JPH06313846A - Optical equipment - Google Patents

Optical equipment

Info

Publication number
JPH06313846A
JPH06313846A JP5104403A JP10440393A JPH06313846A JP H06313846 A JPH06313846 A JP H06313846A JP 5104403 A JP5104403 A JP 5104403A JP 10440393 A JP10440393 A JP 10440393A JP H06313846 A JPH06313846 A JP H06313846A
Authority
JP
Japan
Prior art keywords
reflecting mirror
light
sub
main
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5104403A
Other languages
Japanese (ja)
Other versions
JP2854781B2 (en
Inventor
Katsunobu Ueda
勝宣 上田
Yuzuru Takashima
譲 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5104403A priority Critical patent/JP2854781B2/en
Publication of JPH06313846A publication Critical patent/JPH06313846A/en
Application granted granted Critical
Publication of JP2854781B2 publication Critical patent/JP2854781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To provide optical equipment further reducing light intercepting quantity while holding the rigidity of a supporting member intercepting an optical path so as to impede the lowering of transmitted wave face aberration, thereby improving reflecting efficiency. CONSTITUTION:Optical equipment is provided with a main reflecting mirror 4 formed of a large diameter concave mirror provided with a light transmitting part 6 along an optical axis K, and an auxiliary reflecting mirror 10 formed of a small diameter convex mirror disposed on the optical axis, opposedly to the main reflecting mirror 4. Incoming light to the main reflecting mirror 4 from the periphery of the auxiliary reflecting mirror 10, and incoming light to the auxiliary reflecting mirror 10 from the light transmitting part 6 of the main reflecting mirror 4 are mutually in the reflected relation by the main reflecting mirror 4 and the auxiliary reflecting mirror 10 so as to enlarge or reduce the flux of light. The main reflecting mirror 4 and the auxiliary reflecting mirror 10 are accommodated inside a lens-barrel 1, and a supporting member 2 is provided to support the main reflecting mirror 4 and auxiliary reflecting mirror 10 in the specified positions in relation to the lens-barrel 1. The light irradiation face F of a support 7 positioned in the optical path of the supporting member 2 is formed to be narrow in width dimension (a) in opposition to the light proceeding direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば天体望遠鏡の
ように小出力な光の結像機能として用いるばかりでな
く、たとえばCO2 レーザ光のごとき大出力な光の集光
機能として用いることができる光学機器に関する。
INDUSTRIAL APPLICABILITY The present invention can be used not only as an image forming function of light having a small output as in an astronomical telescope, but also as a light collecting function of light having a large output such as CO2 laser light. Regarding optical equipment.

【0002】[0002]

【従来の技術】光軸に沿って、透光部を備えた大きな直
径の凹面鏡からなる主反射鏡と、この主反射鏡と相対向
し、かつ光軸上に小さな直径の凸面鏡からなる副反射鏡
を配置した光学機器がある。
2. Description of the Related Art A main reflecting mirror consisting of a large-diameter concave mirror provided with a light-transmitting portion along an optical axis, and a sub-reflecting surface consisting of a convex mirror facing the main reflecting mirror and having a small diameter on the optical axis. There is an optical device with a mirror.

【0003】この種の光学機器を、たとえば天体望遠鏡
として用いる場合には、副反射鏡の背面を天体に対向し
て、宇宙から飛散する微弱な光を副反射鏡の周囲から主
反射鏡へ入光させる。
When this kind of optical equipment is used, for example, as an astronomical telescope, the back surface of the sub-reflecting mirror faces the celestial body, and weak light scattered from space enters the main reflecting mirror from around the sub-reflecting mirror. Light up.

【0004】主反射鏡は、その反射面が凹面である放物
面鏡であって、入光した光を副反射鏡に向けて反射す
る。副反射鏡は、その反射面が凸面をなす双曲面鏡であ
って、相対向する主反射鏡の、特に光軸に設けられる透
光部へ向けて反射する。そして、この透光部を透過した
光は、主反射鏡外部の位置で集束して結像する。
The main reflecting mirror is a parabolic mirror whose reflecting surface is a concave surface, and reflects the incident light toward the sub reflecting mirror. The sub-reflecting mirror is a hyperboloidal mirror whose reflecting surface is a convex surface, and reflects toward the translucent portion of the main reflecting mirrors facing each other, particularly the optical axis. Then, the light transmitted through this light transmitting portion is focused and imaged at a position outside the main reflecting mirror.

【0005】いわゆる、反射望遠鏡として用いられてお
り、屈折望遠鏡における対物レンズの代わりに反射鏡
(対物鏡)の反射作用を利用して物体の結像がなされ
る。たとえば、カセグレン式光学系や、リッチクレアン
式光学系として知られている。
It is used as a so-called reflection telescope, and an image of an object is formed by utilizing the reflection action of a reflection mirror (objective mirror) instead of the objective lens in the refraction telescope. For example, it is known as a Cassegrain type optical system or a Rich Clean type optical system.

