JPH06314819A - Light emitting and receiving diode and its manufacture - Google Patents

Light emitting and receiving diode and its manufacture

Info

Publication number
JPH06314819A
JPH06314819A JP10333893A JP10333893A JPH06314819A JP H06314819 A JPH06314819 A JP H06314819A JP 10333893 A JP10333893 A JP 10333893A JP 10333893 A JP10333893 A JP 10333893A JP H06314819 A JPH06314819 A JP H06314819A
Authority
JP
Japan
Prior art keywords
junction
semiconductor layer
window
interlayer insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10333893A
Other languages
Japanese (ja)
Inventor
Ichimatsu Abiko
一松 安孫子
Yukio Nakamura
幸夫 中村
Katsuzo Uenishi
勝三 上西
Takaatsu Shimizu
孝篤 清水
Kazuo Tokura
和男 戸倉
Yasuo Iguchi
泰男 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10333893A priority Critical patent/JPH06314819A/en
Publication of JPH06314819A publication Critical patent/JPH06314819A/en
Priority to US08/654,756 priority patent/US5600157A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To improve photosensitivity of a light emitting diode when functioning as a photodetector. CONSTITUTION:A light emitting and receiving region 40 is made a region for one picture element, and a shallow p-n junction 40a having light receiving function and a deep p-n junction 40b having light emitting function are provided to the region 40 in mutual contact. The shallow p-n junction 40a is provided by snaking to a periphery of the light emitting and receiving region 40. Since an area of the shallow p-n junction 40a in the light emitting and receiving region 40 f one picture element is thereby increased, the purpose can be attained. When the p-n junctions 40a, 40b are formed, a layer insulation film 46 which also functions as a diffusion mask is formed on a first semiconductor layer 42 and a window 46a whose periphery snakes is formed in the film 46. A second semiconductor layer 44 is formed in the first semiconductor layer 42 by thermally diffusing impurities through the window 46a. Since impurities are diffused also in a direction along a surface of the first semiconductor layer 42, a snaking shallow p-n junction is formed below the layer insulation film 46 of a window periphery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、受光機能及び発光機
能の双方を兼ね備える受発光ダイオード、特に、イメー
ジセンサ及び電子写真方式の露光光源の双方に用いるダ
イオードアレイを構成する場合に用いて好適な受発光ダ
イオードとその製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in constructing a light emitting / receiving diode which has both a light receiving function and a light emitting function, and particularly a diode array used for both an image sensor and an electrophotographic exposure light source. The present invention relates to a light emitting / receiving diode and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より、複写機、プリンタそのほかに
おいて電子写真方式の印刷装置を用いている。この方式
では、感光体ドラムの感光面を帯電器によって一様に帯
電させる。次いで感光面を選択的に露光し、記録対象像
に対応する静電潜像を形成する。感光面の選択露光に当
っては、例えば、露光光源をレーザや発光ダイオード
Light Emitting Diode、以下LED)としその発光を
画素単位にオン・オフ制御しながら感光面に照射する。
或は、露光光源を蛍光灯や冷陰極管とし光源からの光を
液晶シャッタを介して感光面に照射し液晶シャッタを画
素単位に開閉する。感光面の露光部分では光電現象によ
り電荷が中和されると共に未露光部分では電荷が中和さ
れずにそのまま残存するので、静電潜像ができる。次い
で、帯電させたトナーを感光面上に散布する。トナーは
これとは反対極性に帯電する部分の感光面に選択的に吸
着され、その結果、記録対象像に対応するトナー像がで
きる。次いでトナー像を転写器によって記録紙に転写す
る。然る後、トナー像を記録紙に定着し、記録対象像の
印刷が終了する。
2. Description of the Related Art Conventionally, electrophotographic printing apparatuses have been used in copying machines, printers and the like. In this method, the photosensitive surface of the photosensitive drum is uniformly charged by a charger. Then, the photosensitive surface is selectively exposed to form an electrostatic latent image corresponding to the image to be recorded. Hitting the selective exposure of the photosensitive surface, for example, irradiation with exposure light source laser or a light emitting diode (L ight E mitting D iode, hereinafter LED) to the sensitized surface with on-off control for each pixel the light emission.
Alternatively, a fluorescent lamp or a cold cathode tube is used as the exposure light source, and light from the light source is applied to the photosensitive surface through the liquid crystal shutter to open and close the liquid crystal shutter in pixel units. In the exposed portion of the photosensitive surface, the charge is neutralized by a photoelectric phenomenon, and in the unexposed portion, the charge is not neutralized and remains as it is, so that an electrostatic latent image is formed. Next, the charged toner is sprinkled on the photosensitive surface. The toner is selectively adsorbed on the photosensitive surface of the portion charged with the opposite polarity, and as a result, a toner image corresponding to the recording target image is formed. Then, the toner image is transferred onto the recording paper by the transfer device. After that, the toner image is fixed on the recording paper, and the printing of the image to be recorded is completed.

【0003】LEDを静電潜像形成用の露光光源に用い
た印刷装置は高速かつ高解像度で印刷を行なえるという
利点を有し、このような装置として例えば特開昭56−
30154号公報に開示されているものがある。さらに
装置のコスト低減及び小型化を図るため、LEDを静電
潜像形成用の露光光源及び画像読取り用のイメージセン
サの双方に用いる装置(以下、印刷・読取り一体型装
置)も提案されている。このような装置として、例えば
特開昭58−157252号公報に開示されているもの
がある。
A printing apparatus using an LED as an exposure light source for forming an electrostatic latent image has an advantage that printing can be performed at high speed and high resolution, and such an apparatus is disclosed in, for example, JP-A-56-56.
Some are disclosed in Japanese Patent No. 30154. Further, in order to reduce the cost and the size of the device, a device using the LED as both an exposure light source for forming an electrostatic latent image and an image sensor for reading an image (hereinafter referred to as an integrated printing / reading device) has been proposed. . An example of such an apparatus is disclosed in Japanese Patent Laid-Open No. 58-157252.

【0004】図26は印刷・読取り一体型装置の構造の
一例を示す要部斜視図であって、記録対象となる原稿像
を読み取るときの様子を示す。同図において、10は配
線基板、12及び14は配線基板10に設けたLEDア
レイ及び制御ICを示す。複数個例えば64個のLED
を配列方向Aに直線的に配列して集積化し、これらLE
DによりLEDアレイ12を構成する。そして各LED
アレイ12のLEDを一直線上に配置するようにして複
数個のLEDアレイ12を一列に並べる。各LEDアレ
イ12に制御IC14を設け、対応するLEDアレイ1
2及び制御IC14を電気接続する。
FIG. 26 is a perspective view of an essential part showing an example of the structure of the printing / reading integrated apparatus, showing a state of reading a document image to be recorded. In the figure, 10 is a wiring board, and 12 and 14 are LED arrays and control ICs provided on the wiring board 10. Multiple LEDs, for example 64 LEDs
Are linearly arrayed in the array direction A and integrated,
The LED array 12 is composed of D. And each LED
A plurality of LED arrays 12 are arranged in a line so that the LEDs of the array 12 are arranged in a straight line. Each LED array 12 is provided with a control IC 14, and the corresponding LED array 1
2 and the control IC 14 are electrically connected.

【0005】16は透明な原稿載置板(図示せず)上の
所定位置に位置決めした原稿、18及び20は原稿載置
板とLEDアレイ12との間に設けた収束レンズアレイ
及び照明光源を示す。複数個の収束レンズを配列方向A
に直線的に配列してホルダ22に固定し、これら収束レ
ンズにより収束レンズアレイ18を構成する。さらに収
束レンズアレイ18とLEDアレイ12とをこれらの光
軸を一致させるように対向配置し、収束レンズアレイ1
8の両側部に照明光源20を設ける。
Reference numeral 16 is an original document positioned at a predetermined position on a transparent original document plate (not shown), and 18 and 20 are a converging lens array and an illumination light source provided between the original document plate and the LED array 12. Show. Arranging a plurality of converging lenses in the direction A
Are linearly arranged on the holder 22 and are fixed to the holder 22, and the converging lens array 18 is constituted by these converging lenses. Further, the converging lens array 18 and the LED array 12 are opposed to each other so that their optical axes coincide with each other, and the converging lens array 1
Illumination light sources 20 are provided on both sides of 8.

【0006】原稿像を読み取るときには、照明光源20
からの光L1を原稿16に照射し、その反射光L2を収
束レンズアレイ18を介しLEDアレイ12に入射す
る。反射光L2は原稿16の濃度に応じた光強度を有し
原稿像を構成する。一方、LEDはpn接合を有するダ
イオードであるので、逆方向電圧を印加した状態でpn
接合に反射光L2を入射すると、pn接合の空乏層にお
いて反射光強度に比例した量の電子或は正孔が励起され
移動する。その結果、pn接合に電流が流れるので、こ
の電流を検出することにより原稿像を電気信号に変換で
きる。
When reading an original image, the illumination light source 20 is used.
The original light 16 is irradiated with the light L1 from the document 16 and the reflected light L2 is incident on the LED array 12 through the converging lens array 18. The reflected light L2 has a light intensity corresponding to the density of the document 16 and forms a document image. On the other hand, since the LED is a diode having a pn junction, the pn junction is applied with a reverse voltage applied.
When the reflected light L2 is incident on the junction, electrons or holes in an amount proportional to the reflected light intensity are excited and move in the depletion layer of the pn junction. As a result, a current flows through the pn junction, and the original image can be converted into an electric signal by detecting this current.

【0007】24は照明光源20とLEDアレイ12と
の間に設けた遮光板を示す。収束レンズアレイ18から
の光L2以外の光がLEDアレイ12に入射しないよう
に、遮光板24を配置する。
Reference numeral 24 denotes a light shielding plate provided between the illumination light source 20 and the LED array 12. The light shielding plate 24 is arranged so that light other than the light L2 from the converging lens array 18 does not enter the LED array 12.

【0008】図27(A)及び(B)はLEDアレイの
要部構成を概略的に示す平面図及び断面図であって、図
27(B)は図27(A)におけるXXVIIB−XXVIIB線に
沿って取った断面を示す。LED26は、pn接合を形
成するn層28及びp層30と、n層28及びp層30
に電気接続するn側電極32及びp側電極34と、n層
28及びp側電極34を電気的に分離しp層30を露出
する窓36aを有する層間絶縁膜36とを備えて成る。
27 (A) and 27 (B) are a plan view and a sectional view schematically showing the structure of the main part of the LED array, and FIG. 27 (B) is taken along line XXVIIB-XXVIIB in FIG. 27 (A). A cross section taken along is shown. The LED 26 includes an n layer 28 and a p layer 30 that form a pn junction, and an n layer 28 and a p layer 30.
An n-side electrode 32 and a p-side electrode 34 that are electrically connected to each other, and an interlayer insulating film 36 having a window 36a that electrically separates the n-layer 28 and the p-side electrode 34 and exposes the p-layer 30.

【0009】LED26は、例えば次のように製造され
る。まず、n層28としてn−GaAsX 1-X ウエハ
を用意し、この層28上に層間絶縁膜36を積層する。
層間絶縁膜36はSiO、SiN或はSiONから成る
透明な膜である。然る後、層間絶縁膜36に窓36aを
形成し、窓36aを介してp層形成領域のn層28を露
出させる。次いで不純物導入技術として封管法を用い、
Znを窓36aを介してn層28中に熱拡散させる。Z
nの拡散領域にp層30が形成される。層間絶縁膜36
はZnを透過しない膜厚或は材質を有し拡散マスクとし
て作用するが、Znはウエハ表面に垂直な方向のみなら
ずウエハ表面に平行な方向にも拡散する。従ってp層3
0は窓36aの内側領域のみならず窓36a周縁の層間
絶縁膜36下側にも形成される。ここでウエハ表面から
pn接合界面に至る深さをpn接合深さと称すれば、窓
36a内側領域にpn接合深さが深いpn接合38aが
形成され、また窓36a周縁にpn接合深さが浅いpn
接合38bが形成される。次いでp層30上にp側電極
34を形成する。さらにn層28のp層30とは反対側
にn側電極32を形成する。
The LED 26 is manufactured, for example, as follows. First, an n-GaAs X P 1-X wafer is prepared as the n layer 28, and the interlayer insulating film 36 is laminated on this layer 28.
The interlayer insulating film 36 is a transparent film made of SiO, SiN or SiON. After that, a window 36a is formed in the interlayer insulating film 36, and the n layer 28 in the p layer formation region is exposed through the window 36a. Next, using the sealed tube method as an impurity introduction technique,
Zn is thermally diffused into the n-layer 28 through the window 36a. Z
A p layer 30 is formed in the n diffusion region. Interlayer insulation film 36
Has a film thickness or a material that does not transmit Zn and acts as a diffusion mask, but Zn diffuses not only in the direction perpendicular to the wafer surface but also in the direction parallel to the wafer surface. Therefore, p layer 3
0 is formed not only in the inner region of the window 36a but also under the interlayer insulating film 36 at the periphery of the window 36a. Here, if the depth from the wafer surface to the pn junction interface is referred to as the pn junction depth, a pn junction 38a having a deep pn junction depth is formed in the region inside the window 36a, and the pn junction depth is shallow at the periphery of the window 36a. pn
The joint 38b is formed. Then, the p-side electrode 34 is formed on the p-layer 30. Further, an n-side electrode 32 is formed on the opposite side of the n-layer 28 from the p-layer 30.

【0010】次に図28を参照しpn接合深さの設計に
つき説明する。図28はLEDのpn接合深さと発光強
度との関係を示す図である。同図においては、pn接合
深さ(μm)を横軸に及び最大発光強度を1として相対
的に表した発光強度(無次元)を縦軸に取り、GaAs
0.8 0.2 を用いて発光波長740μmのLEDを製造
した場合の例を示した。
Next, the design of the pn junction depth will be described with reference to FIG. FIG. 28 is a diagram showing the relationship between the pn junction depth of an LED and the light emission intensity. In the figure, the pn junction depth (μm) is plotted on the horizontal axis and the emission intensity (dimensionless) relative to the maximum emission intensity of 1 is plotted on the vertical axis.
An example in which an LED having an emission wavelength of 740 μm is manufactured using 0.8 P 0.2 is shown.

【0011】同図の例では、pn接合深さが約7.5μ
m前後となるときに発光出力強度は最大となり、pn接
合深さがそれよりも浅く或は深くなるにしたがって発光
出力強度は小さくなってゆく。これは次に述べる理由に
依る。すなわち、p層30表層には不純物準位や欠陥準
位が多く、従ってpn接合深さが浅くなるにつれて発光
に寄与する空乏層におけるこれ準位の占有率が大きくな
るからである。また空乏層で発生した光はp層30を伝
搬する間にp層30に吸収され、従ってpn接合深さが
深くなるにつれて光の吸収量が大きくるからである。
In the example shown in the figure, the pn junction depth is about 7.5 μm.
The light emission output intensity becomes maximum when the depth is around m, and the light emission output intensity decreases as the pn junction depth becomes shallower or deeper. This depends on the following reasons. That is, the surface layer of the p layer 30 has many impurity levels and defect levels, and therefore, as the pn junction depth becomes shallower, the occupation ratio of this level in the depletion layer that contributes to light emission increases. Further, the light generated in the depletion layer is absorbed by the p layer 30 while propagating through the p layer 30, and thus the light absorption amount increases as the pn junction depth increases.

【0012】一般に、LED26の発光波長は感光体ド
ラムに対して大きな感度が得られる660〜780μm
とされるが、この場合にはpn接合深さを5〜10μm
とすることにより実用上満足できる程度に大きな発光出
力強度が得られる。
In general, the emission wavelength of the LED 26 is 660 to 780 μm, which gives a large sensitivity to the photosensitive drum.
However, in this case, the pn junction depth is 5 to 10 μm.
By so doing, a sufficiently large emission output intensity can be obtained in practical use.

