JPH06315023A - Backup path network designing method - Google Patents

Backup path network designing method

Info

Publication number
JPH06315023A
JPH06315023A JP10394993A JP10394993A JPH06315023A JP H06315023 A JPH06315023 A JP H06315023A JP 10394993 A JP10394993 A JP 10394993A JP 10394993 A JP10394993 A JP 10394993A JP H06315023 A JPH06315023 A JP H06315023A
Authority
JP
Japan
Prior art keywords
path
backup
paths
transmission line
backup path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10394993A
Other languages
Japanese (ja)
Inventor
Jiro Yamada
慈朗 山田
Fumihiko Deguchi
文彦 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10394993A priority Critical patent/JPH06315023A/en
Publication of JPH06315023A publication Critical patent/JPH06315023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

PURPOSE:To suppress a total backup path setting amount low by allocating a certain amount of paths, which are required for relieving a fault present path, to plural routes and defining a value integrating them as the initial value of the backup path setting amount. CONSTITUTION:Assuming the fault of a transmission line L1, first of all, a releif route R1 of a present path P11 housed in the line L1 is calculated. A relief route R2 provided with any backup path different from backup paths Y2 and Y4 constituting the route R1 is calculated. A number N11 (=1) of paths required for relieving the path P11 is integrated to the use amounts U12 and U16 of auxiliary paths Y2-Y6 on similarly calculated routes R1-R3. Next, assuming the fault of a transmission line L2, processing is similarly repeatedly performed up to a transmission line L6 afterwards. Next, a maximum value '2' of amounts U11-U61 to use a path Y1 for relieving the present path at the time of the fault in each transmission line is set to an initial value S1 for the amount of the path Y1 to be installed. Similarly, initial values S2-S6 are set, and the initial values of all the auxiliary path setting amounts are decided. Optimization is performed by deletion after started from this initial value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信網の伝送路故障時
における故障した現用パスの救済に必要な予備用のパス
の設置量を決定する予備パス網設計方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backup path network designing method for determining the installation amount of backup paths required for repairing a failed working path when a transmission line fails in a communication network.

【0002】[0002]

【従来の技術】従来の予備パス網設計方法は、故障を想
定した現用パスの救済に必要な量の予備用のパスを単一
のルートへ割り付け、積み上げた値を予備のパスの設置
量の初期値とし、その後、削除を行なうことにより最適
化を図るものであった。
2. Description of the Related Art In a conventional backup path network designing method, the number of backup paths required for repairing a working path assuming a failure is assigned to a single route, and the accumulated value is used as a backup path installation amount. The initial value is set, and then the deletion is performed for optimization.

【0003】以下、従来の方法の一例を説明する。図5
は従来の予備パス網設計方法の手順を示す流れ図で10
1〜113は処理のステップを、また、Li はi番目の
伝送路、Pijは伝送路Li に収容されているj番目の現
用パス、Yk はk番目の予備パス、Uikは伝送路Li
障時の予備パスYk の使用量、Nijは現用パスPijの救
済パス数、Sk は予備パスYk の設置量の初期値を示し
ている。
An example of the conventional method will be described below. Figure 5
Is a flow chart showing the procedure of the conventional backup path network designing method.
1 to 113 are processing steps, L i is the i-th transmission path, P ij is the j-th working path accommodated in the transmission path L i , Y k is the k-th backup path, and U ik is The usage amount of the backup path Y k at the time of failure of the transmission line L i , N ij indicates the number of repair paths of the working path P ij , and S k indicates the initial value of the installation amount of the backup path Y k .

【0004】図4は、予備パス網設計方法を説明するた
めに用いる図であってクロスコネクト装置間で設定され
ているパスの例を示しており、(a)は現用パスと伝送
路の例、(b)は予備パスの例を示している。
FIG. 4 is a diagram used to explain a backup path network designing method and shows an example of paths set between cross-connect devices. FIG. 4A shows an example of working paths and transmission paths. , (B) show examples of backup paths.

