JPH0631391U - Output voltage waveform distortion correction circuit for uninterruptible power supply - Google Patents

Output voltage waveform distortion correction circuit for uninterruptible power supply

Info

Publication number
JPH0631391U
JPH0631391U JP6658692U JP6658692U JPH0631391U JP H0631391 U JPH0631391 U JP H0631391U JP 6658692 U JP6658692 U JP 6658692U JP 6658692 U JP6658692 U JP 6658692U JP H0631391 U JPH0631391 U JP H0631391U
Authority
JP
Japan
Prior art keywords
signal
distortion correction
load
output
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6658692U
Other languages
Japanese (ja)
Inventor
秀隆 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP6658692U priority Critical patent/JPH0631391U/en
Publication of JPH0631391U publication Critical patent/JPH0631391U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 直流電圧の変動による過補償を無くしながら
負荷状態に応じた歪補償を得る。 【構成】 インバータ2から負荷4への負荷電流波形か
ら1チップマイクロコンピュータ19に負荷電流通流幅
と実効値とピーク値を得て負荷状態(線形負荷,非線形
負荷等)を判別し、この負荷状態に応じた歪補正パター
ンの選択信号を得ると共に電圧制御アンプの制御出力か
ら歪補正量制御信号を得、補正信号発生回路22は歪補
正パターンの選択信号に応じた歪補正信号を発生し、こ
の信号を歪補正量制御信号に応じてレベル補正して正弦
波発生回路27からの正弦波信号に加算して乗算器9へ
の正弦波信号とする。
(57) [Abstract] [Purpose] To obtain distortion compensation according to the load condition while eliminating overcompensation due to fluctuations in DC voltage. [Structure] From the load current waveform from the inverter 2 to the load 4, the load current flow width, effective value and peak value are obtained in the 1-chip microcomputer 19 to determine the load state (linear load, non-linear load, etc.). A distortion correction pattern selection signal according to the state is obtained and a distortion correction amount control signal is obtained from the control output of the voltage control amplifier, and the correction signal generation circuit 22 generates a distortion correction signal according to the distortion correction pattern selection signal. The level of this signal is corrected according to the distortion correction amount control signal and added to the sine wave signal from the sine wave generation circuit 27 to form a sine wave signal to the multiplier 9.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、無停電電源装置の出力電圧波形歪補正回路に関する。 The present invention relates to an output voltage waveform distortion correction circuit for an uninterruptible power supply.

【0002】[0002]

【従来の技術】[Prior art]

無停電電源装置は、停電時にバッテリから電力を供給することにより、停電時 にも安定した電力を負荷に供給する。図4は、従来の無停電電源装置の一例を示 す構成図である。同図において、1は電流電源、2は半導体スイッチ構成のイン バータ、3は該インバータ2のオン/オフ制御で変換された交流出力中の不要周 波数成分(高調波成分)を除去する交流フィルタ、4は負荷である。インバータ 2は、例えばトランジスタやサイリスタ素子S1〜S4のブリッジ接続により主 回路が構成されている。 The uninterruptible power supply supplies stable power to the load during power failure by supplying power from the battery during power failure. FIG. 4 is a configuration diagram showing an example of a conventional uninterruptible power supply. In the figure, 1 is a current power source, 2 is an inverter having a semiconductor switch configuration, and 3 is an AC filter for removing an unnecessary frequency component (harmonic component) in the AC output converted by the ON / OFF control of the inverter 2. 4 is a load. The main circuit of the inverter 2 is configured by, for example, a bridge connection of transistors and thyristor elements S1 to S4.

【0003】 この装置の出力電圧を制御するため、前記交流フィルタ3と負荷4との間に電 圧検出変圧器5が接続され、その検出電圧を整流回路6で整流したのち、基準電 圧設定器7により設定された基準直流電圧と比較する。その偏差量は電圧制御ア ンプ8で増幅され、乗算器9で正弦波発生回路10からの正弦波の振幅を調整し 、PWM信号発生回路11への制御信号とされる。PWM信号発生回路11はそ の制御信号を搬送波発生回路12からの搬送波とレベル比較してPWM信号を発 生し、このPWM信号で前記インバータ2の半導体スイッチをオン/オフ制御す る。In order to control the output voltage of this device, a voltage detection transformer 5 is connected between the AC filter 3 and the load 4, and the detected voltage is rectified by a rectification circuit 6 and then set to a reference voltage. The reference DC voltage set by the device 7 is compared. The deviation amount is amplified by the voltage control amplifier 8 and the multiplier 9 adjusts the amplitude of the sine wave from the sine wave generating circuit 10 to be a control signal to the PWM signal generating circuit 11. The PWM signal generating circuit 11 compares the level of the control signal with the carrier wave from the carrier wave generating circuit 12 to generate a PWM signal, and the semiconductor switch of the inverter 2 is turned on / off by the PWM signal.