【0013】[0013]

【発明が解決しようとする課題】一方、LED26を受
光素子として用いた場合の光電変換特性を実験的に調べ
ると次のようなことがわかる。図29はこの実験結果を
示す図である。同図においては、実験結果とともに図2
7のXXVIIB−XXVIIB線に沿って取ったLED26の要部
断面構造を示す。またXXVIIB−XXVIIB線に沿う方向の位
置Xを実験結果の横軸に、及び走査光を位置Xのp層3
0に照射した場合に生じる光電変換電流を実験結果の縦
軸に取って示す。実験に当っては、発光波長を740n
mに設計したLED26を用い、p層30に比して充分
に微小なスポットサイズを有する走査光を、p層30に
垂直な方向から照射した。そして走査光の波長を550
及び740nmとし、各波長毎に、走査光をXXVIIB−XX
VIIB線に沿って走査し位置Xにおける光電変換電流を測
定した。図中の実線及び点線の曲線が、走査光波長を5
50及び740nmとしたときの実験結果を表す。
On the other hand, when the photoelectric conversion characteristics when the LED 26 is used as a light receiving element are experimentally examined, the following is found. FIG. 29 is a diagram showing the results of this experiment. In the figure, the experimental results are shown in FIG.
7 shows a cross-sectional structure of a main part of the LED 26 taken along line XXVIIB-XXVIIB in FIG. The position X in the direction along the line XXVIIB-XXVIIB is taken as the horizontal axis of the experimental result, and the scanning light is taken as the p-layer 3 at the position X.
The vertical axis of the experimental results shows the photoelectric conversion current generated when 0 is irradiated. In the experiment, the emission wavelength was 740n
Using the LED 26 designed to be m, scanning light having a spot size sufficiently smaller than that of the p layer 30 was irradiated from a direction perpendicular to the p layer 30. Then, the wavelength of the scanning light is set to 550
And 740 nm, and scanning light is XXVIIB-XX for each wavelength.
The photoelectric conversion current at the position X was measured by scanning along the VIIB line. The solid and dotted curves in the figure show the scanning light wavelength of 5
The experimental results are shown at 50 and 740 nm.

【0014】図からも理解できるように、走査光の波長
を原稿像読取りに適した可視域の波長例えば550nm
とした場合、光電変換電流はpn接合深さが浅いpn接
合38bにおいて大きくまたpn接合深さが深いpn接
合38aにおいて小さくなる。これに対し走査光の波長
を可視域の波長よりも長い波長例えば740nmとした
場合、光電変換電流は浅いpn接合38b及び深いpn
接合38aの双方において大きくなる。
As can be understood from the figure, the wavelength of the scanning light is in the visible range suitable for reading the original image, for example, 550 nm.
In such a case, the photoelectric conversion current is large in the pn junction 38b having a shallow pn junction depth and small in the pn junction 38a having a deep pn junction depth. On the other hand, when the wavelength of the scanning light is set to a wavelength longer than the wavelength in the visible range, for example, 740 nm, the photoelectric conversion current has a shallow pn junction 38b and a deep pn junction.
It becomes large at both joints 38a.

【0015】この理由は次のように考えられる。すなわ
ち、可視光は波長が短いのでp層30の比較的浅い領域
までしか到達できず、従って深いpn接合38aに到達
する光の量が非常に少なくなる。その結果、可視光の場
合は深いpn接合38aにおける光電変換量が少なくな
る。これに対し、可視光よりも波長が長い光はp層30
のより深い領域まで到達できるので、深いpn接合38
aに到達する光の量がより多くなる。その結果、波長が
長い光の場合は深いpn接合38aにおける光電変換量
が多くなる。
The reason for this is considered as follows. That is, since the visible light has a short wavelength, it can reach only a relatively shallow region of the p layer 30, and therefore the amount of light that reaches the deep pn junction 38a is extremely small. As a result, in the case of visible light, the amount of photoelectric conversion in the deep pn junction 38a decreases. On the other hand, the light having a wavelength longer than that of visible light is p
Can reach deeper regions of the deep pn junction 38
A greater amount of light reaches a. As a result, the amount of photoelectric conversion in the deep pn junction 38a increases when the light has a long wavelength.

【0016】この点につき図30を参照し、説明する。
図30は入射光波長に対するGaAs0.8 0.2 の吸収
係数の変化の様子を示す図である。同図の横軸にGaA
0.8 0.2 へ入射する光の波長(nm)を示し、縦軸
にGaAs0.8 0.2 の吸収係数(cm-1)を対数表示
で示す。ここでは、発光波長740nmのLED26を
製造する場合に通常用いるGaAs0.8 0.2 に着目す
る。
This point will be described with reference to FIG.
FIG. 30 shows how the absorption coefficient of GaAs 0.8 P 0.2 changes with the wavelength of incident light. GaA on the horizontal axis of the figure
The wavelength (nm) of light incident on s 0.8 P 0.2 is shown, and the vertical axis shows the absorption coefficient (cm −1 ) of GaAs 0.8 P 0.2 in logarithmic form. Here, attention is paid to GaAs 0.8 P 0.2 which is usually used in manufacturing the LED 26 having an emission wavelength of 740 nm.

【0017】GaAs0.8 0.2 中を距離xだけ進行し
た入射光の光強度Iが入射時点での光強度I0 の37%
(I=(1/e)・I0 )にまで減衰したとすれば、こ
のときの距離xを吸収係数を用いて算出することができ
る。
The light intensity I of the incident light that has traveled in GaAs 0.8 P 0.2 by a distance x is 37% of the light intensity I 0 at the time of incidence.
If it is assumed that the distance is reduced to (I = (1 / e) · I 0 ), then the distance x at this time can be calculated using the absorption coefficient.

【0018】波長550nm前後の入射光に対するGa
As0.8 0.2 の吸収係数は1×104 〜3×104
-1程度であって(図30参照)、この場合の距離xを
算出すると距離xは0.3〜0.7μm程度である。ま
た波長740nm前後の入射光に対するGaAs0.8
0.2 の吸収係数は1×103 〜2×103 cm-1程度で
あって(図30参照)、この場合の距離xを算出すると
距離xは約5〜10μm程度である。これらのことから
も理解できるように、550nm近傍の可視光はGaA
0.8 0.2 の極めて浅い表層部分にしか到達できな
い。従って、光電変換を行なえる入射光強度Iの下限
(IMIN.)として、IMIN.=(1/e)・I0 を一応の
目安と考えれば、550nm近傍の可視光はGaAs
0.8 0.2 表層から0.3〜0.7μm以内の深さに存
在する空乏層でしか、光電変換されないこととなる。
Ga for incident light with a wavelength of about 550 nm
The absorption coefficient of As 0.8 P 0.2 is 1 × 10 4 to 3 × 10 4 c
It is about m −1 (see FIG. 30), and when the distance x in this case is calculated, the distance x is about 0.3 to 0.7 μm. In addition, GaAs 0.8 P for incident light with a wavelength of about 740 nm
The absorption coefficient of 0.2 is about 1 × 10 3 to 2 × 10 3 cm −1 (see FIG. 30). When the distance x in this case is calculated, the distance x is about 5 to 10 μm. As can be understood from these, visible light near 550 nm is GaA.
Only the extremely shallow surface layer of s 0.8 P 0.2 can be reached. Therefore, if I MIN. = (1 / e) · I 0 is considered as a rough guideline for the lower limit (I MIN. ) Of the incident light intensity I capable of photoelectric conversion, visible light near 550 nm is GaAs.
Only the depletion layer existing within a depth of 0.3 to 0.7 μm from the 0.8 P 0.2 surface layer is subjected to photoelectric conversion.

【0019】このように、LED26の受光機能を担う
のは浅いpn接合38bであるが、従来のLED26に
おいては浅いpn接合38bは窓36a周縁の層間絶縁
膜36下側にしか形成されない。しかも線状の浅いpn
接合38bが矩形状に形成されるのみである。従って浅
いpn接合38bの広さが狭いので、受光感度を大きく
することは難しい。
As described above, the shallow pn junction 38b plays a role of the light receiving function of the LED 26, but in the conventional LED 26, the shallow pn junction 38b is formed only under the interlayer insulating film 36 around the window 36a. Moreover, a linear shallow pn
The joint 38b is only formed in a rectangular shape. Therefore, since the shallow pn junction 38b is narrow, it is difficult to increase the light receiving sensitivity.

【0020】この発明の目的は上述した従来の問題点を
解決し、受光機能及び発光機能を兼ね備える受発光ダイ
オードであって受光感度を従来よりも高めることのでき
る受発光ダイオード及びその製造方法を提供することに
ある。
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a light emitting / receiving diode having both a light receiving function and a light emitting function, which has a higher light receiving sensitivity than the conventional one, and a manufacturing method thereof. To do.

【0021】[0021]

【課題を解決するための手段及び作用】この目的の達成
を図るため、第一発明の受発光ダイオードは、受発光領
域に光電変換用の浅いpn接合と発光用の深いpn接合
とを互いに接して備えて成る受発光ダイオードにおい
て、深いpn接合の広さに対する浅いpn接合の広さを
増大せしめて成ることを特徴とする。
In order to achieve this object, in the light emitting and receiving diode of the first invention, a shallow pn junction for photoelectric conversion and a deep pn junction for light emission are placed in contact with each other in the light receiving and emitting region. In the light emitting and receiving diode provided, the width of the shallow pn junction is increased with respect to the width of the deep pn junction.

【0022】第一発明によれば、深いpn接合の広さを
従来と同程度として比較すれば、浅いpn接合の増分だ
け受発光領域は従来より広くなるが受発光ダイオードの
受光感度を従来より高めることができる。或は、受発光
領域の広さを従来と同程度として比較すれば、浅いpn
接合の増分だけ深いpn接合の広さが従来より減少する
が受発光ダイオードの受光感度を従来より高めることが
できる。好ましくは、深いpn接合の広さを実用上満足
できる発光出力強度が得られる範囲内で減少させつつ浅
いpn接合の広さを増大させるのが良い。
According to the first aspect of the present invention, comparing the width of the deep pn junction to the same level as the conventional one, the light receiving / emitting region becomes wider than the conventional one by the increment of the shallow pn junction, but the light receiving sensitivity of the light receiving / emitting diode is higher than the conventional one. Can be increased. Alternatively, if the area of the light receiving / emitting area is comparable to that of the conventional one, the shallow pn
Although the width of the pn junction, which is deeper by the increment of the junction, is reduced as compared with the conventional case, the light receiving sensitivity of the light receiving and emitting diode can be increased compared with the conventional case. It is preferable to increase the width of the shallow pn junction while reducing the width of the deep pn junction within a range where a practically satisfactory emission output intensity can be obtained.

【0023】第二発明の受発光ダイオードは第一発明の
好適実施例であって、受発光領域の周縁に蛇行させて浅
いpn接合を設けて成ることを特徴とする。
The light emitting and receiving diode of the second invention is a preferred embodiment of the first invention, and is characterized in that a shallow pn junction is provided along the periphery of the light receiving and emitting region in a meandering manner.

【0024】第二発明によれば、浅いpn接合を蛇行さ
せるので浅いpn接合の広さを従来よりも増大させるこ
とができる。
According to the second invention, since the shallow pn junction is meandered, the area of the shallow pn junction can be increased as compared with the conventional case.

【0025】第三発明の受発光ダイオードは第一発明の
好適実施例であって、浅いpn接合を受発光領域の周縁
と受発光領域の周縁よりも内側の領域とに設けて成るこ
とを特徴とする。
The light emitting and receiving diode of the third invention is a preferred embodiment of the first invention, and is characterized in that a shallow pn junction is provided at the peripheral edge of the light receiving and emitting area and the area inside the peripheral edge of the light receiving and emitting area. And

【0026】第三発明によれば、受発光領域の周縁より
も内側の領域にも浅いpn接合を設けるので、浅いpn
接合の広さを従来よりも増大させることができる。また
受発光領域の周縁よりも内側の領域にも浅いpn接合を
設けるので、受発光領域の周縁のみに浅いpn接合を設
けていた従来と比較してより精度良く、受発光領域の受
光量を検出できる。
According to the third aspect of the invention, since the shallow pn junction is provided also in the region inside the peripheral edge of the light emitting / receiving region, the shallow pn junction is provided.
The width of the joint can be increased more than before. Further, since the shallow pn junction is provided in the area inside the peripheral edge of the light receiving / emitting area, the light receiving amount of the light receiving / emitting area can be more accurately compared to the conventional case where the shallow pn junction is provided only in the peripheral edge of the light receiving / emitting area. Can be detected.

【0027】第四発明の受発光ダイオードの製造方法
は、第二発明の受発光ダイオードを製造するに当り、第
一半導体層上に不純物導入マスクを兼ねる層間絶縁膜を
形成する工程と、層間絶縁膜に窓周縁を蛇行させた窓を
形成する工程と、第一半導体層に層間絶縁膜の窓を介し
不純物を熱拡散させて、浅いpn接合及び深いpn接合
を形成するための第二半導体層を形成する工程とを含ん
で成ることを特徴とする。
In the method for manufacturing a light emitting and receiving diode according to the fourth aspect of the present invention, in manufacturing the light receiving and emitting diode according to the second aspect of the present invention, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and an interlayer insulating A step of forming a window having a meandering window periphery in the film, and a second semiconductor layer for forming a shallow pn junction and a deep pn junction by thermally diffusing impurities in the first semiconductor layer through the window of the interlayer insulating film And a step of forming.

【0028】第四発明によれば、層間絶縁膜の窓を介し
不純物を熱拡散させることにより、深いpn接合の形成
と浅いpn接合の形成とを並行して行なえる。深いpn
接合は層間絶縁膜の窓内側領域に形成され、浅いpn接
合は窓周縁の層間絶縁膜下側に形成される。窓周縁を蛇
行させるので、蛇行する浅いpn接合を形成でき従って
浅いpn接合の広さを増大させることができる。しかも
不純物導入マスクを兼ねる層間絶縁膜の窓周縁を蛇行さ
せるという単純な設計変更を行なうだけで、蛇行した浅
いpn接合を形成できる。従って製造プロセスの複雑化
を避けつつ浅いpn接合の広さを増大させることができ
る。
According to the fourth invention, the impurities are thermally diffused through the window of the interlayer insulating film, whereby the deep pn junction and the shallow pn junction can be formed in parallel. Deep pn
The junction is formed in the window inner region of the interlayer insulating film, and the shallow pn junction is formed below the interlayer insulating film at the window periphery. Since the window edge is meandered, a meandering shallow pn junction can be formed, and thus the width of the shallow pn junction can be increased. Moreover, a meandering shallow pn junction can be formed by merely making a simple design change in which the window periphery of the interlayer insulating film also serving as an impurity introduction mask is meandered. Therefore, the area of the shallow pn junction can be increased while avoiding the complication of the manufacturing process.

【0029】第四発明の実施に当り、熱拡散を行なった
後に浅いpn接合を覆う部分の層間絶縁膜を選択的に除
去するようにしても良いが、この選択除去を省略し製造
プロセスを簡単化するためには、層間絶縁膜を受光すべ
き光に対し透明な膜とするのが好適である。
In carrying out the fourth invention, the interlayer insulating film in the portion covering the shallow pn junction may be selectively removed after the thermal diffusion, but this selective removal is omitted and the manufacturing process is simplified. In order to realize this, it is preferable that the interlayer insulating film is a film transparent to the light to be received.

【0030】第五発明の受発光ダイオードの製造方法
は、第三発明の受発光ダイオードを製造するに当り、第
一半導体層上に不純物導入マスクを兼ねる層間絶縁膜を
形成する工程と、層間絶縁膜に窓を形成する工程と、層
間絶縁膜の窓内側領域の第一半導体層上に不純物阻止膜
を形成する工程と、第一半導体層に層間絶縁膜の窓及び
不純物阻止膜を介し不純物を熱拡散させ、浅いpn接合
及び深いpn接合を形成するための第二半導体層を形成
する工程とを含んで成ることを特徴とする。
In the method of manufacturing a light emitting and receiving diode of the fifth invention, in manufacturing the light receiving and emitting diode of the third invention, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and an interlayer insulating film. A step of forming a window in the film; a step of forming an impurity blocking film on the first semiconductor layer in the window inner region of the interlayer insulating film; and a step of forming impurities in the first semiconductor layer through the window of the interlayer insulating film and the impurity blocking film. Thermal diffusion to form a second semiconductor layer for forming a shallow pn junction and a deep pn junction.

【0031】第五発明によれば、層間絶縁膜の窓及び不
純物阻止膜を介し不純物を熱拡散させることにより、深
いpn接合の形成と浅いpn接合の形成とを並行して行
なえる。深いpn接合は層間絶縁膜の窓内側領域であっ
て不純物阻止膜を形成していない領域に形成され、浅い
pn接合はこの窓周縁の層間絶縁膜下側と不純物阻止膜
下側とに形成される。
According to the fifth aspect of the present invention, the deep pn junction and the shallow pn junction can be formed in parallel by thermally diffusing the impurities through the window of the interlayer insulating film and the impurity blocking film. The deep pn junction is formed in a region inside the window of the interlayer insulating film, where the impurity blocking film is not formed, and the shallow pn junction is formed below the interlayer insulating film and the impurity blocking film at the periphery of the window. It

【0032】第五発明の実施に当り、層間絶縁膜の窓形
成と不純物阻止膜の形成とを個別に行なっても良いが、
製造プロセスを簡単化するためには、層間絶縁膜の窓を
形成するのと並行して窓内側領域の層間絶縁膜を任意好
適な形状にエッチング加工しこの加工した層間絶縁膜を
不純物阻止膜として用いるのが好適である。
In carrying out the fifth invention, the window formation of the interlayer insulating film and the formation of the impurity blocking film may be carried out separately,
In order to simplify the manufacturing process, in parallel with forming the window of the interlayer insulating film, the interlayer insulating film in the window inner region is etched into an arbitrary suitable shape, and the processed interlayer insulating film is used as an impurity blocking film. It is preferably used.