【0005】同図において、数字符号1〜4はクロスコ
ネクト装置を、また、L1〜L6は図4のLi で(i=
1〜6)の場合を示しており、P11〜P61,Y1〜
Y6等も同様である。
In the figure, reference numerals 1 to 4 are cross-connect devices, and L1 to L6 are L i in FIG. 4 (i =
1 to 6), P11 to P61, Y1 to
The same applies to Y6 and the like.

【0006】図6は図4に示した通信網において従来の
予備パス網設計方法を適用した場合を示しており、図中
の符号は、先に説明したものと同じである。以下これら
の図面に基づいて、従来の予備パス網設計方法について
説明する。
FIG. 6 shows a case where the conventional backup path network designing method is applied to the communication network shown in FIG. 4, and the reference numerals in the figure are the same as those described above. A conventional backup path network designing method will be described below with reference to these drawings.

【0007】まず、伝送路L1の故障を想定する(処理
101,102)。伝送路L1に収容されていた現用パ
スP11の救済経路を1ルート算出する(処理103,
104)。
First, a failure of the transmission line L1 is assumed (processes 101 and 102). One relief route of the working path P11 accommodated in the transmission line L1 is calculated (process 103,
104).

【0008】この時、救済経路は「起点と終点は同
じ。」「同一のパスを通らない。」と言う条件を満す
任意の経路を設定する。この例では、経路1−3−2
(予備パスY2,Y4を使用)である(図6(a))。
救済経路上の予備パスY2,Y4の使用量U12,U1
4へ現用パスP11の救済に必要なパス数N11(=
1)を積み上げる(処理105)。
At this time, the rescue route is set to an arbitrary route satisfying the conditions that "the starting point and the ending point are the same.""Do not pass the same path." In this example, the route 1-3-2
(Use of backup paths Y2 and Y4) (FIG. 6A).
Usage amount U12, U1 of the backup paths Y2, Y4 on the rescue route
4 The number of paths N11 (=
1) are piled up (process 105).

【0009】即ち、U12=U14=1である。この場
合、伝送路L1に収容されていた現用パスはP11だけ
であるので次の処理に移り、伝送路L2の故障を想定す
る(処理106,108,109,102)。以下、同
様に処理を伝送路L6の故障まで繰り返し行なう(図6
(b)〜(f))。
That is, U12 = U14 = 1. In this case, since the only working path accommodated in the transmission line L1 is P11, the process proceeds to the next process, and a failure of the transmission line L2 is assumed (processes 106, 108, 109, 102). Hereinafter, the same processing is repeated until the failure of the transmission line L6 (see FIG. 6).
(B)-(f)).

【0010】次に、予備パスY1の設置量の初期値S1
には、各伝送路故障時に現用パス救済のために予備パス
Y1を使用する量U11,U21,U31,U41,U
51,U61の最大値2が設定される(処理110,1
11)。同様にS2〜S6が設定され(処理112,1
13,111)、すべての予備パス設置量の初期値が決
定する(図6(g))。
Next, the initial value S1 of the installation amount of the backup path Y1
Are the amounts U11, U21, U31, U41, U that use the backup path Y1 for repairing the working path when each transmission line fails.
51, the maximum value 2 of U61 is set (process 110, 1
11). Similarly, S2 to S6 are set (process 112, 1
13, 111), and the initial values of all backup path installation amounts are determined (FIG. 6 (g)).

【0011】この初期値から出発して、削除により最適
化を行なう場合、予備パスY1(2本)は1本減らして
も、各伝送路故障に対して各現用パスの救済は可能であ
る。例えばL2が故障しても、1→3間は1→4→2→
3のルートで救済できる。
Starting from this initial value, when optimization is performed by deletion, even if the number of backup paths Y1 (two) is reduced by one, each working path can be repaired for each transmission line failure. For example, even if L2 fails, 1 → 4 → 2 →
It can be relieved by the route of 3.