【0004】 ここで、負荷4が非線形(コンデンサインプット形ダイオード整流器など)で あるときは、その高調波電流によって出力電圧波形はピーク電圧が抑圧された波 形になって歪みが増加する。この歪みを補償するため、歪補償波形発生回路13 に正弦波のピーク位相で補正分Cmの波形を発生し、この補正分Cmを正弦波発 生回路10の出力に加算する。この補正分Cmのレベルは負荷電流ILの大きさ に応じて切替えられる。Here, when the load 4 is non-linear (such as a capacitor input type diode rectifier), its harmonic current causes the output voltage waveform to have a waveform in which the peak voltage is suppressed, and the distortion increases. In order to compensate for this distortion, a waveform of the correction component Cm is generated in the distortion compensation waveform generation circuit 13 at the peak phase of the sine wave, and this correction component Cm is added to the output of the sine wave generation circuit 10. The level of this correction component Cm is switched according to the magnitude of the load current I L.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、従来の無停電電源装置では、バッテリの容量を大きくすることで定 常運転とバッテリ運転の直流電圧の変化を少なくしている。しかしながら、近年 、装置のコンパクト化と低価格が要求される中でバッテリの占める割合は大きく 、回路設計のうえでバッテリ選択の如何によっては定常運転とバッテリ運転の直 流電圧の差を大きくとる場合がある。この場合、直流電圧の変化が大きいので、 インバータの出力電圧を制御するための正弦波PWM波形の制御率範囲も大きく なる。図5は、その一例を示す波形図で、折線は搬送波発生回路12の出力三角 波を示し、曲線は乗算器9の出力正弦波を示している。図中(a)は定常運転の 波形を示し、直流電圧が高く、制御率は低い。図中(b)はバッテリ運転時の波 形を示し、直流電圧が低く、制御率は高い場合を示している。図中(c)は、定 常運転で、出力波形に高調波成分が含まれた場合にバンドパスフィルタ13の出 力信号による出力波形補正分Cmで波形補正した場合を示している。 By the way, in the conventional uninterruptible power supply, by increasing the capacity of the battery, the change in the DC voltage between the constant operation and the battery operation is reduced. However, in recent years, the battery occupies a large proportion in the demand for compact and low-priced devices, and when the difference in direct current voltage between steady operation and battery operation is large depending on the battery selection in the circuit design. There is. In this case, since the change of the DC voltage is large, the control rate range of the sine wave PWM waveform for controlling the output voltage of the inverter is also large. FIG. 5 is a waveform diagram showing an example thereof, in which the broken line shows the output triangular wave of the carrier generation circuit 12, and the curve shows the output sine wave of the multiplier 9. In the figure, (a) shows the waveform of steady operation, the DC voltage is high and the control rate is low. In the figure, (b) shows the waveform during battery operation, where the DC voltage is low and the control rate is high. In the figure, (c) shows a case where the waveform is corrected by the output waveform correction component Cm by the output signal of the bandpass filter 13 when the output waveform includes harmonic components in the normal operation.

【0006】 バッテリを効率よく使用するために、その使用最低電圧までバッテリ運転を行 うと、正弦波PWM制御では制御率を制御範囲いっぱいにとる必要があり、従来 例で示した出力波形歪補正を行うと、最大値の正弦波形に出力波形補正分Cmが 加わり図中、(d)に斜線域で示す如くになり、出力波形補正分が正弦波PWM 制御の基準正弦波に重畳されるので、正弦波ピーク付近で制御範囲を超過するこ とがあり、出力電圧が正弦波ピーク付近で不安定となる。In order to use the battery efficiently, when the battery is operated up to the minimum voltage used, it is necessary to set the control rate to the full control range in the sine wave PWM control. When it is performed, the output waveform correction component Cm is added to the maximum value of the sine waveform, and as shown by the shaded area in (d) of the figure, the output waveform correction component is superimposed on the reference sine wave of the sine wave PWM control. The control range may be exceeded near the sine wave peak, and the output voltage becomes unstable near the sine wave peak.