【0006】この種の光学機器においては、天体望遠鏡
として用いるばかりでなく、ある程度の改良を加えるだ
けで、宇宙空間に位置させ、極めて遠方から飛ばされた
微弱レーザ光をキャッチする光通信手段に用いたり、数
kW単位のCO2 レーザ光のごとき、大出力な光の集光
機能として使用することも可能である。
This kind of optical equipment is used not only as an astronomical telescope, but also as an optical communication means for catching a weak laser beam emitted from a very distant place by positioning it in outer space with some improvement. Or number
It can also be used as a condensing function for high-power light such as CO 2 laser light of kW unit.

【0007】[0007]

【発明が解決しようとする課題】ところで、主反射鏡は
勿論、副反射鏡も、光軸上に相対向した状態で、所定位
置に配置しなければならない。具体的には、主反射鏡お
よび副反射鏡とも鏡筒内に収容される支持部材に支持さ
れ、この支持部材が鏡筒の所定部位に取付け固定され
る。
By the way, not only the main reflecting mirror but also the sub-reflecting mirror must be arranged at a predetermined position so as to face each other on the optical axis. Specifically, both the main reflecting mirror and the sub-reflecting mirror are supported by a supporting member housed in the lens barrel, and this supporting member is attached and fixed to a predetermined portion of the lens barrel.

【0008】主反射鏡は大きな直径であって、ほとんど
鏡筒の内径と一致する。しかるに、副反射鏡は主反射鏡
よりも小さな直径であって、しかも光軸に位置させなけ
ればならない。
The main reflecting mirror has a large diameter and almost coincides with the inner diameter of the lens barrel. However, the sub-reflecting mirror must have a smaller diameter than the main reflecting mirror and must be positioned on the optical axis.

【0009】支持部材は、副反射鏡を中空状態で支持す
る必要があり、その構造上、鏡筒から光路を横切って副
反射鏡まで延出する。換言すれば、副反射鏡を支持する
支持部材は光路を遮ってしまう。
The support member is required to support the sub-reflecting mirror in a hollow state, and due to its structure, extends from the lens barrel to the sub-reflecting mirror across the optical path. In other words, the support member that supports the sub-reflector blocks the optical path.

【0010】普通、この部分は、ガラス材や炭素材から
なる複数本の丸棒あるいは角棒の支柱であり、この一端
部が副反射鏡を支持し、他端部が鏡筒に連結される。光
路を遮る量を小さくするため、直径を細くすると、必要
な剛性を確保できない虞れがあり、不安定となって集光
および結像性能に悪影響をきたす。また、剛性の確保の
ため直径を太くすると、今度は光路を遮る量が大になっ
て、光量不足となり反射効率等の特性の低下をきたす。
Usually, this portion is a support of a plurality of round rods or square rods made of glass material or carbon material, one end of which supports the sub-reflecting mirror and the other end of which is connected to the lens barrel. . If the diameter is made small in order to reduce the amount of blocking the optical path, there is a possibility that the required rigidity cannot be ensured, which makes the optical system unstable and adversely affects the light collecting and imaging performance. Further, if the diameter is increased to secure the rigidity, the amount of blocking the optical path becomes large this time, and the amount of light becomes insufficient, resulting in deterioration of characteristics such as reflection efficiency.

【0011】したがって、必要な剛性を確保しつつ光路
を遮る量を可能な限り低減させて、透過波面収差の低下
を阻止する必要がある。一方、上述したように、この種
の光学機器を利用する光の種類として、出力の小さい光
を対象として結像機能を得る場合と、大出力な光を対象
として集光機能を得る場合とがある。
Therefore, it is necessary to prevent the reduction of the transmitted wavefront aberration by reducing the amount of blocking the optical path as much as possible while ensuring the required rigidity. On the other hand, as described above, there are two types of light using this type of optical device: one is to obtain an image forming function for light with a small output, and the other is to obtain a light condensing function for light with a large output. is there.

【0012】すなわち、相反する特性の光が光路に沿っ
て導かれ、この光を、上記副反射鏡を支持する支持部材
が遮ることになる。したがって、支持部材の、特に光の
照射を受ける面は、それぞれの用途に応じた有効な対策
を施す必要がある。
That is, light having contradictory characteristics is guided along the optical path, and this light is blocked by the support member that supports the sub-reflecting mirror. Therefore, it is necessary to take effective measures according to each application, especially on the surface of the support member that receives the light irradiation.