【0012】一方、予備パスY2(1本)は伝送路L4
等の故障時に必要であり、予備パスY3(2本)は3→
4間に予備パスがないため、伝送路L5の故障時に必要
であり、予備パスY4(2本)も3→4間に予備パスが
ないため伝送路L2の故障時に必要であり、予備パスY
5(1本)は伝送路L3等の故障時に必要となるため、
予備パスY2〜Y6はこれ以上削除できない。従って、
総予備パス設置量は7本となる(図6(h))。
On the other hand, the backup path Y2 (one) is the transmission line L4.
It is necessary when there is a failure, etc., and the backup path Y3 (2) is 3 →
Since there is no backup path between 4 and 4, it is necessary when the transmission line L5 fails, and backup paths Y4 (two) are also required when there is a failure in the transmission line L2 because there is no backup path between 3 and 4, and the backup path Y4
Since 5 (1) is required when the transmission line L3 or the like fails,
The backup paths Y2 to Y6 cannot be deleted any more. Therefore,
The total number of backup paths installed is seven (FIG. 6 (h)).

【0013】[0013]

【発明が解決しようとする課題】上述したような、従来
の予備パス網設計方法では、故障した現用パスの救済に
必要なパスの量が、初期値として予備用のパスが特定の
単一ルートのみに割り付けられるため、削除により最適
化が行なわれた後の予備パス設置量も特定のルートに偏
りやすい傾向があった。
As described above, in the conventional backup path network designing method, the amount of paths required for repairing a failed working path is initially set to a single route in which the backup path is specified. Since it is assigned only to the specified route, the amount of backup paths installed after optimization by deletion tends to be biased toward a specific route.

【0014】つまり、初期値として算出したパス量を前
提として最適化を行なっており、初期値算出時に特定の
単一ルートに予備パスを割り当てることは、故障発生時
の救済ルートを選択する際の自由度を制約することにな
る。従って、予備パスの設置効率が悪くなり、その結
果、総予備パス設置量が多めに算出されると言う好まし
くない問題があった。
That is, the optimization is performed on the premise of the path amount calculated as the initial value, and assigning a backup path to a specific single route at the time of calculating the initial value is performed when selecting a rescue route at the time of failure occurrence. This will limit the degree of freedom. Therefore, there is an unfavorable problem that the installation efficiency of the backup paths is deteriorated and, as a result, the total backup path installation amount is calculated to be large.

【0015】本発明は、予備パスの設置効率を高め、総
予備パス設置量を低く抑えることのできる予備パス網の
設計方法を提供することを目的としている。
An object of the present invention is to provide a method of designing a backup path network that can increase the efficiency of installation of backup paths and keep the total backup path installation amount low.

【0016】[0016]

【課題を解決するための手段】本発明によれば、上述し
た従来の問題点は、前記特許請求の範囲に記載した手段
により解決される。
According to the present invention, the above-mentioned conventional problems can be solved by the means described in the claims.

【0017】すなわち、本発明は、伝送路へ複数収容さ
れる現用パスおよび予備パスのパス切替を行なうクロス
コネクト装置と、故障伝送路の現用パスを救済するため
に接続可能な予備パスを探索し切替経路を決定する網管
理装置とを有する通信網に対して、予備パス設置量の初
期値を算出し、その後、削除を行なうことにより最適化
を図る予備パス網設計方法において、伝送路が故障した
場合の現用パスの救済に必要な量のパスを複数のルート
へ割り付ける処理を各伝送路について行ない、それらを
積み上げた値を予備パス設置量の初期値とする予備パス
網設計方法である。
That is, the present invention searches for a cross-connect device for switching the paths of a plurality of working paths and protection paths accommodated in a transmission path and a connectable protection path for repairing the working path of a failure transmission path. For a communication path having a network management device that determines a switching path, an initial value of the protection path installation amount is calculated, and then the deletion is performed to optimize the protection path. This is a backup path network design method in which a process of allocating an amount of paths necessary for repairing the working path to a plurality of routes in each case is performed for each transmission line, and a value obtained by accumulating them is used as an initial value of the backup path installation amount.