【0007】 また、従来の方法では負荷4として整流器負荷などに限定されるものであり、 負荷4が線形負荷や整流器との混成負荷になるものでは補正分Cmが歪発生原因 となってしまうことがある。Further, in the conventional method, the load 4 is limited to a rectifier load or the like, and if the load 4 is a linear load or a mixed load with a rectifier, the correction component Cm causes distortion. There is.

【0008】 本考案の目的は、直流電圧の変動による過補償を無くしながら負荷状態に応じ た歪補償を得る補正回路を提供することにある。An object of the present invention is to provide a correction circuit that obtains distortion compensation according to the load state while eliminating overcompensation due to fluctuations in DC voltage.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は前記課題の解決を図るため、バッテリを予備電源とするインバータか ら負荷への出力電圧制御信号を電圧制御アンプに得、この制御信号によって振幅 調整された正弦波信号と搬送波信号からインバータのPWMゲート信号を得る無 停電電源装置において、前記インバータから負荷に供給する負荷電流のゼロクロ ス点を検出する一対のコンパレータと、前記負荷電流の実効値を検出する実効値 検出回路と、前記負荷電流のサンプル値を得るサンプルホールド回路と、前記一 対のコンパレータの検出出力から負荷電流の通流幅を求め、この通流幅と前記実 効値検出回路の実効値検出出力とサンプルホールド回路のサンプル値のうちのピ ーク値から前記負荷状態に応じた出力波形歪補正信号のパターン選択信号を得る 手段及び前記電圧制御アンプの制御出力信号から該歪補正信号の補正量制御出力 を得る手段とを有する1チップマイクロコンピュータと、前記パターン選択信号 に応じた歪補正信号を発生し、この歪補正信号のレベルを前記補正量制御出力に 応じて制御する歪補正信号発生回路と、前記インバータの出力周波数に応じた正 弦波信号を発生し、この正弦波信号に前記歪補正信号発生回路からの歪補正信号 を加算して前記電圧制御信号による振幅調整のための正弦波信号とする正弦波信 号発生回路と、を備えたことを特徴とする。 In order to solve the above-mentioned problems, the present invention obtains an output voltage control signal to a load from an inverter using a battery as a standby power source to a voltage control amplifier, and an inverter is provided from a sine wave signal and a carrier signal whose amplitude is adjusted by this control signal. In the uninterruptible power supply device that obtains the PWM gate signal of, a pair of comparators that detect the zero-cross point of the load current supplied from the inverter to the load, an effective value detection circuit that detects the effective value of the load current, and the load. A sample and hold circuit that obtains a sample value of the current, and the flow width of the load current is calculated from the detection outputs of the pair of comparators. This flow width, the effective value detection output of the effective value detection circuit, and the sample and hold circuit A means for obtaining a pattern selection signal of the output waveform distortion correction signal according to the load condition from the peak value of the sample values, A one-chip microcomputer having means for obtaining a correction amount control output of the distortion correction signal from a control output signal of a control amplifier, and a distortion correction signal corresponding to the pattern selection signal is generated, and the level of the distortion correction signal is set to the above-mentioned level. A distortion correction signal generation circuit that controls according to the correction amount control output and a sine wave signal that corresponds to the output frequency of the inverter are generated, and the distortion correction signal from the distortion correction signal generation circuit is added to this sine wave signal. And a sine wave signal generating circuit for generating a sine wave signal for amplitude adjustment by the voltage control signal.