【0033】また第五発明の実施に当り、熱拡散を行な
った後に浅いpn接合を覆う部分の層間絶縁膜及び不純
物阻止膜を選択的に除去するようにしても良いが、これ
らの選択除去を省略し製造プロセスを簡単化するために
は、層間絶縁膜及び不純物阻止膜をそれぞれ受光すべき
光に対し透明な膜とするのが好適である。
In carrying out the fifth aspect of the invention, the interlayer insulating film and the impurity blocking film in the portion covering the shallow pn junction may be selectively removed after the thermal diffusion. In order to omit the process and simplify the manufacturing process, it is preferable to make the interlayer insulating film and the impurity blocking film transparent to the light to be received.

【0034】第六発明の受発光ダイオードの製造方法
は、第三発明の受発光ダイオードを製造するに当り、第
一半導体層上に第一不純物導入マスクを形成する工程
と、第一不純物導入マスクに第一窓を形成する工程と、
第一半導体層に第一窓を介し不純物を導入して深いpn
接合を形成するための第二半導体層を形成し、然る後、
第一不純物導入マスクを除去する工程と、第一及び第二
半導体層上に第二不純物導入マスクを兼ねる層間絶縁膜
を形成する工程と、深いpn接合を形成するための第二
半導体層の周縁に隣接する領域の第一半導体層を露出す
る第二窓を層間絶縁膜に形成する工程と、第一半導体層
に第二窓を介し不純物を導入して、浅いpn接合を形成
するための第二半導体層を形成する工程とを含んで成る
ことを特徴とする。不純物導入技術として熱拡散、イオ
ン注入そのほかの任意好適な技術を用いることができ
る。
In the method of manufacturing a light emitting and receiving diode of the sixth invention, in manufacturing the light receiving and emitting diode of the third invention, a step of forming a first impurity introduction mask on the first semiconductor layer, and a first impurity introduction mask. Forming a first window on the
A deep pn is formed by introducing impurities into the first semiconductor layer through the first window.
Forming a second semiconductor layer for forming a junction, and then
A step of removing the first impurity introduction mask, a step of forming an interlayer insulating film also serving as a second impurity introduction mask on the first and second semiconductor layers, and a peripheral edge of the second semiconductor layer for forming a deep pn junction A step of forming a second window in the interlayer insulating film to expose the first semiconductor layer in a region adjacent to, and a step of forming a shallow pn junction by introducing impurities into the first semiconductor layer through the second window. And a step of forming two semiconductor layers. As the impurity introduction technique, thermal diffusion, ion implantation or any other suitable technique can be used.

【0035】第六発明によれば、第二窓を介し露出する
第一半導体層を広げるのに応じて、浅いpn接合の広さ
を増大させることができる。
According to the sixth aspect, the width of the shallow pn junction can be increased as the first semiconductor layer exposed through the second window is expanded.

【0036】第七発明の受発光ダイオードの製造方法
は、第三発明の受発光ダイオードを製造するに当り、不
純物導入マスクを兼ねる下側層間絶縁膜及び上側層間絶
縁膜を順次に、第一半導体層上に形成する工程と、上側
層間絶縁膜に第一窓を形成する工程と、第一窓の内側領
域の下側層間絶縁膜を一部残存させて、当該領域の下側
層間絶縁膜に第二窓を形成する工程と、第一窓及び第二
窓を介し第一半導体層に不純物を導入して、浅いpn接
合及び深いpn接合を形成するための第二半導体層を形
成する工程とを含んで成ることを特徴とする。不純物導
入技術として熱拡散、イオン注入そのほかの任意好適な
技術を用いることができる。
In the method of manufacturing a light receiving and emitting diode according to the seventh invention, in manufacturing the light receiving and emitting diode according to the third invention, the lower interlayer insulating film and the upper interlayer insulating film also serving as impurity introduction masks are sequentially provided in the first semiconductor. Forming a first window on the upper interlayer insulating film, and leaving a part of the lower interlayer insulating film on the inner region of the first window to form a lower interlayer insulating film on the region. A step of forming a second window, and a step of introducing an impurity into the first semiconductor layer through the first window and the second window to form a second semiconductor layer for forming a shallow pn junction and a deep pn junction. It is characterized by comprising. As the impurity introduction technique, thermal diffusion, ion implantation or any other suitable technique can be used.

【0037】第七発明によれば、下側層間絶縁膜の膜厚
を厚くするにしたがって或は下側層間絶縁膜の材質を任
意好適に選択することによって、不純物の導入深さを浅
くすることができる。従って第一及び第二窓を介し不純
物を導入することにより、下側層間絶縁膜で覆われてい
ない第二窓内側領域に深いpn接合を形成しつつ、下側
層間絶縁膜で覆われている第一窓内側領域に浅いpn接
合を形成することができる。しかも第二窓を介し露出す
る下側層間絶縁膜を広げるのに応じて、浅いpn接合の
広さを増大させることができる。
According to the seventh aspect of the invention, the introduction depth of impurities is made shallower by increasing the film thickness of the lower interlayer insulating film or by arbitrarily selecting the material of the lower interlayer insulating film. You can Therefore, by introducing the impurities through the first and second windows, a deep pn junction is formed in the inner region of the second window which is not covered with the lower interlayer insulating film, while being covered with the lower interlayer insulating film. A shallow pn junction can be formed in the region inside the first window. Moreover, the width of the shallow pn junction can be increased as the lower interlayer insulating film exposed through the second window is expanded.

【0038】第八発明の受発光ダイオードの製造方法
は、第三発明の受発光ダイオードを製造するに当り、第
一半導体層上に不純物導入マスクを兼ねる層間絶縁膜を
形成する工程と、層間絶縁膜に窓を形成する工程と、第
一半導体層に層間絶縁膜の窓を介し不純物を導入し、深
いpn接合を形成するための第二半導体層を形成する工
程と、第二半導体層を部分的にエッチング防止膜で覆う
工程と、第二半導体層をエッチング防止膜を介しエッチ
ングして第二半導体層の層厚を部分的に薄くし、浅いp
n接合を形成するための層厚の薄い第二半導体層を形成
する工程とを含んで成ることを特徴とする。
In the method of manufacturing a light emitting and receiving diode according to the eighth aspect of the present invention, in manufacturing the light receiving and emitting diode according to the third aspect of the present invention, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and an interlayer insulating film. A step of forming a window in the film, a step of introducing an impurity into the first semiconductor layer through the window of the interlayer insulating film to form a second semiconductor layer for forming a deep pn junction, and a step of partially forming the second semiconductor layer. A step of selectively covering the second semiconductor layer with the etching prevention film, and partially etching the second semiconductor layer to reduce the layer thickness of the second semiconductor layer to a shallow p
and a step of forming a second semiconductor layer having a thin layer thickness for forming an n-junction.

【0039】第八発明によれば、第二半導体層をエッチ
ング防止膜で覆わない領域を広げるのに応じて、浅いp
n接合の広さを増大させることができる。
According to the eighth aspect of the invention, as the area of the second semiconductor layer not covered with the etching prevention film is expanded, the shallow p
The width of the n-junction can be increased.

【0040】[0040]

【実施例】以下、図面を参照し、発明の実施例につき説
明する。尚、図面は発明が理解できる程度に概略的に示
してあるにすぎず、従って発明を図示例に限定するもの
ではない。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the invention can be understood, and therefore the invention is not limited to the illustrated examples.

【0041】まず第一発明の好適実施例として第二発明
の実施例につき説明する。図1及び図2は第二発明の実
施例の構成を概略的に示す平面図及び断面図であって、
図2は図1のII−II線に沿って取った断面を示す。
First, an embodiment of the second invention will be described as a preferred embodiment of the first invention. 1 and 2 are a plan view and a sectional view schematically showing the configuration of an embodiment of the second invention,
FIG. 2 shows a cross section taken along line II-II in FIG.

【0042】この実施例の受発光ダイオードは、受発光
領域40に光電変換用の浅いpn接合40aと発光用の
深いpn接合40bとを互いに接して備え、深いpn接
合40bの広さに対する浅いpn接合40aの広さを増
大せしめて成る。
In the light receiving and emitting diode of this embodiment, a shallow pn junction 40a for photoelectric conversion and a deep pn junction 40b for light emission are provided in contact with each other in the light receiving and emitting region 40, and a shallow pn junction with respect to the width of the deep pn junction 40b is provided. The width of the joint 40a is increased.

【0043】この実施例では、受発光領域40を画素1
個分の受光及び発光を行なう領域とする。そして浅いp
n接合40aを受発光領域40の周縁に蛇行させて設け
ることにより、画素1個分の受発光領域40における浅
いpn接合40aの広さを増大させる。浅いpn接合4
0aが光電変換の機能を担い、深いpn接合40bが発
光の機能を担う。
In this embodiment, the light emitting / receiving area 40 is set to the pixel 1
The area is to receive and emit light for each piece. And shallow p
By providing the n-junction 40a meandering along the periphery of the light receiving / emitting region 40, the area of the shallow pn junction 40a in the light receiving / emitting region 40 for one pixel is increased. Shallow pn junction 4
0a has a photoelectric conversion function, and the deep pn junction 40b has a light emission function.

【0044】第一半導体層42例えばn−GaAsP基
板の一方の側の表層に第二半導体層44例えばp−Ga
AsP層を設け、これら半導体層42及び44によりp
n接合40a、40bを構成する。そして第一半導体層
42の一方の側の表層上に層間絶縁膜46及びp側電極
48を順次に設ける。層間絶縁膜46の窓46aを介
し、p側電極48及び第二半導体層44を電気接続す
る。層間絶縁膜46は1層構造の膜例えばSiN膜、S
iO膜或はSiON膜、又は多層構造の膜例えば第一半
導体層42上に順次に設けたSiN膜及びSiON膜か
ら成る2層構造の膜である。p側電極48はAl電極で
ある。そして第一半導体層42の他方の側にこの層42
と電気接続するn側電極50を設ける。
The second semiconductor layer 44, eg, p-Ga, is formed on the surface layer on one side of the first semiconductor layer 42, eg, n-GaAsP substrate.
An AsP layer is provided, and p is formed by these semiconductor layers 42 and 44.
The n-junctions 40a and 40b are formed. Then, the interlayer insulating film 46 and the p-side electrode 48 are sequentially provided on the surface layer on one side of the first semiconductor layer 42. The p-side electrode 48 and the second semiconductor layer 44 are electrically connected through the window 46a of the interlayer insulating film 46. The interlayer insulating film 46 is a film having a one-layer structure, such as a SiN film or S.
The film is an iO film or a SiON film, or a film having a multi-layered structure, for example, a two-layered film composed of a SiN film and a SiON film sequentially provided on the first semiconductor layer 42. The p-side electrode 48 is an Al electrode. Then, on the other side of the first semiconductor layer 42, this layer 42
An n-side electrode 50 that is electrically connected to is provided.

【0045】次に第四発明の実施例として図1の受発光
ダイオードの製造工程につき説明する。図3(A)〜
(C)は第四発明の主要な製造工程段階を概略的に示す
断面図であって、図3の各図は図2の断面に対応する断
面を示す。
Next, a manufacturing process of the light emitting / receiving diode of FIG. 1 will be described as an embodiment of the fourth invention. FIG. 3 (A)-
(C) is a sectional view schematically showing a main manufacturing process step of the fourth invention, and each drawing of FIG. 3 shows a section corresponding to the section of FIG. 2.

【0046】まず、第一半導体層42上に不純物導入マ
スクを兼ねる層間絶縁膜46を形成する。この実施例で
は、受発光ダイオードの発光波長を感光体ドラムに対し
て大きな感度が得られる波長例えば740nm前後の波
長とするために、n−GaAs0.8 0.2 基板を第一半
導体層42として用意する。そしてこの層42上に、不
純物を実質的に透過しない層間絶縁膜46を積層する
(図3(A))。層間絶縁膜46は受光すべき光例えば
550nm前後の波長の可視光に対し透明な膜であっ
て、このような層間絶縁膜42としてSiN膜、SiO
膜或はSiON膜を積層する。層間絶縁膜42は一層構
造及び多層構造の膜のいずれでも良いが、ここでは一層
構造の膜とする。
First, the inter-layer insulation film 46 also serving as an impurity introduction mask is formed on the first semiconductor layer 42. In this embodiment, an n-GaAs 0.8 P 0.2 substrate is prepared as the first semiconductor layer 42 in order to set the emission wavelength of the light emitting / receiving diode to a wavelength at which a large sensitivity is obtained with respect to the photosensitive drum, for example, a wavelength of about 740 nm. . Then, an interlayer insulating film 46 that is substantially impermeable to impurities is stacked on this layer 42 (FIG. 3A). The interlayer insulating film 46 is a film that is transparent to light to be received, for example, visible light having a wavelength of about 550 nm. As such an interlayer insulating film 42, a SiN film or SiO 2 is used.
A film or a SiON film is laminated. The interlayer insulating film 42 may be either a single-layer structure film or a multi-layer structure film, but here it is a single-layer structure film.

【0047】次に、層間絶縁膜46に窓周縁を蛇行させ
た窓46aを形成する。この実施例では、フォトリソ及
びエッチング技術を用い、窓形成予定領域51の層間絶
縁膜46を選択的に除去して窓46aを形成する(図3
(B))。窓46a周縁を折れ線或は曲線状に蛇行させ
る(図1参照)。また窓形成予定領域51の第一半導体
層42を窓46aを介し露出させる。
Next, a window 46a is formed in the inter-layer insulation film 46 with its window edge meandering. In this embodiment, a photolithography and etching technique is used to selectively remove the interlayer insulating film 46 in the window formation planned region 51 to form a window 46a (FIG. 3).
(B)). The periphery of the window 46a is meandered in a polygonal line or a curved line (see FIG. 1). In addition, the first semiconductor layer 42 in the window formation planned region 51 is exposed through the window 46a.

【0048】次に、第一半導体層42に、層間絶縁膜4
6の窓46aを介して不純物を選択的に熱拡散させて、
浅いpn接合40a及び深いpn接合40bを形成する
ための第二半導体層44を形成する。この実施例では、
不純物としてZnを拡散させ、窓46aを介し露出する
窓形成予定領域51の第一半導体層42に深いpn接合
40bを形成すると共に、この窓46a周縁の層間絶縁
膜46下側に浅いpn接合40aを形成する(図3
(C))。
Next, the interlayer insulating film 4 is formed on the first semiconductor layer 42.
The impurities are selectively thermally diffused through the window 46a of No. 6,
A second semiconductor layer 44 for forming the shallow pn junction 40a and the deep pn junction 40b is formed. In this example,
Zn is diffused as an impurity to form a deep pn junction 40b in the first semiconductor layer 42 in the window formation region 51 exposed through the window 46a, and a shallow pn junction 40a is formed below the interlayer insulating film 46 at the periphery of the window 46a. To form (Fig. 3
(C)).

【0049】熱拡散によれば、不純物は第一半導体層4
2表面に垂直な方向のみならず第一半導体層42表面に
沿う方向にも拡散し、従って層間絶縁膜46が不純物を
透過しなくとも不純物を窓46a周縁の層間絶縁膜46
下側にも拡散させることができる。この層間絶縁膜46
下側における不純物の拡散深さは窓46aから遠ざかる
にしたがって浅くなる。従って窓46から露出する第一
半導体層42での拡散深さが深くなるように、拡散条件
例えば拡散時間や拡散温度を定めて拡散を行なっても、
層間絶縁膜46下側での拡散深さを浅くすることができ
る。これがため、第一半導体層42表層からpn接合界
面に至る距離(接合深さ)の深いpn接合40bを形成
するのと並行して、接合深さの浅いpn接合40aを形
成できる。
According to the thermal diffusion, impurities are contained in the first semiconductor layer 4
2 is diffused not only in the direction perpendicular to the surface but also in the direction along the surface of the first semiconductor layer 42. Therefore, even if the interlayer insulating film 46 does not transmit the impurities, the impurities can be diffused at the periphery of the window 46a.
It can be diffused to the lower side. This interlayer insulating film 46
The diffusion depth of impurities on the lower side becomes shallower as the distance from the window 46a increases. Therefore, even if diffusion is performed by setting diffusion conditions such as diffusion time and diffusion temperature so that the diffusion depth in the first semiconductor layer 42 exposed from the window 46 becomes deep,
The diffusion depth below the interlayer insulating film 46 can be made shallow. Therefore, the pn junction 40a having a shallow junction depth can be formed in parallel with the formation of the deep pn junction 40b having a distance (junction depth) from the surface layer of the first semiconductor layer 42 to the pn junction interface.