【0018】[0018]

【作用】本発明では、故障現用パスの救済に必要な量が
複数のルートに割り付けられるため、削除により最適化
を行なった後でも、単一ルートに割り付けた場合に比べ
て故障現用パスの切替経路探索の自由度が大きくなり、
各伝送路の故障時に使用する予備パスの共用度を高める
ことができるので、総予備パス設置量を低く抑えること
が可能となる。
According to the present invention, since the amount necessary for repairing the failure working path is allocated to a plurality of routes, even after the optimization by deletion, the failure working path is switched as compared with the case where it is allocated to a single route. The freedom of route search is increased,
Since it is possible to increase the degree of sharing of the backup paths used when each transmission line fails, it is possible to keep the total backup path installation amount low.

【0019】[0019]

【実施例】図1、図2は本発明による手順を説明する流
れ図であって、図中のnは予備パス設置量の初期値を示
しており、これは、予め設定しておくものである。ま
た、Rm はm番目の救済経路を示している。その他の符
号等は先に説明したものと同じである。図3は図4に示
した通信網における本発明の一実施例を示す図で、故障
現用パスの救済に必要な量を4ルートへ割り付けて予備
パス設置量の初期値を算出する場合(処理209のnを
4とした場合)について示している。
1 and 2 are flow charts for explaining the procedure according to the present invention, in which n indicates the initial value of the backup path installation amount, which is set in advance. . Further, R m indicates the m-th relief route. Other symbols and the like are the same as those described above. FIG. 3 is a diagram showing an embodiment of the present invention in the communication network shown in FIG. 4, in which an amount required for relief of a failure working path is allocated to four routes to calculate an initial value of a backup path installation amount (processing). 209 in the case where n is 4).

【0020】以下、図1、図2、図3、図4に基づいて
本発明の一実施例を説明する。まず、伝送路L1の故障
を想定する(処理201,202)。伝送路L1に収容
されていた現用パスP11の救済経路R1を算出する
(処理203,204)。この例ではR1は、経路1−
3−2(予備パスY2,Y4を使用)とする。救済経路
R1を構成する予備パス(Y2,Y4)と異なる予備パ
スを含んで構成される救済経路R2を求める(処理20
5,206)。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. First, a failure of the transmission line L1 is assumed (processes 201 and 202). The rescue route R1 of the working path P11 accommodated in the transmission line L1 is calculated (processes 203 and 204). In this example, R1 is route 1-
3-2 (use the backup paths Y2 and Y4). A rescue route R2 configured to include a backup path different from the backup paths (Y2, Y4) configuring the repair route R1 is obtained (Process 20
5,206).

【0021】この例ではR2は、1−4−2(予備パス
Y3,Y5を使用)とする。同様に、救済経路R1,R
2を構成する予備パス(Y2,Y3,Y4,Y5)と異
なる予備パスを含んで構成される救済経路R3を求める
(処理207,209,210,206)。この例では
R3は、1−3−4−2(予備パスY2,Y6,Y5を
使用)とする。
In this example, R2 is 1-4-2 (uses the backup paths Y3 and Y5). Similarly, the relief routes R1 and R
A repair route R3 including a backup path different from the backup path (Y2, Y3, Y4, Y5) forming 2 is obtained (processes 207, 209, 210, 206). In this example, R3 is 1-3-4-2 (using the backup paths Y2, Y6, Y5).