【0010】[0010]

【作用】[Action]

負荷電流の通流幅,実効値及びピーク値を1チップマイクロコンピュータにデ ータとして得、これらデータからマイクロコンピュータは負荷状態を判別して該 負荷状態に応じた歪補正パターン信号の選択信号を得、制御電圧アンプの制御出 力からマイクロコンピュータは歪補正信号の補正量を求め、歪補正パターン信号 の選択信号に応じた歪補正信号を補正量に応じてレベル補正した歪補正信号を得 る。 The flow width, effective value and peak value of the load current are obtained as data in the one-chip microcomputer, and the microcomputer discriminates the load state from these data, and selects the distortion correction pattern signal selection signal according to the load state. Then, the microcomputer obtains the correction amount of the distortion correction signal from the control output of the control voltage amplifier, and obtains the distortion correction signal in which the distortion correction signal corresponding to the selection signal of the distortion correction pattern signal is level-corrected according to the correction amount. .

【0011】[0011]

【実施例】【Example】

図1は本考案の一実施例を示す回路図であり、図4と同じ機能をもつものは同 一符号で示す。 FIG. 1 is a circuit diagram showing an embodiment of the present invention, and those having the same functions as those in FIG.

【0012】 変流器14はインバータ2から負荷4へ供給する負荷電流波形を検出する。コ ンパレータ15,16は変流器14の負荷電流波形からゼロクロス検出を行い、 負荷電流の通流幅に相当するタイミング信号を互いに逆極性で得る。The current transformer 14 detects a load current waveform supplied from the inverter 2 to the load 4. The comparators 15 and 16 perform zero-cross detection from the load current waveform of the current transformer 14, and obtain timing signals corresponding to the flow width of the load current with opposite polarities.

【0013】 実効値検出器17は負荷電流波形の実効値を検出する。サンプルホールド回路 18は負荷電流波形のサンプルホールドを行う。The effective value detector 17 detects the effective value of the load current waveform. The sample hold circuit 18 performs sample hold of the load current waveform.

【0014】 1チップマイクロコンピュータ19は、発振器20をクッロク源とし、負荷状 態及び制御電圧状態から歪補償のための補正制御を行う。負荷状態は、コンパレ ータ15,16からのオン・オフタイミング信号入力HSI2,HSI2と実効 値検出器17からの実効値(アナログ信号)のディジタル信号変換入力A/D1 と、サンプルホールド回路18からのサンプル値(アナログ信号)のディジタル 信号変換入力A/D2とによって負荷電流通流幅演算と実効値取込みとピーク値 演算を行う。ピーク値は通流幅に相当するサンプル/ホールド信号HSOの期間 内のサンプル値最大値として求められる。The one-chip microcomputer 19 uses the oscillator 20 as a clock source and performs correction control for distortion compensation from the load state and the control voltage state. The load state is determined by the ON / OFF timing signal inputs HSI2 and HSI2 from the comparators 15 and 16, the digital signal conversion input A / D1 of the effective value (analog signal) from the effective value detector 17, and the sample and hold circuit 18. The load current flow width calculation, the effective value acquisition, and the peak value calculation are performed with the sample signal (analog signal) digital signal conversion input A / D2. The peak value is obtained as the maximum sample value within the period of the sample / hold signal HSO corresponding to the flow width.

【0015】 制御電圧状態は電圧制御アンプ8の出力信号(アナログ)をディジタル信号変 換入力A/D3として該入力から求める。The control voltage state is obtained from the output signal (analog) of the voltage control amplifier 8 as a digital signal conversion input A / D3.

【0016】 マイクロコンピュータ19は、補正信号出力として補正パターン選択信号C1 〜CnとPWM波形の補正量調整信号CLを得る。補正パターン選択信号C1〜 Cnは、負荷状態に応じた補正信号波形の選択信号になり、この信号はバッファ 21を通してROM構成の補正信号発生回路22へ補正信号選択入力にされる。The microcomputer 19 obtains the correction pattern selection signals C 1 to Cn and the PWM waveform correction amount adjustment signal CL as the correction signal outputs. Correction pattern selection signals C 1 ~ Cn becomes the selection signal of the correction signal waveforms in accordance with the load state, this signal is the correction signal select input to the correction signal generation circuit 22 of the ROM configuration through the buffer 21.

