender workpieces
JP6545555B2 (en) Device and method for estimating remaining life of drill
JP3566014B2 (en) Processing equipment
JPH08174379A (en) Chatter vibration suppressing method
JPH06315853A (en) Detecting method for constituting cutting edge of turning machine
EP3611585B1 (en) Machine tool
JP2010069540A (en) Abnormality detection device for drilling, machine tool equipped with the abnormality detection device, abnormality detection method
WO2019077948A1 (en) Cutting machining device
JP2011121139A (en) Device and method for detecting tool failure
JPH06170697A (en) Method and device for supervising overload of drill
JP6466804B2 (en) Machine tool abnormality detection device and machine abnormality detection method
JP2014061567A (en) Machine tool
JPH068111A (en) Drill life judgment method
CN114555291A (en) Method and system for monitoring machining state of working machine
JPH091444A (en) Method and apparatus for monitoring cutting load condition in machine tool
JP2520017B2 (en) Machining load monitoring method and device for drilling
JP2535598B2 (en) Machining load monitoring device considering the tool feed direction
Park et al. Adaptive control and monitoring using the spindle integrated force sensor system
Baralić et al. Flank wear as a function of cutting time
JP3154224B2 (en) Work material judgment method
Tu et al. Review of sensor-based approach to reliable high speed machining at boeing–A tribute to Jan Jeppsson