【0022】次に、救済経路R1,R2,R3を構成す
る予備パス(Y2,Y3,Y4,Y5,Y6)と異なる
予備パスを含んで構成される救済経路R4は存在しない
ため、求められた救済経路は、R1,R2,R3の3ル
ートのみである(処理207,209,210,20
6,207,208)。
Next, since there is no repair path R4 including a backup path (Y2, Y3, Y4, Y5, Y6) different from the backup paths (Y2, Y3, Y4, Y5, Y6) forming the repair paths R1, R2, R3, it is obtained. Only three routes R1, R2, and R3 are available as repair routes (processing 207, 209, 210, 20).
6, 207, 208).

【0023】救済経路R1,R2,R3上の予備パスY
2,Y3,Y4,Y5,Y6の使用量U12,U13,
U14,U15,U16へ現用パスP11の救済に必要
なパス数N11(=1)を積み上げる(処理211)。
即ち、U12=U13=U14=U15=U16=1で
ある(図3(a))。
Backup path Y on rescue routes R1, R2 and R3
2, Y3, Y4, Y5, Y6 usage amount U12, U13,
The number of paths N11 (= 1) necessary for repairing the working path P11 is accumulated in U14, U15, and U16 (process 211).
That is, U12 = U13 = U14 = U15 = U16 = 1 (FIG. 3A).

【0024】この場合、伝送路L1に収容されていた現
用パスはP11だけであるので次の処理に移り、伝送路
L2の故障を想定する(処理212,214,215,
202)。以下、同様に処理を伝送路L6の故障まで繰
り返し行なう(図3(b)〜(f))。次に、予備パス
Y1の設置量の初期値S1には、各伝送路故障時に現用
パス救済のために予備パスY1を使用する量U11,U
21,U31,U41,U51,U61の最大値2が設
定される(処理216,217)。
In this case, since the only working path accommodated in the transmission line L1 is P11, the process proceeds to the next process, and a failure of the transmission line L2 is assumed (processes 212, 214, 215 and 215).
202). Thereafter, the same processing is repeated until the failure of the transmission line L6 (FIGS. 3B to 3F). Next, as the initial value S1 of the installation amount of the backup path Y1, the amounts U11 and U used to repair the working path at the time of failure of each transmission line are set.
The maximum value 2 of 21, U31, U41, U51, U61 is set (processing 216, 217).

【0025】同様にS2〜S6が設定され(処理21
8,219,217)、すべての予備パス設置量の初期
値が決定する(図3(g))。この初期値から出発し
て、削除により最適化を行なう場合、例えば予備パスY
1,Y3,Y4,Y6は各々1本ずつ、Y2,Y5は各
々2本ずつ減らしても(Y1=Y3=Y4=Y6=1,
Y2=Y5=0)、各伝送路故障に対して現用パスの救
済は可能である。
Similarly, S2 to S6 are set (process 21
8, 219, 217), and the initial values of all backup path installation amounts are determined (FIG. 3 (g)). Starting from this initial value and performing optimization by deletion, for example, the backup path Y
1, Y3, Y4, and Y6 are reduced by one, and Y2 and Y5 are reduced by two (Y1 = Y3 = Y4 = Y6 = 1,
Y2 = Y5 = 0), the working path can be repaired for each transmission line failure.

【0026】しかし、予備パスY1(1本)は伝送路L
2,L3,L4,L5,L6の故障時に必要であり、予
備パスY3(1本)は伝送路L1,L2,L4,L5,
L6の故障時に必要であり、予備パスY4(1本)は伝
送路L1,L2,L3,L5,L6の故障時に必要であ
り、また、予備パスY6(1本)は伝送路L1,L2,
L3,L4,L5の故障時に必要となるため、予備パス
Y1〜Y6はこれ以上削除できない。従って、総予備パ
ス設置量は、4本となる(図3(h))。
However, the backup path Y1 (one) is the transmission line L.
It is necessary when 2, 2, L3, L4, L5, L6 fail, and the backup path Y3 (one) is the transmission lines L1, L2, L4, L5.
It is necessary when L6 fails, and the backup path Y4 (1 line) is necessary when transmission lines L1, L2, L3, L5, L6 fail, and the backup path Y6 (1 line) is transmission lines L1, L2.
The backup paths Y1 to Y6 cannot be deleted any more because they are needed when L3, L4, and L5 fail. Therefore, the total number of installed backup paths is four (FIG. 3 (h)).