【0050】第一半導体層42としてn−GaAs0.8
0.2 基板を用いた場合は、接合深さが5〜10μm程
度の深いpn接合40bを形成することにより、受発光
ダイオードの発光出力強度を大きくすることができる。
550nm前後の波長の可視光に対しては、接合深さが
例えば0.3〜0.7μm程度以下の浅いpn接合40
aにおいて、効率良く光電変換を行なえる。
As the first semiconductor layer 42, n-GaAs 0.8
When the P 0.2 substrate is used, the emission output intensity of the light emitting and receiving diode can be increased by forming the deep pn junction 40b having a junction depth of about 5 to 10 μm.
For visible light with a wavelength of about 550 nm, the shallow pn junction 40 has a junction depth of, for example, about 0.3 to 0.7 μm or less.
In a, photoelectric conversion can be efficiently performed.

【0051】次に、第二半導体層44と電気接続するp
側電極48を形成する。さらに第一半導体層42と電気
接続するn側電極50を形成し、受発光ダイオードを完
成する(図1及び図2参照)。
Next, p, which is electrically connected to the second semiconductor layer 44, is formed.
The side electrode 48 is formed. Further, an n-side electrode 50 electrically connected to the first semiconductor layer 42 is formed to complete a light emitting / receiving diode (see FIGS. 1 and 2).

【0052】この実施例によれば、不純物導入マスクを
兼ねる層間絶縁膜46の窓周縁を蛇行させるという単純
な設計変更を行なうだけで、浅いpn接合40aの広さ
を増大させることができる。また層間絶縁膜46を受光
すべき光に対し透明な膜とするので、浅いpn接合40
aを覆う部分の層間絶縁膜46を除去する工程を省略で
きる。しかも熱拡散により浅いpn接合40a及び深い
pn接合40bを並行して形成できるので、製造プロセ
スを簡略化して製造コストの増加を抑えつつ浅いpn接
合40aを増大させることができる。
According to this embodiment, the width of the shallow pn junction 40a can be increased only by making a simple design change in which the window periphery of the interlayer insulating film 46 also serving as an impurity introduction mask is meandered. Further, since the interlayer insulating film 46 is a film transparent to the light to be received, the shallow pn junction 40 is formed.
The step of removing the interlayer insulating film 46 in the portion covering a can be omitted. Moreover, since the shallow pn junction 40a and the deep pn junction 40b can be formed in parallel by thermal diffusion, the manufacturing process can be simplified, and the shallow pn junction 40a can be increased while suppressing an increase in manufacturing cost.

【0053】図4(A)及び(B)は浅いpn接合の最
小接合深さJm の説明に供する断面図であって、図1の
IV−IV線に沿って取った断面を示す。
FIGS. 4A and 4B are sectional views for explaining the minimum junction depth J m of the shallow pn junction.
A cross section taken along line IV-IV is shown.

【0054】浅いpn接合40aは第一半導体層42表
面に沿う方向における不純物の拡散(以下、サイド拡散
と称す)によって形成される。従って層間絶縁膜46の
幅Wが狭過ぎると、浅いpn接合40aの最小接合深さ
m が深くなって光電変換を効率良く行なえなくなる。
幅Wは層間絶縁膜46の側壁面46a1、46a2の離
間距離である(これら側壁面は窓46の壁面でもあ
る)。
The shallow pn junction 40a is formed by diffusion of impurities in the direction along the surface of the first semiconductor layer 42 (hereinafter referred to as side diffusion). Therefore, if the width W of the interlayer insulating film 46 is too narrow, the minimum junction depth J m of the shallow pn junction 40a becomes deep, and photoelectric conversion cannot be performed efficiently.
The width W is the distance between the side wall surfaces 46a1 and 46a2 of the interlayer insulating film 46 (these side wall surfaces are also the wall surface of the window 46).

【0055】ここで、一方の側壁面46a1から層間絶
縁膜46下側へサイド拡散した不純物の拡散距離を
S1、また他方の側壁面46a2から層間絶縁膜46下
側へサイド拡散した不純物の拡散距離をJS2と表す。幅
Wが拡散距離JS1及びJS2の和よりも小さくなるにした
がって、一方及び他方の側壁面46a1及び46a2か
らのサイド拡散により形成される不純物拡散領域の重な
り部分が大きくなり、その結果、最小接合深さJm が深
くなる(図4(B))。受光波長を550nm前後の波
長とした場合、上述したように接合深さが0.3〜0.
7μm程度以下の浅いpn接合40aにおいて、効率良
く光電変換を行なえる。この場合には、最小接合深さJ
m が0.3〜0.7μm以下となるように幅Wを定めれ
ば良い。
Here, the diffusion distance of impurities side-diffused from one side wall surface 46a1 to the lower side of the interlayer insulating film 46 is J S1 , and the diffusion distance of impurities side-diffused from the other side wall surface 46a2 to the lower side of the interlayer insulating film 46. The distance is expressed as J S2 . As the width W becomes smaller than the sum of the diffusion distances J S1 and J S2 , the overlapping portion of the impurity diffusion regions formed by the side diffusion from the one and the other side wall surfaces 46a1 and 46a2 becomes larger, and as a result, the minimum The junction depth J m becomes deeper (FIG. 4 (B)). When the received light wavelength is around 550 nm, the junction depth is 0.3 to 0.
Photoelectric conversion can be efficiently performed in the shallow pn junction 40a of about 7 μm or less. In this case, the minimum junction depth J
The width W may be set so that m is 0.3 to 0.7 μm or less.

【0056】一方、幅Wを拡散距離JS1及びJS2の和と
等しいかこれらの和より大きくしたとき浅いpn接合4
0aの最小接合深さJm を実質的に零とすることができ
る(図4(A))。浅いpn接合40aの接合深さが
0.3〜0.7μm以下となる領域L(図4(A)中、
点線の丸で囲む領域)は、層間絶縁膜46の側壁面と交
差する方向Yにおける幅が微小な線状領域となる。しか
し浅いpn接合40aを蛇行させて形成することによ
り、浅いpn接合40aの全長を長くすることができ従
って浅いpn接合40aの広さを従来よりも広くするこ
とができる。
On the other hand, when the width W is equal to or larger than the sum of the diffusion distances J S1 and J S2 , the shallow pn junction 4
The minimum junction depth J m of 0a may be substantially zero (Fig. 4 (A)). A region L where the shallow pn junction 40a has a junction depth of 0.3 to 0.7 μm or less (in FIG. 4A,
A region surrounded by a dotted circle) is a linear region having a small width in the direction Y intersecting with the sidewall surface of the interlayer insulating film 46. However, by forming the shallow pn junction 40a in a meandering manner, the total length of the shallow pn junction 40a can be increased, and thus the width of the shallow pn junction 40a can be made wider than in the conventional case.

【0057】尚、GaAsPにZnを熱拡散させた場
合、拡散距離JS1及びJS2は、第一半導体層42表面に
垂直な方向における不純物の拡散距離(拡散深さ)Jd
の約1.3倍であることが経験的に知られている。上述
したようにGaAs0.8 0.2を用いた場合、発光出力
強度を大きくするためには拡散深さJd を5〜10μm
程度として深いpn接合40bを形成すれば良い。従っ
て拡散深さJd を例えば5μmとすればサイド拡散距離
S1及びJS2は6.5μm程度となる。
When Zn is thermally diffused in GaAsP, the diffusion distances J S1 and J S2 are the diffusion distance (diffusion depth) J d of impurities in the direction perpendicular to the surface of the first semiconductor layer 42.
It is empirically known to be about 1.3 times. As described above, when GaAs 0.8 P 0.2 is used, in order to increase the emission output intensity, the diffusion depth J d is 5 to 10 μm.
The deep pn junction 40b may be formed. Therefore, if the diffusion depth J d is, for example, 5 μm, the side diffusion distances J S1 and J S2 are about 6.5 μm.

【0058】次に第一発明の好適実施例として第三発明
の第一実施例につき説明する。図5及び図6は第三発明
の第一実施例の構成を概略的に示す平面図及び断面図で
あって、図6は図5のVI−VI線に沿って取った断面を示
す。
Next, the first embodiment of the third invention will be described as a preferred embodiment of the first invention. 5 and 6 are a plan view and a sectional view schematically showing the configuration of the first embodiment of the third invention, and FIG. 6 shows a section taken along line VI-VI in FIG.

【0059】この実施例の受発光ダイオードは、受発光
領域52に光電変換用の浅いpn接合52aと発光用の
深いpn接合52bとを互いに接して備え、深いpn接
合52bの広さに対する浅いpn接合52aの広さを増
大せしめて成る。
The light emitting and receiving diode of this embodiment is provided with a shallow pn junction 52a for photoelectric conversion and a deep pn junction 52b for light emission in contact with each other in the light receiving and emitting region 52, and a shallow pn with respect to the width of the deep pn junction 52b. The width of the joint 52a is increased.

【0060】この実施例では、受発光領域52を画素1
個分の受光及び発光を行なうための領域とする。そして
浅いpn接合52aを受発光領域52の周縁sとこの周
縁tよりも内側の領域tとに設けることによって、画素
1個分の受発光領域52における浅いpn接合52aの
広さを増大させる。浅いpn接合52aが光電変換の機
能を担い、深いpn接合52bが発光の機能を担う。
In this embodiment, the light receiving / emitting area 52 is set to the pixel 1
It is an area for receiving and emitting light for each piece. By providing the shallow pn junction 52a on the peripheral edge s of the light receiving / emitting area 52 and the area t inside the peripheral edge t, the area of the shallow pn junction 52a in the light receiving / emitting area 52 for one pixel is increased. The shallow pn junction 52a has a photoelectric conversion function, and the deep pn junction 52b has a light emitting function.

【0061】そして第一半導体層54及び第二半導体層
56によりpn接合52a、52bを構成する。第一半
導体層54はn−GaAsP基板、第二半導体層56は
p−GaAsP層である。第一半導体層54の一方の側
の表層に第二半導体層56を設け、さらにこの一方の側
の表層上に層間絶縁膜58及びp側電極60を順次に設
ける。層間絶縁膜58は第二半導体層56を露出する窓
58aを有し、この窓58aを介しp側電極60及び第
二半導体層56を電気接続する。また第一半導体層54
の他方の側にこの層54と電気接続するn側電極62を
設ける。
The first semiconductor layer 54 and the second semiconductor layer 56 form pn junctions 52a and 52b. The first semiconductor layer 54 is an n-GaAsP substrate, and the second semiconductor layer 56 is a p-GaAsP layer. The second semiconductor layer 56 is provided on the surface layer on one side of the first semiconductor layer 54, and the interlayer insulating film 58 and the p-side electrode 60 are sequentially provided on the surface layer on the one side. The interlayer insulating film 58 has a window 58a that exposes the second semiconductor layer 56, and electrically connects the p-side electrode 60 and the second semiconductor layer 56 through the window 58a. In addition, the first semiconductor layer 54
An n-side electrode 62 electrically connected to this layer 54 is provided on the other side of the.

【0062】次に第五発明の実施例として図4の受発光
ダイオードの製造工程につき説明する。図7(A)〜
(C)は第五発明の主要な製造工程段階を概略的に示す
断面図であって、図7の各図は図6の断面に対応する断
面を示す。
Next, as a fifth embodiment of the invention, a manufacturing process of the light emitting / receiving diode of FIG. 4 will be described. FIG. 7 (A)-
FIG. 7C is a sectional view schematically showing a main manufacturing process step of the fifth invention, and each drawing of FIG. 7 shows a section corresponding to the section of FIG.

【0063】まず、第一半導体層54上に不純物導入マ
スクを兼ねる層間絶縁膜58を形成する。この実施例で
は、第一半導体層54としてn−GaAs0.8 0.2
板を用意し、この層54上に、不純物を実質的に透過し
ない層間絶縁膜58を積層する(図7(A))。層間絶
縁膜58としてSiN膜、SiO膜或はSiON膜を積
層する。層間絶縁膜58は一層構造及び多層構造の膜の
いずれでも良いが、ここでは一層構造の膜とする。
First, an interlayer insulating film 58 which also serves as an impurity introduction mask is formed on the first semiconductor layer 54. In this embodiment, an n-GaAs 0.8 P 0.2 substrate is prepared as the first semiconductor layer 54, and an interlayer insulating film 58 that is substantially impermeable to impurities is laminated on this layer 54 (FIG. 7A). As the interlayer insulating film 58, a SiN film, a SiO film or a SiON film is laminated. The interlayer insulating film 58 may be either a single-layer structure film or a multi-layer structure film, but here it is a single-layer structure film.

【0064】次に、層間絶縁膜58に窓58aを形成す
ると共にこの窓58aの内側領域62の第一半導体層5
4上に不純物阻止膜64を形成する。この実施例では、
フォトリソ及びエッチング技術を用いて、窓形成予定領
域66の層間絶縁膜58を選択的にエッチングすること
により、窓58aの形成と不純物阻止膜64の形成とを
並行して行なう(図7(A)〜図7(B))。この際、
窓形成予定領域66の層間絶縁膜58を部分的に残存さ
せるようにエッチングし、層間絶縁膜58の残存部分か
ら成る不純物阻止膜64を形成する。このようにエッチ
ングを行なうことにより、窓形成予定領域66の第一半
導体層54を露出する窓58aとこの窓58aの内側領
域62に位置する不純物阻止膜64とを並行して形成で
きる。
Next, a window 58a is formed in the interlayer insulating film 58, and the first semiconductor layer 5 in the inner region 62 of this window 58a is formed.
An impurity blocking film 64 is formed on the film 4. In this example,
By selectively etching the interlayer insulating film 58 in the window formation planned region 66 using photolithography and etching techniques, the formation of the window 58a and the formation of the impurity blocking film 64 are performed in parallel (FIG. 7A). (FIG. 7B). On this occasion,
The interlayer insulating film 58 in the window formation region 66 is etched so as to partially remain, and the impurity blocking film 64 made of the remaining portion of the interlayer insulating film 58 is formed. By performing the etching in this manner, the window 58a exposing the first semiconductor layer 54 in the window formation scheduled region 66 and the impurity blocking film 64 located in the inner region 62 of the window 58a can be formed in parallel.

【0065】次に、第一半導体層54に層間絶縁膜58
の窓58a及び不純物阻止膜64を介し不純物を熱拡散
させ、浅いpn接合52a及び深いpn接合52bを形
成するための第二半導体層56を形成する。この実施例
では、不純物としてZnを拡散させ、深いpn接合52
bを、不純物阻止膜64で覆われずに窓58aから露出
する第一半導体層54に形成すると共に、浅いpn接合
52aを、層間絶縁膜64下側と窓58a周縁の層間絶
縁膜58下側とに形成する。
Next, an interlayer insulating film 58 is formed on the first semiconductor layer 54.
The impurity is thermally diffused through the window 58a and the impurity blocking film 64 to form the second semiconductor layer 56 for forming the shallow pn junction 52a and the deep pn junction 52b. In this embodiment, Zn is diffused as an impurity and a deep pn junction 52 is formed.
b is formed in the first semiconductor layer 54 exposed from the window 58a without being covered with the impurity blocking film 64, and the shallow pn junction 52a is formed below the interlayer insulating film 64 and below the interlayer insulating film 58 at the periphery of the window 58a. To form.

【0066】次に、第二半導体層56と電気接続するp
側電極60を形成する。さらに第一半導体層54と電気
接続するn側電極62を形成し、受発光ダイオードを完
成する(図5及び図6)。
Next, p, which is electrically connected to the second semiconductor layer 56, is formed.
The side electrode 60 is formed. Further, an n-side electrode 62 electrically connected to the first semiconductor layer 54 is formed to complete a light emitting / receiving diode (FIGS. 5 and 6).