【0013】また、主反射鏡と副反射鏡との相対位置を
正確に設定しないと、光の反射精度を高く保持できな
い。調整単位として、μmオーダもしくは、それ以下の
サブシンクロメートルが要求される。
Further, unless the relative positions of the main reflecting mirror and the sub-reflecting mirror are set accurately, the light reflection accuracy cannot be kept high. As a unit of adjustment, a sub synchrometer on the order of μm or less is required.

【0014】そのためには、副反射鏡を支持する支持部
材が、部分的にでも光軸調整可能な構造になっていれば
都合がよいが、実際には単なる剛体のものであって、調
整は不可能である。
For that purpose, it is convenient if the supporting member for supporting the sub-reflecting mirror has a structure capable of adjusting the optical axis even partially, but in reality, it is a mere rigid body, and adjustment is not possible. It is impossible.

【0015】支持部材と副反射鏡との間に、別途、光軸
調整機構を介在させることにより、光軸調整が可能とな
るが、この種の機構は大型で重量が大であり、光学機器
としての使用目的に不適である。しかも、高精度で、高
分能な支持をなすことができなず、調整した状態を長期
に亘って維持することは、到底不可能である。
The optical axis can be adjusted by interposing an optical axis adjusting mechanism separately between the supporting member and the sub-reflecting mirror. However, this kind of mechanism is large and heavy, and the optical device is large. Is not suitable for the purpose of use. In addition, it is impossible to maintain a highly accurate and highly versatile support, and it is impossible to maintain the adjusted state for a long time.

【0016】本発明はこのような事情によりなされたも
のであり、その第1の目的とするところは、光路を遮る
支持部材の剛性を保持しながら、より光を遮る量を低減
させて、反射効率の向上を図った光学機器を提供するこ
とにある。
The present invention has been made under such circumstances, and a first object of the present invention is to reduce the amount of light interception while reducing the amount of light interception while maintaining the rigidity of the support member that intercepts the optical path. It is to provide an optical device with improved efficiency.

【0017】第2の目的は、光路中にある支持部材の光
照射面を、反射する光の特性に最適な表面処理をなし、
それぞれの光の特性に適応する光学機器を提供すること
にある。
The second object is to perform a surface treatment on the light irradiation surface of the support member in the optical path, which is optimum for the characteristics of the reflected light.
An object is to provide an optical device that adapts to the characteristics of each light.

【0018】第3の目的は、組み立てられた状態でもな
お、光軸調整を可能となすとともに、その位置の保持を
なす支持部材を備え、高精度と高分解能の光学機器を提
供することにある。
A third object is to provide an optical device of high precision and high resolution, which is capable of adjusting the optical axis even in the assembled state and is provided with a supporting member for holding the position. .

【0019】[0019]

【課題を解決するための手段】上記第1の目的を達成す
るため、本発明における光学機器は、光軸に沿って透光
部を備えた大きな直径の凹面鏡からなる主反射鏡と、光
軸上に、上記主反射鏡と相対向して配置される小さな直
径の凸面鏡からなる副反射鏡を備え、副反射鏡の周囲か
ら主反射鏡への入光、もしくは主反射鏡の透光部から副
反射鏡への入光を、主反射鏡と副反射鏡とで互いに反射
関係をなし、光束の縮小もしくは拡大をなす光学機器に
おいて、上記主反射鏡および副反射鏡を、その内部に収
容する鏡筒と、この鏡筒に対して、主反射鏡および副反
射鏡を所定の位置に支持し、かつ光の進行方向に対して
矩形断面を有する支持部材とを具備し、上記支持部材の
矩形断面は、光の進行方向に対向する幅を光の進行方向
に平行な幅よりも狭く形成したことを特徴とする光学機
器である。
In order to achieve the above first object, an optical apparatus according to the present invention comprises a main reflecting mirror comprising a large-diameter concave mirror having a light transmitting portion along the optical axis, and an optical axis. A sub-reflecting mirror consisting of a small-diameter convex mirror arranged opposite to the main reflecting mirror is provided, and light enters the main reflecting mirror from the periphery of the sub-reflecting mirror or from the light transmitting portion of the main reflecting mirror. In the optical device for reducing or enlarging the light flux, the main reflecting mirror and the sub-reflecting mirror have a reflection relationship with each other for light entering the sub-reflecting mirror, and the main reflecting mirror and the sub-reflecting mirror are housed therein. A rectangular shape of the supporting member, which includes a lens barrel and a supporting member that supports the main reflecting mirror and the sub-reflecting mirror at predetermined positions with respect to the lens barrel and has a rectangular cross section in the traveling direction of light. The cross section has a width that is opposite to the light traveling direction than a width that is parallel to the light traveling direction. An optical device, characterized in that the Ku formed.