【0017】 補正信号発生回路22は複数の補正信号波形が夫々多数のサンプルデータとし て書込まれており、選択された補正信号波形を分周カウンタ23のカウント値を アドレスとして順次読出し出力する。この出力はラッチ回路24にラッチされ、 乗算形のD/A変換器25によって補正信号波形(アナログ信号)として取出さ れる。この補正信号波形は、補正量調整信号CLを入力とする積分アンプ26の 積分出力によってレベル調整される。In the correction signal generation circuit 22, a plurality of correction signal waveforms are respectively written as a large number of sample data, and the selected correction signal waveform is sequentially read and output using the count value of the frequency dividing counter 23 as an address. This output is latched by the latch circuit 24 and taken out as a correction signal waveform (analog signal) by the multiplication type D / A converter 25. The level of this correction signal waveform is adjusted by the integration output of the integration amplifier 26 which receives the correction amount adjustment signal CL as an input.

【0018】 ROM構成の正弦波信号発生回路27は分周カウンタ23を補正信号発生回路 22と同期したアドレス信号源として正弦波のサンプル値を順次出力し、この信 号はラッチ回路28にラッチされ、D/A変換器29によって正弦波信号波形( アナログ信号)として取出される。The sine wave signal generation circuit 27 of the ROM configuration sequentially outputs the sine wave sample values using the frequency division counter 23 as an address signal source synchronized with the correction signal generation circuit 22, and this signal is latched by the latch circuit 28. , D / A converter 29 takes out as a sine wave signal waveform (analog signal).

【0019】 D/A変換器29の正弦波出力とD/A変換器25の補正信号出力とは加算ア ンプ30によって加算され、その出力には正弦波に補正信号を重畳した波形を得 、乗算器9の被乗算波形にされる。The sine wave output of the D / A converter 29 and the correction signal output of the D / A converter 25 are added by the addition amplifier 30, and a waveform in which the correction signal is superimposed on the sine wave is obtained at the output. The multiplied waveform of the multiplier 9 is used.

【0020】 1チップマイクロコンピュータ19による補正処理は図2に示すフローチャー トに従って行われる。コンパレータ15からの割込みがあったとき(S1)、マ イクロコンピュータ19は内部の電流通流幅計測タイマの計時を開始すると共に 信号HSOでサンプルホールド回路18のサンプリング動作を開始させる(S2 )。The correction process by the one-chip microcomputer 19 is performed according to the flowchart shown in FIG. When there is an interrupt from the comparator 15 (S1), the micro computer 19 starts the time measurement of the internal current flow width measuring timer and at the same time starts the sampling operation of the sample hold circuit 18 by the signal HSO (S2).

【0021】 この後、コンパレータ16からの割込みがあったとき(S3)、電流通流幅計 測タイマの計時を停止させると共にサンプルホールド回路18のサンプリング動 作を停止させる(S4)。After that, when there is an interrupt from the comparator 16 (S3), the time measurement of the current flow width measuring timer is stopped and the sampling operation of the sample hold circuit 18 is stopped (S4).

【0022】 これら通流幅計測タイマの計時スタート/ストップ及びサンプルホールド回路 18のサンプリング開始(サンプル)とホールドは図3に示す処理になる。同図 (a)は線形負荷時のタイムチャートを示し、(b)にはダイオードインプット 形整流器負荷等の非線形負荷時のタイムチャートを示す。The processes shown in FIG. 3 are used to start / stop the flow width measurement timer, and to start (sample) and hold the sample / hold circuit 18. (A) of the same figure shows a time chart for a linear load, and (b) shows a time chart for a non-linear load such as a diode input type rectifier load.

【0023】 計測タイマのスタート/ストップ制御により、マイクロコンピュータ19は、 電流通流幅を演算し(S5)、これをメモリに記憶しておく(S6)。次いで、 実効値検出器17の実効値入力A/D1による実効値取込みと、サンプルホール ド回路18のサンプル値入力A/D2によるピーク値取込み及び電圧制御アンプ 8の電圧制御入力A/D3による電圧制御信号取込みを行う(S7)。これら入 力から、マイクロコンピュータ19は、負荷状態判別(S8)と補正量出力(S 9)の処理を行う。By the start / stop control of the measurement timer, the microcomputer 19 calculates the current flow width (S5) and stores it in the memory (S6). Next, the RMS value input A / D1 of the RMS value detector 17 captures the RMS value, the sample value input A / D2 of the sample hold circuit 18 captures the peak value, and the voltage control input A / D3 of the voltage control amplifier 8 detects the voltage. The control signal is taken in (S7). From these inputs, the microcomputer 19 performs load state determination (S8) and correction amount output (S9).