【0067】この実施例によれば、層間絶縁膜58をエ
ッチングして窓58a及び不純物阻止膜64を形成する
際に用いるエッチングマスクを単純に設計変更するだけ
で、浅いpn接合52aの広さを増大させることができ
る。また層間絶縁膜58を受光すべき光に対し透明な膜
としこの層間絶縁膜58を用いて不純物阻止膜64を形
成するので、浅いpn接合52aを覆う部分の層間絶縁
膜58及び不純物阻止膜64を除去する工程を省略でき
る。しかも熱拡散により浅いpn接合52a及び深いp
n接合52bを並行して形成できるので、製造プロセス
を簡略化して製造コストの増加を抑えることができる。
According to this embodiment, the width of the shallow pn junction 52a can be reduced by simply changing the design of the etching mask used for forming the window 58a and the impurity blocking film 64 by etching the interlayer insulating film 58. Can be increased. Further, since the interlayer insulating film 58 is formed as a film transparent to light to be received and the impurity blocking film 64 is formed using this interlayer insulating film 58, the interlayer insulating film 58 and the impurity blocking film 64 covering the shallow pn junction 52a are formed. The step of removing can be omitted. Moreover, due to thermal diffusion, the shallow pn junction 52a and the deep p
Since the n-junction 52b can be formed in parallel, the manufacturing process can be simplified and an increase in manufacturing cost can be suppressed.

【0068】図8及び図9は第三発明の第二実施例の構
成を概略的に示す平面図及び断面図であって、図9は図
8のIX−IX線に沿って取った断面を示す。
8 and 9 are a plan view and a sectional view schematically showing the constitution of the second embodiment of the third invention, and FIG. 9 is a sectional view taken along line IX-IX in FIG. Show.

【0069】上述した第三発明の第一実施例では、受発
光領域52の周縁sよりも内側の領域tに設けた浅いp
n接合52aを、一方の方向に細長く延のびている閉ル
ープ形状例えば長方形形状と成し、複数個の閉ループ状
の浅いpn接合52aを並列させて内側領域tに設けた
が、この実施例では、内側領域tの浅いpn接合52a
を、直交する一方及び他方の方向にほぼ等距離に延びて
いる閉ループ形状例えば正方形形状と成し、1個の閉ル
ープ状の浅いpn接合52aを内側領域tの中央部に設
ける。
In the above-described first embodiment of the third invention, the shallow p provided in the region t inside the peripheral edge s of the light emitting / receiving region 52.
The n-junction 52a is formed in a closed loop shape elongated in one direction, for example, a rectangular shape, and a plurality of closed-loop shallow pn junctions 52a are provided in parallel in the inner region t. Shallow pn junction 52a in region t
Is formed in a closed loop shape, for example, a square shape, which extends in substantially equal distances in one direction and the other direction orthogonal to each other, and one closed loop shallow pn junction 52a is provided in the central portion of the inner region t.

【0070】この実施例の受発光ダイオードの製造は、
第三発明の第一実施例と同様に行なえば良い。第8図に
おいて例えば窓領域58a及び不純物阻止膜64の平面
形状を正方形、不純物阻止膜64の面積を窓領域58a
の1/4、及び深いpn接合52bを形成するための拡
散深さJd を5μmとして閉ループ状の浅いpn接合5
2aを1個内側領域tに形成した場合、この実施例にお
ける浅いpn接合52aの長さの総和は内側領域tに浅
いpn接合52aを設けない場合の1.3倍程度とな
る。
The manufacture of the light emitting and receiving diode of this embodiment is as follows.
It may be performed in the same manner as the first embodiment of the third invention. In FIG. 8, for example, the planar shape of the window region 58a and the impurity blocking film 64 is a square, and the area of the impurity blocking film 64 is the window region 58a.
And a shallow pn junction 5 having a closed loop shape with a diffusion depth J d of 5 μm for forming the deep pn junction 52b.
When one 2a is formed in the inner region t, the total length of the shallow pn junction 52a in this embodiment is about 1.3 times that in the case where the shallow pn junction 52a is not provided in the inner region t.

【0071】図10に、この実施例の受発光ダイオード
を受光素子として用いた場合の光電変換特性に関する実
験結果を示す。同図においては、実験結果とともにこの
実施例の受発光ダイオードの要部断面構造を示し、この
断面に沿う方向の位置Xを実験結果の横軸に、及び走査
光を位置Xの半導体層56或は54に照射した場合に生
じる光電変換電流を実験結果の縦軸に取って示す。実験
に当っては、発光波長を740nmに設計した受発光ダ
イオードを用い、第二半導体層56に比して充分に微小
なスポットサイズを有する走査光を、この層56に垂直
な方向から照射した。そして走査光の波長を550nm
とし、走査光を走査して位置Xにおける光電変換電流を
測定した。
FIG. 10 shows an experimental result regarding photoelectric conversion characteristics when the light emitting and receiving diode of this example is used as a light receiving element. In the same figure, the cross-sectional structure of the main part of the light emitting and receiving diode of this embodiment is shown together with the experimental results. The position X in the direction along this cross section is the abscissa of the experimental results, and the scanning light is the semiconductor layer 56 at the position X Indicates the photoelectric conversion current generated when 54 is irradiated on the vertical axis of the experimental results. In the experiment, a light emitting / receiving diode whose emission wavelength was designed to be 740 nm was used, and scanning light having a spot size sufficiently smaller than that of the second semiconductor layer 56 was irradiated from a direction perpendicular to this layer 56. . And the wavelength of the scanning light is 550 nm
Then, the scanning light was scanned and the photoelectric conversion current at the position X was measured.

【0072】図からも理解できるように、受発光領域5
2の周縁sに加えこの周縁内側の領域tの中央部におい
ても、光電変換が行なわれる。従って受発光領域52の
受光量を従来よりも精度良く検出できると共に、受光感
度を従来よりも高めることができる。
As can be understood from the figure, the light emitting / receiving region 5
In addition to the peripheral edge s of 2, the photoelectric conversion is also performed in the central portion of the area t inside the peripheral edge. Therefore, the amount of light received in the light emitting / receiving area 52 can be detected more accurately than in the conventional case, and the light receiving sensitivity can be increased more than in the conventional case.

【0073】図11及び図12は第三発明の第三実施例
の構成を概略的に示す平面図及び断面図であって、図1
2は図12のXII −XII 線に沿って取った断面を示す。
11 and 12 are a plan view and a sectional view schematically showing the configuration of the third embodiment of the third invention.
2 shows a cross section taken along line XII-XII in FIG.

【0074】この実施例では、内側領域tの浅いpn接
合52aを、直交する一方及び他方の方向にほぼ等距離
に延びている閉ループ形状例えば正方形形状と成し、複
数個の閉ループ状の浅いpn接合52aを内側領域tの
中央部を取り囲むように散在させて設ける。
In this embodiment, the shallow pn junction 52a in the inner region t is formed into a closed loop shape, for example, a square shape, which extends at equal distances in one direction and the other direction orthogonal to each other, and a plurality of closed loop shallow pn junctions are formed. The joints 52a are provided so as to be scattered so as to surround the central portion of the inner region t.

【0075】この実施例の受発光ダイオードの製造は、
第三発明の第一実施例と同様に行なえば良い。図11に
おいて例えば窓領域58a及び不純物阻止膜64の平面
形状を正方形、不純物阻止膜64の面積を窓領域58a
の1/4、及び深いpn接合52bを形成するための拡
散深さJd を5μmとして閉ループ状の浅いpn接合5
2aを4個内側領域tに形成した場合、この実施例にお
ける浅いpn接合52aの長さの総和は内側領域tに浅
いpn接合52aを設けない場合の1.7倍程度とな
る。
The manufacture of the light emitting and receiving diode of this embodiment is as follows.
It may be performed in the same manner as the first embodiment of the third invention. In FIG. 11, for example, the planar shape of the window region 58a and the impurity blocking film 64 is a square, and the area of the impurity blocking film 64 is the window region 58a.
And a shallow pn junction 5 having a closed loop shape with a diffusion depth J d of 5 μm for forming the deep pn junction 52b.
When four 2a are formed in the inner region t, the total length of the shallow pn junction 52a in this embodiment is about 1.7 times that in the case where the shallow pn junction 52a is not provided in the inner region t.

【0076】図13に、この実施例の受発光ダイオード
を受光素子として用いた場合の光電変換特性に関する実
験結果を示す。同図においては、図13の実験の場合と
同様に実験を行ない、実験結果とともにこの実施例の受
発光ダイオードの要部断面構造を示した。また図13の
場合と同様に、実験結果の横軸に光電変換電流を及び縦
軸に位置Xを取って示す。
FIG. 13 shows an experimental result regarding photoelectric conversion characteristics when the light emitting and receiving diode of this embodiment is used as a light receiving element. In this figure, the same experiment as in the experiment of FIG. 13 was performed, and the cross-sectional structure of the essential part of the light emitting and receiving diode of this example was shown together with the experimental results. Also, as in the case of FIG. 13, the horizontal axis of the experimental results shows the photoelectric conversion current and the vertical axis shows the position X.

【0077】図からも理解できるように、受発光領域5
2の周縁sに加えこの周縁内側の領域tの中央部におい
ても、光電変換が行なわれる。従って受発光領域52の
受光量を従来よりも精度良く検出できると共に、受光感
度を従来よりも高めることができる。
As can be understood from the figure, the light emitting / receiving region 5
In addition to the peripheral edge s of 2, the photoelectric conversion is also performed in the central portion of the area t inside the peripheral edge. Therefore, the amount of light received in the light emitting / receiving area 52 can be detected more accurately than in the conventional case, and the light receiving sensitivity can be increased more than in the conventional case.

【0078】図14及び図15は第三発明の第四実施例
の構成を概略的に示す平面図及び断面図であって、図1
5は図14のXIV −XIV 線に沿って取った断面を示す。
14 and 15 are a plan view and a sectional view schematically showing the configuration of the fourth embodiment of the third invention, and FIG.
5 shows a cross section taken along line XIV-XIV in FIG.

【0079】この実施例では、内側領域tの浅いpn接
合52aを層間絶縁膜58の側壁面と交差する方向Yに
おいて幅広な面状領域とする。そしてこの浅いpn接合
52aを、受発光領域52の周縁sの全体或は一部ここ
では周縁s全体に設け、この浅いpn接合52aを周縁
sから内側領域tまで延在させる。
In this embodiment, the shallow pn junction 52a in the inner region t is a wide planar region in the direction Y intersecting the side wall surface of the interlayer insulating film 58. The shallow pn junction 52a is provided on the entire or part of the peripheral edge s of the light receiving / emitting region 52, here the entire peripheral edge s, and the shallow pn junction 52a extends from the peripheral edge s to the inner region t.

【0080】次に第六発明の実施例として図14の受発
光ダイオードの製造工程につき説明する。図16(A)
〜(C)及び図17(A)〜(C)は第六発明の主要な
製造工程段階を概略的に示す断面図であって、これら各
図は図15の断面に対応する断面を示す。
Next, a manufacturing process of the light emitting / receiving diode shown in FIG. 14 will be described as an embodiment of the sixth invention. FIG. 16 (A)
17 (C) and 17 (A) to 17 (C) are cross-sectional views schematically showing the main manufacturing process steps of the sixth invention, and each of these drawings shows a cross section corresponding to the cross section of FIG.

【0081】まず、第一半導体層54上に第一不純物導
入マスク68を形成する。この実施例では、第一半導体
層54としてn−GaAs0.8 0.2 基板を用意し、こ
の層54上に、不純物を実質的に透過しない第一不純物
導入マスク66を積層する(図16(A))。
First, a first impurity introduction mask 68 is formed on the first semiconductor layer 54. In this embodiment, an n-GaAs 0.8 P 0.2 substrate is prepared as the first semiconductor layer 54, and a first impurity introduction mask 66 that is substantially impermeable to impurities is laminated on this layer 54 (FIG. 16A). ).

【0082】次に、第一不純物導入マスク68に第一窓
68aを形成する。この実施例では、フォトリソ及びエ
ッチング技術を用い、第一窓形成予定領域70の第一不
純物導入マスク68を選択的に除去して第一窓68aを
形成する(図16(A)〜図16(B))。第一窓形成
予定領域70の第一半導体層54を第一窓68aを介し
露出させる。
Next, the first window 68a is formed in the first impurity introduction mask 68. In this embodiment, the first window 68a is formed by selectively removing the first impurity introduction mask 68 in the first window formation scheduled region 70 using photolithography and etching techniques (FIGS. 16A to 16 ( B)). The first semiconductor layer 54 in the first window formation scheduled region 70 is exposed through the first window 68a.

【0083】次に、第一半導体層54に第一窓68aを
介し不純物を導入して深いpn接合52bを形成するた
めの第二半導体層56を形成し、然る後、第一不純物導
入マスク68を除去する。この実施例では、不純物とし
てのZnを熱拡散により導入して、深いpn接合52b
を、第一窓68aから露出する部分の第一半導体層54
に形成する(図16(C))。尚、不純物の導入は熱拡
散、イオン注入そのほかの任意好適な方法を用いて良
い。
Next, an impurity is introduced into the first semiconductor layer 54 through the first window 68a to form the second semiconductor layer 56 for forming the deep pn junction 52b, and thereafter, the first impurity introduction mask is formed. Remove 68. In this embodiment, Zn as an impurity is introduced by thermal diffusion to form a deep pn junction 52b.
Is exposed from the first window 68a.
(FIG. 16C). The impurities may be introduced by thermal diffusion, ion implantation, or any other suitable method.

【0084】次に、第一半導体層54及び第二半導体層
56上に不純物導入マスクを兼ねる層間絶縁膜58を形
成する。この実施例では、第一半導体層54及び深いp
n接合52bを形成するための第二半導体層56上に、
不純物を実質的に透過しない層間絶縁膜58を積層する
(図17(A))。層間絶縁膜58は受発光ダイオード
の発光波長の光に対して透明な膜、例えばSiN膜、S
iO膜或はSiON膜である。
Next, an interlayer insulating film 58 which also serves as an impurity introduction mask is formed on the first semiconductor layer 54 and the second semiconductor layer 56. In this embodiment, the first semiconductor layer 54 and the deep p
On the second semiconductor layer 56 for forming the n-junction 52b,
An interlayer insulating film 58 that is substantially impermeable to impurities is stacked (FIG. 17A). The interlayer insulating film 58 is a film that is transparent to the light of the emission wavelength of the light emitting / receiving diode, such as a SiN film or S
It is an iO film or a SiON film.

【0085】次に、深いpn接合52bを形成するため
の第二半導体層56の周縁uに隣接する領域vの第一半
導体層54を露出する第二窓58bを、層間絶縁膜58
に形成する。この実施例では、フォトリソ及びエッチン
グ技術を用いて、第二窓形成予定領域72の層間絶縁膜
58を選択的にエッチングすることにより、第二窓58
bを形成する(図17(A)〜図17(B))。第二窓
58bを介し第二半導体層56の周縁uと隣接領域vの
第一半導体層54とを露出させ、周縁uよりも内側の領
域の第二半導体層56と隣接領域v以外の第一半導体層
54とを層間絶縁膜58で覆う。ここでは、第二窓58
bは周縁uの全周及びこの全周に対応する隣接領域vの
第一半導体層54を露出する閉ループ状の窓であって、
従って周縁uよりも内側の領域に島状に層間絶縁膜58
が残存する。
Next, the second window 58b exposing the first semiconductor layer 54 in the region v adjacent to the peripheral edge u of the second semiconductor layer 56 for forming the deep pn junction 52b is provided with the interlayer insulating film 58.
To form. In this embodiment, the second window 58 is formed by selectively etching the interlayer insulating film 58 in the second window formation scheduled region 72 using photolithography and etching techniques.
b is formed (FIGS. 17A and 17B). The peripheral edge u of the second semiconductor layer 56 and the first semiconductor layer 54 in the adjacent region v are exposed through the second window 58b, and the second semiconductor layer 56 in the region inside the peripheral edge u and the first region other than the adjacent region v are exposed. The semiconductor layer 54 and the interlayer insulating film 58 are covered. Here, the second window 58
b is a closed loop window exposing the entire periphery of the peripheral edge u and the first semiconductor layer 54 in the adjacent region v corresponding to the entire periphery,
Therefore, the interlayer insulating film 58 is formed in an island shape in the region inside the peripheral edge u.
Remains.