【0027】本実施例においては、現用パス、予備パス
は隣接クロスコネクト装置間に設定し、伝送路と対応し
たモデルを使用したが、複数の伝送路を経由して構成さ
れる現用パス、予備パスに対しても、本発明は適用可能
である。また、パスとして回線を用いる場合であっても
適用可能である。また、本実施例では救済経路が3本ま
でしか設定できないのでnを3以上にしても効果はない
が一般に救済経路が最大A本設定できれば、nをA以下
の数でAに近付けるほど最適化を図ることができる。
In the present embodiment, the working path and the protection path are set between the adjacent cross-connect devices, and the model corresponding to the transmission path is used. However, the working path and the protection path configured via a plurality of transmission paths are used. The present invention can also be applied to paths. Further, it is applicable even when a line is used as a path. In addition, in the present embodiment, since only three relief paths can be set, there is no effect even if n is set to 3 or more, but generally, if the maximum number of relief paths can be set to A, optimization is performed as n approaches A with a number of A or less. Can be achieved.

【0028】[0028]

【発明の効果】本発明は、故障現用パスの切替経路探索
の自由度が単一ルートに割り付けた場合に比べて大きく
なり、各々の伝送路故障時に使用する予備パスの共用度
を高め得る利点がある。そして、実施例の説明からも明
らかなように、総予備パス設置量を低く抑えることがで
きるという効果を有する。
According to the present invention, the degree of freedom in searching for a switching route of a faulty working path is greater than that in the case where a single route is allocated, and it is possible to increase the sharability of a backup path used when each transmission line fails. There is. Further, as is clear from the description of the embodiment, there is an effect that the total backup path installation amount can be suppressed low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による予備パス網設計の手順の例を示す
流れ図(その1)である。
FIG. 1 is a flowchart (No. 1) showing an example of a procedure for designing a backup path network according to the present invention.

【図2】本発明による予備パス網設計の手順の例を示す
流れ図(その2)である。
FIG. 2 is a flowchart (No. 2) showing an example of a procedure for designing a backup path network according to the present invention.

【図3】本発明の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】予備パス網設計方法を説明するための図であ
る。
FIG. 4 is a diagram for explaining a backup path network designing method.

【図5】従来の予備パス網設計方法の手順を示す流れ図
である。
FIG. 5 is a flowchart showing a procedure of a conventional backup path network designing method.

【図6】図3の通信網に従来の予備パス網設計方法を適
用した例を示す図である。
6 is a diagram showing an example in which a conventional backup path network designing method is applied to the communication network in FIG.

【符号の説明】[Explanation of symbols]

1〜4 クロスコネクト装置 101〜113,201〜219 処理 Li (L1〜L6) i番目の伝送路 Pij(P11〜P61) 伝送路Li に収容されてい
るj番目の現用パス Yk (Y1〜Y6) k番目の予備パス Uik(U11〜U66) 伝送路Li 故障時の予備パ
スYk の使用量 Nij(N11〜N61) 現用パスPijの救済パス数 Sk (S1〜S6) 予備パスYk の設置量の初期値 n 予備パス設置量初期値
1-4 cross-connect device 101~113,201~219 process L i (L1~L6) i th transmission path P ij (P11~P61) j th working path accommodated in the transmission path L i Y k ( Y1 to Y6) k-th protection path U ik (U11~U66) transmission path L usage N ij (N11~N61 of i failure time backup path Y k) of relief pass number S k of the working path P ij (S1 to S6) Initial value of installation amount of backup path Y k n Initial value of backup path installation amount