【0024】 負荷状態判別(S8)は、電流通流幅IWとピーク値IP及び実効値Irmsから 適正な補正パターン選択信号C1〜Cnを選択出力する。この負荷状態判別は下 記の条件式に従って行われる。In the load state determination (S8), appropriate correction pattern selection signals C 1 to Cn are selectively output from the current flow width I W , the peak value I P and the effective value I rms . This determination of the load state is performed according to the following conditional expression.

【0025】 (1)線形負荷条件 通流幅IW≒TINV ピーク値比IP/Irms≦21/2 但し、TINVはインバータ運転周波数の周期に相当するもので、例えば50H z運転ではその半周期10msに設定されて負荷電流半周期間の通流幅IWと比 較される。(1) Linear load condition Current width I W ≈T INV peak value ratio I P / I rms ≦ 2 1/2 However, T INV corresponds to the cycle of the inverter operating frequency, for example, 50 Hz operation Then, the half cycle is set to 10 ms and is compared with the flow width I W during the half cycle of the load current.

【0026】 (2)コンデンサインプット形負荷条件 通流幅IW≦TINV/3.3 ピーク値比IP/Irms>21/2 (3)混成形負荷条件 通流幅IW>TINV/3.3 ピーク値比IP/Irms1/2 また、補正量調整信号CLを決定する補正量出力(S9)は、電圧制御アンプ 8の制御出力から制御率に基づいて調整する。この調整は、電圧制御出力が搬送 波発生回路12のピーク領域に達する制御率1になるのを抑制しながら該電圧制 御出力に応じた補正出力CLのパルス幅を決定し、このパルス幅から積分アンプ 26に平均値電圧を得て補正パターンのレベル制御を行う。(2) Capacitor input type load condition Flow width I W ≦ T INV /3.3 Peak value ratio I P / I rms > 2 1/2 (3) Mixed molding load condition Flow width I W > T INV / 3.3 Peak value ratio I P / I rms 2 1/2 The correction amount output (S9) that determines the correction amount adjustment signal CL is adjusted from the control output of the voltage control amplifier 8 based on the control rate. . This adjustment determines the pulse width of the correction output CL according to the voltage control output while suppressing the control rate of 1 where the voltage control output reaches the peak region of the carrier wave generation circuit 12, and determines from this pulse width. The average value voltage is obtained from the integrating amplifier 26 and the level of the correction pattern is controlled.

【0027】 従って、本実施例によれば、負荷電流の通流幅とピーク値比から線形負荷,コ ンデンサインプット形負荷さらには混成形負荷の負荷状態判別をし、この負荷状 態に応じた補正パターンを得て歪み補償を得る。そして、補正量を電圧制御アン プの出力に応じて調整することにより、バッテリ運転時など直流電圧が低くなっ てインバータの制御率が高い場合にも正弦波信号のピーク領域が搬送波信号レベ ルを越えるのを抑制し、出力電圧の不安定化を防止する。Therefore, according to this embodiment, the load state of the linear load, the capacitor input type load, and the mixed molding load is determined from the flow width of the load current and the peak value ratio, and the load state is determined according to the load state. Obtain a correction pattern to obtain distortion compensation. By adjusting the amount of correction according to the output of the voltage control amplifier, the peak area of the sine wave signal can be adjusted to the carrier signal level even when the DC voltage is low and the inverter control rate is high, such as during battery operation. The output voltage is prevented from exceeding and the output voltage is prevented from becoming unstable.

【0028】[0028]

【考案の効果】[Effect of device]