【0086】尚、第二窓58bを、周縁uの一部及びこ
れに対応する隣接領域vの第一半導体層54を露出する
窓とし、残りの周縁u及び残りの隣接領域vを層間絶縁
膜58で覆うようにしても良い。
The second window 58b is a window exposing a part of the peripheral edge u and the corresponding first semiconductor layer 54 in the adjacent area v, and the remaining peripheral edge u and the remaining adjacent area v are the interlayer insulating film. You may make it cover with 58.

【0087】次に、第一半導体層54に第二窓58bを
介し不純物を導入して、浅いpn接合52aを形成する
ための第二半導体層56を形成する。この実施例では、
不純物としてのZnを熱拡散により導入して、浅いpn
接合52aを、第二窓58bを介し露出する部分の第一
半導体層54に形成する。
Next, impurities are introduced into the first semiconductor layer 54 through the second window 58b to form the second semiconductor layer 56 for forming the shallow pn junction 52a. In this example,
A shallow pn is formed by introducing Zn as an impurity by thermal diffusion.
The junction 52a is formed in the portion of the first semiconductor layer 54 exposed through the second window 58b.

【0088】次に、周縁uよりも内側の層間絶縁膜58
の一部又は全部ここでは全部を選択的に除去してp側電
極60及び第二半導体層56を電気接続するための窓5
8aを形成し、然る後、第二半導体層56と電気接続す
るp側電極60を形成する。さらに第一半導体層54と
電気接続するn側電極62を形成し、受発光ダイオード
を完成する(図14及び図15)。
Next, the interlayer insulating film 58 inside the peripheral edge u.
Part or all of the window 5 for selectively electrically removing the whole and electrically connecting the p-side electrode 60 and the second semiconductor layer 56.
8a is formed, and thereafter, the p-side electrode 60 electrically connected to the second semiconductor layer 56 is formed. Further, an n-side electrode 62 electrically connected to the first semiconductor layer 54 is formed to complete a light emitting / receiving diode (FIGS. 14 and 15).

【0089】この実施例によれば、第二窓58bを介し
露出する第一半導体層54を広げるにしたがって、浅い
pn接合52aの広さを増大させることができる。
According to this embodiment, the width of the shallow pn junction 52a can be increased as the first semiconductor layer 54 exposed through the second window 58b is expanded.

【0090】また層間絶縁膜58を発光波長の光に対し
透明な膜とした場合、発光に寄与する深いpn接合52
bに対応する領域の一部が層間絶縁膜58で覆われてい
ても発光効率の低下を殆ど無くせる。尚、層間絶縁膜5
8を発光波長の光に対し不透明な膜とし、不純物を導入
した後に深いpn接合52bに対応する領域の層間絶縁
膜縁膜58を選択的に除去するようにしても良い。
When the interlayer insulating film 58 is a film transparent to the light of the emission wavelength, the deep pn junction 52 contributing to the light emission.
Even if a part of the region corresponding to b is covered with the interlayer insulating film 58, the decrease in light emission efficiency can be almost eliminated. The interlayer insulating film 5
8 may be a film opaque to the light of the emission wavelength, and after the impurities are introduced, the interlayer insulating film edge film 58 in the region corresponding to the deep pn junction 52b may be selectively removed.

【0091】次に第七発明の実施例として図14の受発
光ダイオードの製造工程につき説明する。図18(A)
〜(C)及び図19(A)〜(B)は第七発明の主要な
製造工程段階を概略的に示す断面図であって、これら各
図は図15の断面に対応する断面を示す。
Next, a manufacturing process of the light emitting / receiving diode shown in FIG. 14 will be described as an embodiment of the seventh invention. FIG. 18 (A)
19C and FIG. 19A to FIG. 19B are cross-sectional views schematically showing main manufacturing process steps of the seventh invention, and each of these drawings shows a cross section corresponding to the cross section of FIG.

【0092】まず、不純物導入マスクを兼ねる下側層間
絶縁膜581及び上側層間絶縁膜582を順次に、第一
半導体層54上に形成する。この実施例では、第一半導
体層54としてn−GaAs0.8 0.2 基板を用意し、
この層54上に、下側層間絶縁膜581及び上側層間絶
縁膜582を順次に積層し、これら膜581及び582
から成る多層構造の層間絶縁膜58を得る(図18
(A))。下側層間絶縁膜581は上側層間絶縁膜58
2のエッチングに用いる第一エッチャント或はエッチン
グガスで実質的にエッチングされない材料例えばSiO
から成り、上側層間絶縁膜582は下側層間絶縁膜58
1のエッチングに用いる第二エッチャント或はエッチン
グガスで実質的にエッチングされない材料例えばSiN
から成る。
First, a lower interlayer insulating film 581 and an upper interlayer insulating film 582, which also serve as an impurity introduction mask, are sequentially formed on the first semiconductor layer 54. In this embodiment, an n-GaAs 0.8 P 0.2 substrate is prepared as the first semiconductor layer 54,
A lower interlayer insulating film 581 and an upper interlayer insulating film 582 are sequentially stacked on this layer 54, and these films 581 and 582 are formed.
To obtain an interlayer insulating film 58 having a multi-layered structure (FIG. 18).
(A)). The lower interlayer insulating film 581 is the upper interlayer insulating film 58.
A material that is not substantially etched by the first etchant or etching gas used for etching the second layer, such as SiO 2.
The upper interlayer insulating film 582 is composed of
A material that is not substantially etched by the second etchant or etching gas used for etching the first element, such as SiN
Consists of.

【0093】次に、上側層間絶縁膜582に第一窓58
2aを形成する。この実施例では、フォトリソ及びエッ
チング技術を用いて窓形成予定領域74の上側層間絶縁
膜582を選択的にエッチングし、第一窓582aを形
成する(図18(A)〜図18(B))。第一窓582
aを介し下側層間絶縁膜581を露出させる。上側層間
絶縁膜582のエッチングに用いる第一エッチャント或
はエッチングガス例えばエッチングガスCF4 は、下側
層間絶縁膜581に対するエッチングレートが小さく従
って下側層間絶縁膜581を実質的にエッチングしな
い。
Next, the first window 58 is formed in the upper interlayer insulating film 582.
2a is formed. In this embodiment, the upper interlayer insulating film 582 in the window formation scheduled region 74 is selectively etched using photolithography and etching techniques to form the first window 582a (FIGS. 18A to 18B). . First window 582
The lower interlayer insulating film 581 is exposed via a. The first etchant or etching gas used for etching the upper interlayer insulating film 582, for example, the etching gas CF 4 has a small etching rate with respect to the lower interlayer insulating film 581 and therefore does not substantially etch the lower interlayer insulating film 581.

【0094】次に、第一窓582aの内側領域76の下
側層間絶縁膜581を一部残存させて、当該領域76の
下側層間絶縁膜581に第二窓581aを形成する。こ
の実施例では、フォトリソ及びエッチング技術を用いて
窓内側領域76の下側層間絶縁膜581を選択的にエッ
チングし、第二窓581aを形成する(図18(B)〜
図18(C))。下側層間絶縁膜581のエッチングに
用いる第二エッチャント或はエッチングガス例えばエッ
チャントHFは、上側層間絶縁膜582に対するエッチ
ングレートが小さく従って上側層間絶縁膜582を実質
的にエッチングしない。
Next, a part of the lower interlayer insulating film 581 of the inner region 76 of the first window 582a is left, and the second window 581a is formed in the lower interlayer insulating film 581 of the region 76. In this embodiment, the lower interlayer insulating film 581 of the window inner region 76 is selectively etched by using photolithography and etching technique to form the second window 581a (FIG. 18 (B)-
FIG. 18C). The second etchant or etching gas, such as etchant HF, used for etching the lower interlayer insulating film 581 has a small etching rate with respect to the upper interlayer insulating film 582, and thus does not substantially etch the upper interlayer insulating film 582.

【0095】下側層間絶縁膜581の内側領域76に残
存する部分を残存部分581bと表せば、残存部分58
1bを内側領域76周縁の全周にわたり設け、残存部分
581bを内側領域76周縁から内側領域76中央部へ
向けて延出させる。そして内側領域76中央部の第一半
導体層54を第二窓581aを介し露出させる。上側層
間絶縁膜582及び下側層間絶縁膜581の重なり合う
部分は不純物を実質的に透過せず、上側層間絶縁膜58
2で覆われていない残存部分581bは実質的に不純物
を透過する。残存部分581bは不純物導入深さ調整用
の膜として機能し、例えば残存部分581bの膜厚や材
質を任意好適に変更することにより、不純物の導入深さ
を制御する。
If the portion remaining in the inner region 76 of the lower interlayer insulating film 581 is expressed as a remaining portion 581b, the remaining portion 58 will be described.
1b is provided all around the periphery of the inner region 76, and the remaining portion 581b extends from the periphery of the inner region 76 toward the center of the inner region 76. Then, the first semiconductor layer 54 at the center of the inner region 76 is exposed through the second window 581a. Impurities are not substantially transmitted through the overlapping portions of the upper interlayer insulating film 582 and the lower interlayer insulating film 581, and the upper interlayer insulating film 58
The remaining portion 581b which is not covered with 2 substantially permeates impurities. The remaining portion 581b functions as a film for adjusting the impurity introduction depth, and the impurity introduction depth is controlled by, for example, arbitrarily changing the film thickness and material of the remaining portion 581b.

【0096】尚、残存部分581bを内側領域76の任
意好適箇所に設けることができる。例えば、残存部分5
81bを内側領域76周縁の一部にのみ設け、この残存
部分581bを内側領域76周縁から内側領域76中央
部へ延在させるようにしても良いし、残存部分581b
を内側領域76周縁には設けずに内側領域76中央部の
みに設けるようにしても良い。また残存部分581bを
連続的に延在させて設けても良いし、島状に孤立させて
断続的に設けるようにしても良い。
The remaining portion 581b can be provided at any suitable position in the inner area 76. For example, the remaining part 5
81b may be provided only in a part of the peripheral edge of the inner region 76, and the remaining portion 581b may extend from the peripheral edge of the inner region 76 to the central portion of the inner region 76, or the residual portion 581b.
May be provided only in the central portion of the inner region 76 without being provided at the peripheral edge of the inner region 76. Further, the remaining portion 581b may be provided so as to extend continuously, or may be isolated in an island shape and provided intermittently.

【0097】次に、第一窓582a及び第二窓581a
を介し第一半導体層541に不純物を導入して、浅いp
n接合52a及び深いpn接合52bを形成するための
第二半導体層56を形成する。この実施例では、不純物
としてのZnを熱拡散させ、深いpn接合52bを、第
二窓581aを介し露出する部分の第一半導体層54に
形成すると共に、浅いpn接合52aを、下側層間絶縁
膜581の残存部分581b下側の第一半導体層54に
形成する(図19(B))。尚、不純物導入は、熱拡
散、イオン注入そのほかの任意好適な技術を用いて行な
える。
Next, the first window 582a and the second window 581a.
The impurity is introduced into the first semiconductor layer 541 through the
A second semiconductor layer 56 for forming the n-junction 52a and the deep pn junction 52b is formed. In this embodiment, Zn as an impurity is thermally diffused to form a deep pn junction 52b in the portion of the first semiconductor layer 54 exposed through the second window 581a, and a shallow pn junction 52a is formed in the lower interlayer insulating film. It is formed on the first semiconductor layer 54 below the remaining portion 581b of the film 581 (FIG. 19B). The impurities can be introduced by using thermal diffusion, ion implantation or any other suitable technique.

【0098】残存部分581bはこの部分581b下側
の第一半導体層54の不純物導入深さを減ずるように作
用する。従って、残存部分681b下側の第一半導体層
54に対する不純物導入条件と第二窓581aを介し露
出する第一半導体層54に対する不純物導入条件とを同
一としても、残存部分581bの不純物導入深さは第二
窓581aを介し露出する第一半導体層54の不純物導
入深さよりも浅くなる。これがため、第一窓582a及
び第二窓581aを介し不純物を導入することにより、
浅いpn接合52aと深いpn接合52bとを並行して
形成できる。
The remaining portion 581b acts so as to reduce the impurity introduction depth of the first semiconductor layer 54 below this portion 581b. Therefore, even if the impurity introduction conditions for the first semiconductor layer 54 below the residual portion 681b and the impurity introduction conditions for the first semiconductor layer 54 exposed through the second window 581a are the same, the impurity introduction depth of the residual portion 581b is It becomes shallower than the impurity introduction depth of the first semiconductor layer 54 exposed through the second window 581a. Therefore, by introducing impurities through the first window 582a and the second window 581a,
The shallow pn junction 52a and the deep pn junction 52b can be formed in parallel.

【0099】次に、残存部分581bをエッチング除去
して、層間絶縁膜58の窓58aを形成すると共に残存
部分581b下側の浅いpn接合52aを露出させる
(図19(B))。尚、下側層間絶縁膜581を受光す
べき光に対し透明な膜とした場合には光残存部分581
bの除去は必ずしも行なわなくとも良い。
Next, the remaining portion 581b is removed by etching to form the window 58a of the interlayer insulating film 58 and expose the shallow pn junction 52a below the remaining portion 581b (FIG. 19B). When the lower interlayer insulating film 581 is made transparent to the light to be received, the light remaining portion 581
It is not always necessary to remove b.

【0100】次に、第二半導体層56と電気接続するp
側電極60を形成する。さらに第一半導体層54と電気
接続するn側電極62を形成し、受発光ダイオードを完
成する(図14及び図15)。
Next, p which is electrically connected to the second semiconductor layer 56 is formed.
The side electrode 60 is formed. Further, an n-side electrode 62 electrically connected to the first semiconductor layer 54 is formed to complete a light emitting / receiving diode (FIGS. 14 and 15).

【0101】この実施例によれば、浅いpn接合52a
及び深いpn接合52bの形成を並行して行なえる。ま
た残存部分581bの配設面積を広げるにしたがって、
浅いpn接合52aの広さを増大させることができる。
According to this embodiment, the shallow pn junction 52a is formed.
And the deep pn junction 52b can be formed in parallel. As the area of the remaining portion 581b is increased,
The width of the shallow pn junction 52a can be increased.

【0102】図20及び図21は第三発明の第五実施例
の構成を概略的に示す平面図及び断面図であって、図2
1は図20のXXI −XXI 線に沿って取った断面を示す。
20 and 21 are a plan view and a sectional view schematically showing the structure of the fifth embodiment of the third invention.
1 shows a cross section taken along line XXI-XXI in FIG.

【0103】この実施例では、内側領域tの浅いpn接
合52aを層間絶縁膜58の側壁面と交差する方向Zに
おいて幅広な面状領域とする。そして浅いpn接合52
aを、受発光領域52の周縁sの一部に設け、この浅い
pn接合52aを周縁sから内側領域tまで延在させ
る。
In this embodiment, the shallow pn junction 52a in the inner region t is a wide planar region in the direction Z intersecting the side wall surface of the interlayer insulating film 58. And shallow pn junction 52
a is provided on a part of the peripheral edge s of the light emitting / receiving region 52, and the shallow pn junction 52a extends from the peripheral edge s to the inner region t.

【0104】この実施例の受発光ダイオードの製造は、
第三発明の第四実施例と同様に行なえば良い。
The manufacture of the light emitting and receiving diode of this embodiment is as follows.
It may be carried out in the same manner as the fourth embodiment of the third invention.

【0105】図22及び図23は第三発明の第六実施例
の構成を概略的に示す平面図及び断面図であって、図2
3は図22のXXIII −XXIII 線に沿って取った断面を示
す。
22 and 23 are a plan view and a sectional view schematically showing the structure of the sixth embodiment of the third invention.
3 shows a cross section taken along line XXIII-XXIII in FIG.

【0106】この実施例では、内側領域tの浅いpn接
合52aを層間絶縁膜58の側壁面と交差する方向Zに
おいて幅広な面状領域とする。そして浅いpn接合52
aを、受発光領域52の周縁sの一部に設け、この浅い
pn接合52aを周縁sから内側領域tまで延在させ
る。
In this embodiment, the shallow pn junction 52a in the inner region t is a wide planar region in the direction Z intersecting the side wall surface of the interlayer insulating film 58. And shallow pn junction 52
a is provided on a part of the peripheral edge s of the light emitting / receiving region 52, and the shallow pn junction 52a extends from the peripheral edge s to the inner region t.

【0107】次に第八発明の実施例として図22の受発
光ダイオードの製造工程につき説明する。図24(A)
〜(C)及び図25(A)〜(B)は第八発明の主要な
製造工程段階を概略的に示す断面図であって、これら各
図は図23の断面に対応する断面を示す。
Next, a manufacturing process of the light emitting and receiving diode shown in FIG. 22 will be described as an embodiment of the eighth invention. FIG. 24 (A)
25 (C) and FIGS. 25 (A) to 25 (B) are cross-sectional views schematically showing main manufacturing process steps of the eighth invention, and each of these drawings shows a cross section corresponding to the cross section of FIG. 23.