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 伝送路へ複数収容される現用パスおよび
予備パスのパス切替を行なうクロスコネクト装置と、故
障伝送路の現用パスを救済するために接続可能な予備パ
スを探索し切替経路を決定する網管理装置とを有する通
信網に対して、予備パス設置量の初期値を算出し、その
後、削除を行なうことにより最適化を図る予備パス網設
計方法において、 伝送路が故障した場合の現用パスの救済に必要な量のパ
スを複数のルートへ割り付ける処理を各伝送路について
行ない、それらを積み上げた値を予備パス設置量の初期
値とすることを特徴とする予備パス網設計方法。
1. A cross-connect device for switching a plurality of working paths and protection paths accommodated in a transmission path, and a spare path connectable to repair a working path of a failed transmission path, and a switching path is determined. In a backup path network design method that calculates the initial value of the backup path installation amount for a communication network having a network management device that performs A backup path network designing method characterized in that a process of allocating a required amount of paths to a plurality of routes is performed for each transmission line, and a value obtained by accumulating them is used as an initial value of a backup path installation amount.
JP10394993A 1993-04-30 1993-04-30 Backup path network designing method Pending JPH06315023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10394993A JPH06315023A (en) 1993-04-30 1993-04-30 Backup path network designing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10394993A JPH06315023A (en) 1993-04-30 1993-04-30 Backup path network designing method

Publications (1)

Publication Number Publication Date
JPH06315023A true JPH06315023A (en) 1994-11-08

Family

ID=14367678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10394993A Pending JPH06315023A (en) 1993-04-30 1993-04-30 Backup path network designing method

Country Status (1)

Country Link
JP (1) JPH06315023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141318A (en) * 1997-01-17 2000-10-31 Nec Corporation Network design method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141318A (en) * 1997-01-17 2000-10-31 Nec Corporation Network design method

Similar Documents

Publication Publication Date Title
US6498778B1 (en) Optimizing restoration capacity
Zang et al. Path-protection routing and wavelength assignment (RWA) in WDM mesh networks under duct-layer constraints
CN108965014B (en) QoS-aware service chain backup method and system
Coan et al. Using distributed topology update and preplanned configurations to achieve trunk network survivability
EP2127252B1 (en) Path management for enhanced protection
CA2187242A1 (en) A method of admission control and routing of virtual circuits
US20170331706A1 (en) Method and Device for Implementing Capacity Planning
JP2007500895A (en) Dynamically configurable fault tolerance in autonomous computing with multiple service points
CN113361054B (en) Route optimization method and system for power information physical system
CN103248571A (en) Computing method of optimal second route
Datta et al. Diverse routing for shared risk resource groups (SRRG) failures in WDM optical networks
Liu et al. Successive survivable routing for node failures
JPH06315023A (en) Backup path network designing method
CN101179419A (en) Method of obtaining protection path of effectively used network resource
CN106027389A (en) P-cycle protection method based on novel topology
Frederick et al. Sub-Graph Routing: A generalized fault-tolerant strategy for link failures in WDM Optical Networks
CN105515644B (en) Monitoring mark design method based on limited monitoring resource in a kind of all-optical network
Datta et al. Sub-graph routing: A novel fault-tolerant architecture for shared-risk link group failures in WDM optical networks
Frederick et al. Evaluating dual-failure restorability in mesh-restorable WDM optical networks
US7602698B2 (en) Systems and methods for providing multi-layer protection switching within a sub-networking connection
Gonzalez-Montoro et al. Survivability analysis on non-triconnected optical networks under dual-link failures
EP1201062B1 (en) Protected routing in a communication network
CN101931484A (en) Method and device for acquiring service availability
Guo et al. Service function chain optimization deployment mechanism based on node and link influence
Lutton et al. Assigning spare capacities in mesh survivable networks