以上のとおり、本考案によれば、負荷電流からその通流幅と実効値とピーク値 を1チップマイクロコンピュータに得ることで負荷状態に応じた歪補正パターン の選択信号を得、また電圧制御アンプの制御出力を得ることで補正量制御信号を 得、歪補正パターンの選択信号と補正量制御信号から歪補正信号を得るようにし たため、負荷状態に応じた適正な歪補正パターンによる歪補正になって負荷状態 の変化,切換わりにも常に適正な歪補正を得ることができると共に、制御出力状 態に応じた歪補正信号を得てバッテリ電圧の低下時など制御率の高い場合にも過 補償を起すことが無くなる。 As described above, according to the present invention, the current width, effective value and peak value are obtained from the load current to the one-chip microcomputer to obtain the selection signal of the distortion correction pattern according to the load state, and the voltage control amplifier. Since the correction amount control signal is obtained by obtaining the control output of, and the distortion correction signal is obtained from the distortion correction pattern selection signal and the correction amount control signal, the distortion correction is performed with the appropriate distortion correction pattern according to the load condition. As a result, it is possible to always obtain an appropriate distortion correction even when the load state changes and switches, and also to obtain a distortion correction signal according to the control output state to perform overcompensation even when the control rate is high, such as when the battery voltage drops. It won't wake up.

【0029】 また、電圧制御はアナログ回路で高速化を行い、歪補正信号はマイクロコンピ ュータ側で行うため、インバータにはIGBTなどの高速半導体素子を用いた場 合にも対応可能となる。Further, since the voltage control is performed at high speed by the analog circuit and the distortion correction signal is performed at the microcomputer side, it becomes possible to cope with the case where a high speed semiconductor element such as an IGBT is used for the inverter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】実施例における処理フローチャート。FIG. 2 is a processing flowchart in the embodiment.

【図3】実施例における信号取込みタイムチャート。FIG. 3 is a signal acquisition time chart in the embodiment.

【図4】従来例の構成図。FIG. 4 is a configuration diagram of a conventional example.

【図5】従来例の波形図。FIG. 5 is a waveform diagram of a conventional example.

【符号の説明】[Explanation of symbols]

2…インバータ 4…負荷 7…基準電圧設定器 8…電圧制御アンプ 9…乗算器 15,16…コンパレータ 17…実効値検出回路 18…サンプルホールド回路 19…1チップマイクロコンピュータ 22…補正信号発生回路 27…正弦波発生回路 2 ... Inverter 4 ... Load 7 ... Reference voltage setting device 8 ... Voltage control amplifier 9 ... Multiplier 15, 16 ... Comparator 17 ... Effective value detection circuit 18 ... Sample hold circuit 19 ... 1-chip microcomputer 22 ... Correction signal generation circuit 27 ... Sine wave generator

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 バッテリを予備電源とするインバータか
ら負荷への出力電圧制御信号を電圧制御アンプに得、こ
の制御信号によって振幅調整された正弦波信号と搬送波
信号からインバータのPWMゲート信号を得る無停電電
源装置において、 前記インバータから負荷に供給する負荷電流のゼロクロ
ス点を検出する一対のコンパレータと、 前記負荷電流の実効値を検出する実効値検出回路と、 前記負荷電流のサンプル値を得るサンプルホールド回路
と、 前記一対のコンパレータの検出出力から負荷電流の通流
幅を求め、この通流幅と前記実効値検出回路の実効値検
出出力とサンプルホールド回路のサンプル値のうちのピ
ーク値から前記負荷状態に応じた出力波形歪補正信号の
パターン選択信号を得る手段及び前記電圧制御アンプの
制御出力信号から該歪補正信号の補正量制御出力を得る
手段とを有する1チップマイクロコンピュータと、 前記パターン選択信号に応じた歪補正信号を発生し、こ
の歪補正信号のレベルを前記補正量制御出力に応じて制
御する歪補正信号発生回路と、 前記インバータの出力周波数に応じた正弦波信号を発生
し、この正弦波信号に前記歪補正信号発生回路からの歪
補正信号を加算して前記電圧制御信号による振幅調整の
ための正弦波信号とする正弦波信号発生回路と、 を備えたことを特徴とする無停電電源装置の出力電圧波
形歪補正回路。
1. An output voltage control signal from an inverter using a battery as a standby power source to a load is obtained by a voltage control amplifier, and a PWM gate signal of the inverter is obtained from a sine wave signal and a carrier signal whose amplitude is adjusted by this control signal. In the power failure power supply device, a pair of comparators that detect a zero-cross point of a load current supplied to the load from the inverter, an effective value detection circuit that detects an effective value of the load current, and a sample hold that obtains a sample value of the load current. Circuit, the flow width of the load current is obtained from the detection outputs of the pair of comparators, and the load is determined from the peak value of the flow width, the effective value detection output of the effective value detection circuit, and the sample value of the sample hold circuit. Means for obtaining a pattern selection signal of an output waveform distortion correction signal according to the state and a control output signal of the voltage control amplifier A one-chip microcomputer having means for obtaining a correction amount control output of the distortion correction signal from the above, and a distortion correction signal corresponding to the pattern selection signal is generated, and the level of the distortion correction signal is changed according to the correction amount control output. And a distortion correction signal generating circuit for controlling the sine wave signal according to the output frequency of the inverter is generated, the distortion correction signal from the distortion correction signal generating circuit is added to the sine wave signal to obtain the voltage control signal. An output voltage waveform distortion correction circuit for an uninterruptible power supply, comprising: a sine wave signal generation circuit that uses a sine wave signal for amplitude adjustment.
JP6658692U 1992-09-25 1992-09-25 Output voltage waveform distortion correction circuit for uninterruptible power supply Pending JPH0631391U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6658692U JPH0631391U (en) 1992-09-25 1992-09-25 Output voltage waveform distortion correction circuit for uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6658692U JPH0631391U (en) 1992-09-25 1992-09-25 Output voltage waveform distortion correction circuit for uninterruptible power supply