【0108】まず、第一半導体層54上に不純物導入マ
スクを兼ねる層間絶縁膜58を形成する。この実施例で
は、第一半導体層54としてn−GaAs0.8 0.2
板を用意し、この層54上に、不純物を実質的に透過し
ない層間絶縁膜58を積層する(図24(A))。層間
絶縁膜58としてSiN膜、SiO膜或はSiON膜を
積層する。尚、層間絶縁膜58は受光すべき光或は発光
波長の光に対し透明であっても透明でなくとも良い。
First, an interlayer insulating film 58 which also serves as an impurity introduction mask is formed on the first semiconductor layer 54. In this embodiment, an n-GaAs 0.8 P 0.2 substrate is prepared as the first semiconductor layer 54, and an interlayer insulating film 58 that is substantially impermeable to impurities is laminated on this layer 54 (FIG. 24A). As the interlayer insulating film 58, a SiN film, a SiO film or a SiON film is laminated. The interlayer insulating film 58 may or may not be transparent to the light to be received or the light of the emission wavelength.

【0109】次に層間絶縁膜58に窓58aを形成す
る。この実施例では、フォトリソ及びエッチング技術を
用い、窓形成予定領域78の層間絶縁膜58を選択的に
除去して窓58aを形成する(図24(A)〜
(B))。窓形成予定領域78の第一半導体層54を窓
58aを介し露出させる。
Next, a window 58a is formed in the interlayer insulating film 58. In this embodiment, a photolithography and etching technique is used to selectively remove the interlayer insulating film 58 in the window formation scheduled region 78 to form a window 58a (FIG. 24A to FIG.
(B)). The first semiconductor layer 54 in the window formation scheduled region 78 is exposed through the window 58a.

【0110】次に、第一半導体層54に層間絶縁膜58
の窓58aを介し不純物を導入し、深いpn接合52b
を形成するための第二半導体層56を形成する。この実
施例では、不純物としてZnを拡散させ、窓58aを介
し露出する窓形成予定領域78の第一半導体層54に深
いpn接合52bを形成する(図24(C))。
Next, an interlayer insulating film 58 is formed on the first semiconductor layer 54.
Impurities are introduced through the window 58a of the deep pn junction 52b.
A second semiconductor layer 56 for forming is formed. In this embodiment, Zn is diffused as an impurity, and a deep pn junction 52b is formed in the first semiconductor layer 54 in the window formation scheduled region 78 exposed through the window 58a (FIG. 24C).

【0111】次に、第二半導体層56を部分的にエッチ
ング防止膜80で覆う。深いpn接合52bを形成すべ
き領域の第二半導体層56をエッチング防止膜80で覆
い、浅いpn接合52aを形成すべき領域の第二半導体
層56をエッチング防止膜80で覆わずに露出させる。
この実施例では、エッチング防止膜80をレジストで形
成する。そして窓58aの内側領域を境界Kで領域82
aと領域82bとに2分割する。境界Kから一方の領域
82aの側に位置する第二半導体層56及び層間絶縁膜
58上にエッチング防止膜80を延在させ、これら一方
の側に位置する第二半導体層56及び層間絶縁膜58を
エッチング防止膜80で覆う。また境界Kから他方の領
域82bの側に位置する第二半導体層56及び層間絶縁
膜58はエッチング防止膜80で覆わずに露出させる
(図25(A))。
Next, the second semiconductor layer 56 is partially covered with the etching prevention film 80. The second semiconductor layer 56 in the region where the deep pn junction 52b is to be formed is covered with the etching prevention film 80, and the second semiconductor layer 56 in the region where the shallow pn junction 52a is to be formed is exposed without being covered with the etching prevention film 80.
In this embodiment, the etching prevention film 80 is made of resist. Then, the area inside the window 58a is the area 82 at the boundary K.
It is divided into a and a region 82b. An etching prevention film 80 is extended on the second semiconductor layer 56 and the interlayer insulating film 58 located on the one region 82a side from the boundary K, and the second semiconductor layer 56 and the interlayer insulating film 58 located on these one side. Is covered with an etching prevention film 80. Further, the second semiconductor layer 56 and the interlayer insulating film 58 located on the other region 82b side from the boundary K are exposed without being covered with the etching prevention film 80 (FIG. 25A).

【0112】次に、第二半導体層56をエッチング防止
膜80を介しエッチングして第二半導体層56の層厚を
部分的に薄くし、浅いpn接合52aを形成するための
層厚の薄い第二半導体層56を形成する。この実施例で
は、エッチング防止膜80で覆わずに窓58aから露出
させた領域82bの第二半導体層56を選択的にエッチ
ングし、当該領域82bに層厚の薄い第二半導体層56
を形成する(図25(B))。第二半導体56の層厚を
薄くすることにより浅いpn接合52aを形成できる。
Next, the second semiconductor layer 56 is etched through the anti-etching film 80 to partially reduce the layer thickness of the second semiconductor layer 56 to form a shallow pn junction 52a. Two semiconductor layers 56 are formed. In this embodiment, the second semiconductor layer 56 in the region 82b exposed from the window 58a without being covered with the etching prevention film 80 is selectively etched, and the second semiconductor layer 56 having a thin layer thickness is formed in the region 82b.
Are formed (FIG. 25B). A shallow pn junction 52a can be formed by reducing the layer thickness of the second semiconductor 56.

【0113】次に、エッチング防止膜80を除去し、然
る後、第二半導体層56と電気接続するp側電極60を
形成する。さらに第一半導体層54と電気接続するn側
電極62を形成し、受発光ダイオードを完成する(図2
2及び図23)。
Next, the etching prevention film 80 is removed, and thereafter, the p-side electrode 60 electrically connected to the second semiconductor layer 56 is formed. Further, an n-side electrode 62 electrically connected to the first semiconductor layer 54 is formed to complete the light emitting / receiving diode (FIG. 2).
2 and FIG. 23).

【0114】この実施例によれば、エッチング防止膜8
0で覆わずに露出させる領域82bの第二半導体層56
を広くするのに応じて、浅いpn接合の広さを増大させ
ることができる。
According to this embodiment, the etching prevention film 8 is formed.
The second semiconductor layer 56 in the region 82b exposed without being covered with 0
The width of the shallow pn junction can be increased in accordance with the increase in width.

【0115】上述した第二及び第三発明の実施例の受発
光ダイオードは受発光ダイオードアレイを構成するのに
用いて好適であり、例えば、複数個の受発光ダイオード
を一直線状に或は千鳥状に一列に並べて受発光ダイオー
ドアレイを構成する。このアレイは電子写真式印刷にお
ける感光体ドラムの露光光源としてまた画像読取り装置
におけるイメージセンサとして用いることができ、従っ
てこのアレイは電子写真式印刷及び画像読取りの二つの
機能を兼ね備える装置に用いて好適である。
The light emitting / receiving diodes of the above-mentioned second and third inventions are suitable for use in constructing a light receiving / emitting diode array. For example, a plurality of light receiving / emitting diodes are arranged in a straight line or in a staggered pattern. To form a light emitting and receiving diode array. This array can be used as an exposure light source of a photosensitive drum in electrophotographic printing and as an image sensor in an image reading apparatus, and therefore, the array is suitable for use in an apparatus having the dual functions of electrophotographic printing and image reading. Is.

【0116】発明は上述した実施例にのみ限定されるも
のではなく、従って各構成成分の形状、寸法、配設位
置、形成材料及びそのほかを任意好適に変更できる。
The invention is not limited to the above-mentioned embodiments, and therefore, the shape, size, disposition position, forming material and the like of each component can be arbitrarily changed.

【0117】[0117]

【発明の効果】上述した説明からも明らかなように、第
一発明の受発光ダイオードによれば、深いpn接合の広
さに対する浅いpn接合の広さを増大させるので、受光
感度を従来よりも高めることができる。
As is apparent from the above description, according to the light receiving and emitting diode of the first invention, the width of the shallow pn junction is increased with respect to the width of the deep pn junction, so that the light receiving sensitivity is higher than that of the conventional one. Can be increased.

【0118】第二発明の受発光ダイオードは第一発明の
好適実施例であって、この第二発明によれば、受発光領
域の周縁に蛇行させて浅いpn接合を設けるので浅いp
n接合の広さを従来よりも増大させることができる。し
かも浅いpn接合を蛇行させるので受光機能を担う浅い
pn接合が従来よりも分散されて配置されることとな
り、従って受発光領域の受光量をより精度良く検出でき
る。
The light emitting and receiving diode of the second invention is a preferred embodiment of the first invention, and according to the second invention, a shallow pn junction is provided so as to meander along the periphery of the light receiving and emitting region, so that the shallow p is formed.
The width of the n-junction can be increased more than ever before. Moreover, since the shallow pn junctions meander, the shallow pn junctions having the light receiving function are arranged in a more dispersed manner than in the conventional case, and therefore the amount of light received in the light emitting / receiving region can be detected more accurately.

【0119】第三発明の受発光ダイオードは第一発明の
好適実施例であって、この第三発明によれば、受発光領
域の周縁より内側の領域にも浅いpn接合を設けるので
浅いpn接合の広さを従来よりも増大させることができ
る。しかも受発光領域の周縁より内側の領域にも浅いp
n接合を設けるので受光機能を担う浅いpn接合が従来
よりも分散されて配置されることとなり、従って受発光
領域の受光量を従来より精度良く検出できる。
The light emitting and receiving diode of the third invention is a preferred embodiment of the first invention. According to the third invention, the shallow pn junction is provided also in the region inside the peripheral edge of the light receiving and emitting region. The width of the can be increased more than before. Moreover, p is shallow even in the area inside the periphery of the light receiving and emitting area.
Since the n-junctions are provided, the shallow pn junctions having a light receiving function are arranged in a dispersed manner as compared with the conventional case, and therefore, the amount of light received in the light emitting / receiving area can be detected more accurately than before.

【0120】第四発明の受発光ダイオードの製造方法は
第二発明の受発光ダイオードを製造するための一方法で
あって、この第四発明によれば、層間絶縁膜の窓を介し
不純物を熱拡散させることにより、深いpn接合の形成
と浅いpn接合の形成とを並行して行なえる。しかも不
純物導入マスクを兼ねる層間絶縁膜の窓周縁を蛇行させ
るという単純な設計変更を行なうだけで、蛇行した浅い
pn接合を形成できる。従って製造プロセスの複雑化を
避けつつ浅いpn接合の広さを増大させることができ
る。
The method for manufacturing a light emitting and receiving diode according to the fourth aspect of the present invention is one method for manufacturing the light receiving and emitting diode according to the second aspect of the present invention. According to the fourth aspect of the present invention, impurities are heated through the window of the interlayer insulating film. By diffusing, formation of a deep pn junction and formation of a shallow pn junction can be performed in parallel. Moreover, a meandering shallow pn junction can be formed by merely making a simple design change in which the window periphery of the interlayer insulating film also serving as an impurity introduction mask is meandered. Therefore, the area of the shallow pn junction can be increased while avoiding the complication of the manufacturing process.

【0121】第五発明の受発光ダイオードの製造方法は
第三発明の受発光ダイオードを製造するための一方法で
あって、この第五発明によれば、層間絶縁膜の窓及び不
純物阻止膜を介し不純物を熱拡散させることにより、深
いpn接合の形成と浅いpn接合の形成とを並行して行
なえる。従って製造プロセスの複雑化を避けつつ浅いp
n接合の広さを増大させることができる。
The manufacturing method of the light receiving and emitting diode of the fifth invention is one method for manufacturing the light receiving and emitting diode of the third invention. According to the fifth invention, the window of the interlayer insulating film and the impurity blocking film are formed. By thermally diffusing the impurity through the formation of the deep pn junction and the shallow pn junction can be performed in parallel. Therefore, while avoiding complication of the manufacturing process, shallow p
The width of the n-junction can be increased.

【0122】第六発明の受発光ダイオードの製造方法は
第三発明の受発光ダイオードを製造するための一方法で
あって、この第六発明によれば、深いpn接合を形成す
るための第二半導体層の周縁に隣接する領域の第一半導
体層を、層間絶縁膜の第二窓から露出させ、第二窓を介
し第一半導体層に不純物を導入して浅いpn接合を形成
するための第二半導体層を形成する。従って第二窓から
露出する第一半導体層を広げるのに応じて浅いpn接合
の広さを増大させることができるので、面状に広がる浅
いpn接合を容易に形成できる。受発光領域の受光量を
より一層精度良く検出するためには、浅いpn接合を面
状に形成するほうが有利である。
The method for manufacturing a light emitting and receiving diode according to the sixth invention is one method for manufacturing the light receiving and emitting diode according to the third invention. According to the sixth invention, the second method for forming a deep pn junction is used. A first semiconductor layer in a region adjacent to the periphery of the semiconductor layer is exposed from the second window of the interlayer insulating film, and impurities are introduced into the first semiconductor layer through the second window to form a shallow pn junction. Two semiconductor layers are formed. Therefore, the width of the shallow pn junction can be increased as the first semiconductor layer exposed from the second window is widened, so that the shallow pn junction spreading in a planar shape can be easily formed. In order to detect the amount of light received in the light emitting / receiving region with higher accuracy, it is advantageous to form the shallow pn junction in a planar shape.

【0123】第七発明の受発光ダイオードの製造方法は
第三発明の受発光ダイオードを製造するための一方法で
あって、この第七発明によれば、下側層間絶縁膜の膜厚
を厚くするにしたがって或は下側層間絶縁膜の材質を任
意好適に選択することによって、不純物の導入深さを浅
くすることができる。従って上側層間絶縁膜の第一窓及
び下側層間絶縁膜の第二窓を介し不純物を導入すること
により、下側層間絶縁膜で覆われていない第二窓内側領
域に深いpn接合を形成しつつ、下側層間絶縁膜で覆わ
れている第一窓内側領域に浅いpn接合を形成すること
ができる。しかも第二窓を介し露出する部分の下側層間
絶縁膜を広くするのに応じて、浅いpn接合の広さを増
大させることができるので、面状に広がる浅いpn接合
を容易に形成できる。受発光領域の受光量をより一層精
度良く検出するためには、浅いpn接合を面状に形成す
るほうが有利である。
The method for manufacturing a light emitting and receiving diode according to the seventh invention is one method for manufacturing the light receiving and emitting diode according to the third invention. According to the seventh invention, the film thickness of the lower interlayer insulating film is increased. According to the above, or by appropriately and appropriately selecting the material of the lower interlayer insulating film, the introduction depth of impurities can be made shallow. Therefore, by introducing impurities through the first window of the upper interlayer insulating film and the second window of the lower interlayer insulating film, a deep pn junction is formed in the region inside the second window not covered with the lower interlayer insulating film. At the same time, a shallow pn junction can be formed in the first window inner region covered with the lower interlayer insulating film. Moreover, since the width of the shallow pn junction can be increased in accordance with the widening of the lower interlayer insulating film exposed through the second window, it is possible to easily form the shallow pn junction that spreads in a plane. In order to detect the amount of light received in the light emitting / receiving region with higher accuracy, it is advantageous to form the shallow pn junction in a planar shape.

【0124】第八発明の受発光ダイオードの製造方法は
第三発明の受発光ダイオードを製造するための一方法で
あって、この第八発明によれば、深いpn接合を形成す
るための第二半導体層をエッチング防止膜を介してエッ
チングしてこの第二半導体層の層厚を部分的に薄くする
ことにより、浅いpn接合を形成する。従ってエッチン
グ防止膜で覆わない領域を広げるのに応じて浅いpn接
合の広さを増大させることができるので、面状に広がる
浅いpn接合を容易に形成できる。受発光領域の受光量
をより一層精度良く検出するためには、浅いpn接合を
面状に形成するほうが有利である。
The method for manufacturing a light emitting and receiving diode according to the eighth invention is a method for manufacturing the light receiving and emitting diode according to the third invention. According to the eighth invention, the second method for forming a deep pn junction is used. A shallow pn junction is formed by etching the semiconductor layer through the etching prevention film to partially reduce the layer thickness of the second semiconductor layer. Therefore, the width of the shallow pn junction can be increased in accordance with the expansion of the region not covered with the etching prevention film, so that the shallow pn junction spreading in a planar shape can be easily formed. In order to detect the amount of light received in the light emitting / receiving region with higher accuracy, it is advantageous to form the shallow pn junction in a planar shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】第二発明の実施例の構成を概略的に示す平面図
である。
FIG. 1 is a plan view schematically showing a configuration of an embodiment of a second invention.

【図2】第二発明の実施例の構成を概略的に示す断面図
である。
FIG. 2 is a sectional view schematically showing the configuration of an embodiment of the second invention.

【図3】(A)〜(C)は第四発明の主要な製造工程段
階を概略的に示す断面図である。
3A to 3C are cross-sectional views schematically showing main manufacturing process steps of the fourth invention.

【図4】(A)及び(B)は浅いpn接合の最小接合深
さJm の説明に供する断面図である。
FIGS. 4A and 4B are cross-sectional views for explaining a minimum junction depth J m of a shallow pn junction.

【図5】第三発明の第一実施例の構成を概略的に示す平
面図である。
FIG. 5 is a plan view schematically showing a configuration of a first embodiment of the third invention.

【図6】第三発明の第一実施例の構成を概略的に示す断
面図である。
FIG. 6 is a sectional view schematically showing a configuration of a first embodiment of the third invention.

【図7】(A)〜(C)は第五発明の主要な製造工程段
階を概略的に示す断面図である。
7 (A) to 7 (C) are cross-sectional views schematically showing main manufacturing process steps of the fifth invention.

【図8】第三発明の第二実施例の構成を概略的に示す平
面図である。
FIG. 8 is a plan view schematically showing a configuration of a second embodiment of the third invention.

【図9】第三発明の第二実施例の構成を概略的に示す断
面図である。
FIG. 9 is a sectional view schematically showing the configuration of a second embodiment of the third invention.

【図10】第三発明の第二実施例の光電変換特性に関す
る実験結果を示す図である。
FIG. 10 is a diagram showing experimental results regarding photoelectric conversion characteristics of the second embodiment of the third invention.

【図11】第三発明の第三実施例の構成を概略的に示す
平面図である。
FIG. 11 is a plan view schematically showing the configuration of a third embodiment of the third invention.

【図12】第三発明の第三実施例の構成を概略的に示す
断面図である。
FIG. 12 is a sectional view schematically showing the configuration of a third embodiment of the third invention.

【図13】第三発明の第三実施例の光電変換特性に関す
る実験結果を示す図である。
FIG. 13 is a diagram showing experimental results regarding photoelectric conversion characteristics of the third embodiment of the third invention.

【図14】第三発明の第四実施例の構成を概略的に示す
平面図である。
FIG. 14 is a plan view schematically showing a configuration of a fourth embodiment of the third invention.

【図15】第三発明の第四実施例の構成を概略的に示す
断面図である。
FIG. 15 is a cross sectional view schematically showing a configuration of a fourth embodiment of the third invention.

【図16】(A)〜(C)は第六発明の主要な製造工程
段階を概略的に示す断面図である。
16A to 16C are cross-sectional views schematically showing main manufacturing process steps of the sixth invention.

【図17】(A)〜(C)は第六発明の主要な製造工程
段階を概略的に示す断面図である。
17A to 17C are cross-sectional views schematically showing main manufacturing process steps of the sixth invention.

【図18】(A)〜(C)は第七発明の主要な製造工程
段階を概略的に示す断面図である。
18A to 18C are cross-sectional views schematically showing main manufacturing process steps of the seventh invention.

【図19】(A)〜(B)は第七発明の主要な製造工程
段階を概略的に示す断面図である。
19A to 19B are cross-sectional views schematically showing main manufacturing process steps of the seventh invention.

【図20】第三発明の第五実施例の構成を概略的に示す
平面図である。
FIG. 20 is a plan view schematically showing the configuration of the fifth embodiment of the third invention.

【図21】第三発明の第五実施例の構成を概略的に示す
断面図である。
FIG. 21 is a sectional view schematically showing the configuration of a fifth embodiment of the third invention.

【図22】第三発明の第六実施例の構成を概略的に示す
平面図である。
FIG. 22 is a plan view schematically showing the configuration of a sixth embodiment of the third invention.

【図23】第三発明の第六実施例の構成を概略的に示す
断面図である。
FIG. 23 is a sectional view schematically showing the configuration of a sixth embodiment of the third invention.

【図24】(A)〜(C)は第八発明の主要な製造工程
段階を概略的に示す断面図である。
24A to 24C are cross-sectional views schematically showing main manufacturing process steps of the eighth invention.

【図25】(A)〜(B)は第八発明の主要な製造工程
段階を概略的に示す断面図である。
25 (A) to (B) are cross-sectional views schematically showing main manufacturing process steps of the eighth invention.

【図26】印刷・読取り一体型装置の構造の一例を示す
要部斜視図である。
FIG. 26 is a perspective view of a principal part showing an example of the structure of a printing / reading integrated apparatus.

【図27】(A)及び(B)はLEDアレイの要部構成
を概略的に示す平面図及び断面図である。
27 (A) and 27 (B) are a plan view and a cross-sectional view schematically showing a configuration of a main part of an LED array.

【図28】LEDのpn接合深さと発光強度との関係を
示す図である。
FIG. 28 is a diagram showing the relationship between the pn junction depth of an LED and the emission intensity.

【図29】LEDを受光素子として用いた場合の光電変
換特性に関する実験結果を示す図である。
FIG. 29 is a diagram showing experimental results regarding photoelectric conversion characteristics when an LED is used as a light receiving element.

【図30】入射光波長に対するGaAs0.8 0.2 の吸
収係数の変化の様子を示す図である。
FIG. 30 is a diagram showing changes in the absorption coefficient of GaAs 0.8 P 0.2 with respect to the incident light wavelength.

【符号の説明】[Explanation of symbols]

40、52:受発光領域 40a、52a:浅いpn接合 40b、52b:深いpn接合 42、54:第一半導体層 44、56:第二半導体層 46、58:層間絶縁膜 46a、58a:窓 58b、581a:第二窓 581:下側層間絶縁膜 582:上側層間絶縁膜 62、76:窓内側領域 68:第一不純物導入マスク 68a、582a:第一窓 80:エッチング防止膜 40, 52: light emitting and receiving regions 40a, 52a: shallow pn junction 40b, 52b: deep pn junction 42, 54: first semiconductor layer 44, 56: second semiconductor layer 46, 58: interlayer insulating film 46a, 58a: window 58b 581a: second window 581: lower interlayer insulating film 582: upper interlayer insulating film 62, 76: window inner region 68: first impurity introduction mask 68a, 582a: first window 80: etching prevention film

フロントページの続き (72)発明者 清水 孝篤 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 戸倉 和男 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 井口 泰男 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内Front page continuation (72) Inventor Takaatsu Shimizu 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Inventor Kazuo Tokura 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Incorporated (72) Inventor Yasuo Iguchi 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 受発光領域に光電変換用の浅いpn接合
と発光用の深いpn接合とを互いに接して備えて成る受
発光ダイオードにおいて、 深いpn接合の広さに対する浅いpn接合の広さを増大
せしめて成ることを特徴とする受発光ダイオード。
1. A light emitting and receiving diode comprising a light receiving and emitting region in which a shallow pn junction for photoelectric conversion and a deep pn junction for light emission are provided in contact with each other. A light emitting and receiving diode characterized in that it is made up of a large number.
【請求項2】 請求項1記載の受発光ダイオードにおい
て、 受発光領域の周縁に蛇行させて浅いpn接合を設けて成
ることを特徴とする受発光ダイオード。
2. The light emitting and receiving diode according to claim 1, wherein a shallow pn junction is provided along the periphery of the light receiving and emitting region in a meandering manner.
【請求項3】 請求項1記載の受発光ダイオードにおい
て、 浅いpn接合を受発光領域の周縁と該受発光領域の周縁
よりも内側の領域とに設けて成ることを特徴とする受発
光ダイオード。
3. The light receiving and emitting diode according to claim 1, wherein a shallow pn junction is provided at a peripheral edge of the light receiving and emitting area and an area inside the peripheral edge of the light receiving and emitting area.
【請求項4】 請求項2記載の受発光ダイオードを製造
するに当り、 第一半導体層上に不純物導入マスクを兼ねる層間絶縁膜
を形成する工程と、 前記層間絶縁膜に窓周縁を蛇行させた窓を形成する工程
と、 前記第一半導体層に層間絶縁膜の窓を介し不純物を熱拡
散させて、浅いpn接合及び深いpn接合を形成するた
めの第二半導体層を形成する工程とを含んで成ることを
特徴とする受発光ダイオードの製造方法。
4. In manufacturing the light emitting and receiving diode according to claim 2, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and the interlayer insulating film having a window periphery meandering. A step of forming a window, and a step of thermally diffusing impurities into the first semiconductor layer through the window of the interlayer insulating film to form a second semiconductor layer for forming a shallow pn junction and a deep pn junction. A method of manufacturing a light emitting and receiving diode, comprising:
【請求項5】 請求項3記載の受発光ダイオードを製造
するに当り、 第一半導体層上に不純物導入マスクを兼ねる層間絶縁膜
を形成する工程と、 前記層間絶縁膜に窓を形成する工程と、 前記層間絶縁膜の窓内側領域の第一半導体層上に不純物
阻止膜を形成する工程と、 前記第一半導体層に層間絶縁膜の窓及び不純物阻止膜を
介し不純物を熱拡散させ、浅いpn接合及び深いpn接
合を形成するための第二半導体層を形成する工程とを含
んで成ることを特徴とする受発光ダイオードの製造方
法。
5. In manufacturing the light emitting and receiving diode according to claim 3, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and a step of forming a window in the interlayer insulating film. A step of forming an impurity blocking film on the first semiconductor layer in the window inner region of the interlayer insulating film, and thermally diffusing the impurities in the first semiconductor layer through the window of the interlayer insulating film and the impurity blocking film, And a step of forming a second semiconductor layer for forming a deep junction and a deep pn junction.
【請求項6】 請求項3記載の受発光ダイオードを製造
するに当り、 第一半導体層上に第一不純物導入マスクを形成する工程
と、 前記第一不純物導入マスクに第一窓を形成する工程と、 前記第一半導体層に第一窓を介し不純物を導入して深い
pn接合を形成するための第二半導体層を形成し、然る
後、第一不純物導入マスクを除去する工程と、 前記第一及び第二半導体層上に第二不純物導入マスクを
兼ねる層間絶縁膜を形成する工程と、 深いpn接合を形成するための第二半導体層の周縁に隣
接する領域の第一半導体層を露出する第二窓を層間絶縁
膜に形成する工程と、 前記第一半導体層に第二窓を介し不純物を導入して、浅
いpn接合を形成するための第二半導体層を形成する工
程とを含んで成ることを特徴とする受発光ダイオードの
製造方法。
6. In manufacturing the light emitting and receiving diode according to claim 3, a step of forming a first impurity introduction mask on the first semiconductor layer, and a step of forming a first window in the first impurity introduction mask. And a step of forming a second semiconductor layer for forming a deep pn junction by introducing impurities into the first semiconductor layer through a first window, and then removing the first impurity introduction mask. A step of forming an interlayer insulating film also serving as a second impurity introduction mask on the first and second semiconductor layers, and exposing the first semiconductor layer in a region adjacent to the periphery of the second semiconductor layer for forming a deep pn junction Forming a second window in the interlayer insulating film, and forming a second semiconductor layer for forming a shallow pn junction by introducing impurities into the first semiconductor layer through the second window. Manufacture of a light emitting and receiving diode characterized by comprising Build method.
【請求項7】 請求項3記載の受発光ダイオードを製造
するに当り、 不純物導入マスクを兼ねる下側層間絶縁膜及び上側層間
絶縁膜を順次に、第一半導体層上に形成する工程と、 前記上側層間絶縁膜に第一窓を形成する工程と、 前記第一窓の内側領域の下側層間絶縁膜を一部残存させ
て、当該領域の下側層間絶縁膜に第二窓を形成する工程
と、 前記第一窓及び第二窓を介し第一半導体層に不純物を導
入して、浅いpn接合及び深いpn接合を形成するため
の第二半導体層を形成する工程とを含んで成ることを特
徴とする受発光ダイオードの製造方法。
7. A method of manufacturing the light emitting / receiving diode according to claim 3, wherein a lower interlayer insulating film and an upper interlayer insulating film also serving as an impurity introduction mask are sequentially formed on the first semiconductor layer, A step of forming a first window in the upper interlayer insulating film, and a step of partially leaving the lower interlayer insulating film in the inner region of the first window to form a second window in the lower interlayer insulating film of the region And introducing impurities into the first semiconductor layer through the first window and the second window to form a second semiconductor layer for forming a shallow pn junction and a deep pn junction. A method of manufacturing a light emitting and receiving diode characterized.
【請求項8】 請求項3記載の受発光ダイオードを製造
するに当り、 第一半導体層上に不純物導入マスクを兼ねる層間絶縁膜
を形成する工程と、 前記層間絶縁膜に窓を形成する工程と、 前記第一半導体層に層間絶縁膜の窓を介し不純物を導入
し、深いpn接合を形成するための第二半導体層を形成
する工程と、 前記第二半導体層を部分的にエッチング防止膜で覆う工
程と、 前記第二半導体層をエッチング防止膜を介しエッチング
して第二半導体層の層厚を部分的に薄くし、浅いpn接
合を形成するための層厚の薄い第二半導体層を形成する
工程とを含んで成ることを特徴とする受発光ダイオード
の製造方法。
8. In manufacturing the light emitting and receiving diode according to claim 3, a step of forming an interlayer insulating film also serving as an impurity introduction mask on the first semiconductor layer, and a step of forming a window in the interlayer insulating film. A step of introducing an impurity into the first semiconductor layer through a window of an interlayer insulating film to form a second semiconductor layer for forming a deep pn junction; And a step of covering the second semiconductor layer with an etching stopper film to partially reduce the thickness of the second semiconductor layer to form a second semiconductor layer having a small thickness for forming a shallow pn junction. A method of manufacturing a light emitting / receiving diode, comprising:
JP10333893A 1993-04-28 1993-04-28 Light emitting and receiving diode and its manufacture Withdrawn JPH06314819A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10333893A JPH06314819A (en) 1993-04-28 1993-04-28 Light emitting and receiving diode and its manufacture
US08/654,756 US5600157A (en) 1993-04-28 1996-05-29 Light-emitting and light-sensing diode array device, and light-emitting and light-sensing diode with improved sensitivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333893A JPH06314819A (en) 1993-04-28 1993-04-28 Light emitting and receiving diode and its manufacture

Publications (1)

Publication Number Publication Date
JPH06314819A true JPH06314819A (en) 1994-11-08

Family

ID=14351371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333893A Withdrawn JPH06314819A (en) 1993-04-28 1993-04-28 Light emitting and receiving diode and its manufacture

Country Status (1)

Country Link
JP (1) JPH06314819A (en)

Similar Documents

Publication Publication Date Title
US7880258B2 (en) Thin wafer detectors with improved radiation damage and crosstalk characteristics
US7655999B2 (en) High density photodiodes
US8049294B2 (en) Front side illuminated, back-side contact double-sided PN-junction photodiode arrays
US6583805B2 (en) Exposure unit for image forming apparatus using electrophotographic system, and electrophotographic image forming apparatus
US20120104532A1 (en) Low crosstalk, front-side illuminated, back-side contact photodiode array
JP2006140475A (en) Optically intensifying method and apparatus for integrated circuit optical detector
US20190312075A1 (en) Solid-state image sensor
JP2006128433A (en) Optical device equipped with optical filter, and its manufacturing method
US9178092B2 (en) Front-side illuminated, back-side contact double-sided PN-junction photodiode arrays
JP2006003869A (en) Method for forming microlenses of image sensor
JPH06314820A (en) Light emitting and receiving diode and its manufacture
KR101152514B1 (en) Photodiode array and production method thereof, and radiation detector
JPH06314819A (en) Light emitting and receiving diode and its manufacture
JP3187213B2 (en) Light emitting and receiving diode
US5038186A (en) Light emitting diode array
US11171172B2 (en) Image sensor and method of forming the same
EP0661757B1 (en) Solid-state imaging device and method of manufacturing the same
GB2238165A (en) A photodetector device
JPH1098173A (en) Formation of on-chip microlens
US20180157159A1 (en) Photomask and manufacturing method of semiconductor device
JPH08298338A (en) Light emitting and receiving method, light emitting and receiving element and its manufacture
WO2021042290A1 (en) Image sensor, manufacturing method therefor, and electronic device
JPH11220180A (en) Led array head
CN115700929A (en) Photoelectric sensor, forming method thereof and electronic equipment
JP2004028667A (en) Photoelectric encoder and method of manufacturing scale

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704