Publications (1)

Publication Number Publication Date
JPH0631391U true JPH0631391U (en) 1994-04-22

Family

ID=13320198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6658692U Pending JPH0631391U (en) 1992-09-25 1992-09-25 Output voltage waveform distortion correction circuit for uninterruptible power supply

Country Status (1)

Country Link
JP (1) JPH0631391U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278558A (en) * 2007-04-25 2008-11-13 Densei Lambda Kk Uninterruptible power supply unit, ac power supply unit and method for switching ac voltage depending on load apparatus
JP2009072001A (en) * 2007-09-14 2009-04-02 Tdk-Lambda Corp Uninterruptible power supply unit
WO2016092613A1 (en) * 2014-12-08 2016-06-16 東芝三菱電機産業システム株式会社 Uninterruptible power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278558A (en) * 2007-04-25 2008-11-13 Densei Lambda Kk Uninterruptible power supply unit, ac power supply unit and method for switching ac voltage depending on load apparatus
JP4569596B2 (en) * 2007-04-25 2010-10-27 富士電機システムズ株式会社 Uninterruptible power supply, AC power supply device, and AC voltage switching method according to load equipment
JP2009072001A (en) * 2007-09-14 2009-04-02 Tdk-Lambda Corp Uninterruptible power supply unit
WO2016092613A1 (en) * 2014-12-08 2016-06-16 東芝三菱電機産業システム株式会社 Uninterruptible power supply device
JPWO2016092613A1 (en) * 2014-12-08 2017-08-31 東芝三菱電機産業システム株式会社 Uninterruptible power system

Similar Documents

Publication Publication Date Title
US4688162A (en) Rectifier control apparatus with improved power factor
US20050275976A1 (en) Power conversion apparatus and methods using an adaptive waveform reference
JPH0789743B2 (en) Rectifier power supply circuit
JPH0631391U (en) Output voltage waveform distortion correction circuit for uninterruptible power supply
JP3070606B1 (en) Power converter
JP3513384B2 (en) Power converter
JPH0583953A (en) Output voltage compensating apparatus of uninterruptible power supply equipment
JP2781602B2 (en) Power converter control device and system thereof
JPS61244275A (en) Pwm control voltage type inverter
JP2003284351A (en) Power converter
JP2732428B2 (en) Chopper device
JPH0549252A (en) Inverter
JP2001086737A (en) Power supply
JPH0923656A (en) Rectifier power supply
JPH074066B2 (en) Control circuit for 3-phase inverter
JPH10285943A (en) Power converter
JP2000032776A (en) Power converting device
JPH10327583A (en) Inverter device
JPH01138965A (en) Dc power source device
JPH1023766A (en) Power inverter
JPH06245387A (en) Controlling method for system interconnection and system circuit apparatus
JPS60234466A (en) Controller of pwm inverter
JPH06209572A (en) Device for protecting switching element in power converter
JP2000270563A (en) Control circuit for power converter
JPH08149685A (en) Commercial power supply monitor circuit for uninterruptible power supply