【0020】第2の目的を達成するため、本発明におけ
る光学機器は、主反射鏡、副反射鏡を備え、光束の拡大
もしくは縮小をなし、上記主反射鏡および副反射鏡を、
その内部に収容する鏡筒に対して、主反射鏡および副反
射鏡を所定の位置に支持する支持部材を具備し、上記支
持部材の光路に位置し、光の進行方向に対向して幅を狭
く形成した部位を、大出力の光の集光機能として用いる
場合において、高反射特性を有する反射面としたこと、
もしくは小出力の光の結像機能として用いる場合におい
て、無反射特性を有する反射面としたことを特徴とす
る。
In order to achieve the second object, an optical apparatus according to the present invention comprises a main reflecting mirror and a sub-reflecting mirror for expanding or contracting a light beam, and the main reflecting mirror and the sub-reflecting mirror are
A supporting member for supporting the main reflecting mirror and the sub-reflecting mirror at a predetermined position is provided with respect to the lens barrel housed therein, and is located in the optical path of the supporting member, and has a width facing the traveling direction of light. When the narrowly formed part is used as a light-collecting function for high-power light, it should be a reflecting surface having high reflection characteristics.
Alternatively, when it is used as an image forming function of light with a small output, it is characterized by having a reflecting surface having a non-reflection characteristic.

【0021】第3の目的を達成するため、本発明におけ
る光学機器は、主反射鏡、副反射鏡を備え、光束の拡大
もしくは縮小をなし、上記主反射鏡および副反射鏡を、
その内部に収容する鏡筒に対して、主反射鏡および副反
射鏡を所定の位置に支持する支持部材を具備し、上記支
持部材は、主反射鏡と副反射鏡の少なくともいずれか一
方に対する光軸調整をなす微小変位素子を備えたことを
特徴とする。
In order to achieve the third object, an optical apparatus according to the present invention comprises a main reflecting mirror and a sub-reflecting mirror for expanding or contracting a light flux, and the main reflecting mirror and the sub-reflecting mirror are
A supporting member for supporting the main reflecting mirror and the sub-reflecting mirror at predetermined positions is provided for the lens barrel housed therein, and the supporting member is a light for at least one of the main reflecting mirror and the sub-reflecting mirror. It is characterized in that it is provided with a minute displacement element for adjusting the axis.

【0022】[0022]

【作用】第1の発明において、支持部材の光路中に位置
する部位は、少なくとも光の進行方向に対向して幅を狭
く形成したから、光を遮る量が小さくなり、透過波面収
差の低下を防ぐことができる。必要な剛性は、光の進行
方向に沿って幅を持たせることにより、確保できる。
In the first aspect of the invention, since the portion of the support member located in the optical path has a narrow width facing at least the traveling direction of the light, the amount of blocking the light becomes small and the transmitted wavefront aberration is reduced. Can be prevented. The required rigidity can be ensured by providing a width along the light traveling direction.

【0023】第2の発明において、大出力な光の集光機
能として用いる場合、支持部材の光の進行方向に対向す
る面を、高反射特性を有する光学反射面としたから、支
持部材が大出力な光の照射を受けて損傷することがな
い。
In the second aspect of the invention, when it is used as a light-collecting function for high-power light, since the surface of the supporting member facing the light traveling direction is an optical reflecting surface having high reflection characteristics, the supporting member is large. It is not damaged by the irradiation of output light.

【0024】小出力な光の結像機能として用いる場合、
支持部材の光の進行方向に対向する面を、無反射特性を
有する光学反射面としたから、支持部材を照射した光が
散乱したり、迷光となることがなく、より高い結像性能
を得る。第3の発明において、支持部材自体が光軸調整
機能を有することとなり、別の調整用部品が不要とな
り、四かもその位置の保持をなす。
When used as an image forming function of light with a small output,
Since the surface of the supporting member facing the traveling direction of the light is an optical reflection surface having a non-reflection characteristic, the light irradiating the supporting member is not scattered or becomes stray light, and higher imaging performance is obtained. . In the third aspect of the invention, the supporting member itself has the optical axis adjusting function, so that another adjusting component is not necessary and the four positions are held.

【0025】[0025]

【実施例】以下、本発明の一実施例を図面にもとづいて
説明する。図1および図2は、光学機器の概略構成を示
す。図中1は、両端に開口部を有する、たとえば円筒状
の鏡筒であり、透明体、不透明体のいずれであっても支
障がないが、必要最小限の剛性を保持しなければならな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show a schematic configuration of an optical device. In the figure, reference numeral 1 denotes a lens barrel having, for example, a cylindrical barrel having openings at both ends, and it does not matter whether it is a transparent body or an opaque body, but it is necessary to maintain the minimum necessary rigidity.

【0026】鏡筒1の一端開口部は、支持部材2を構成
する閉塞板3によって閉塞され、この中心軸に沿って光
軸Kを一致させた主反射鏡4が取着支持される。この主
反射鏡4は閉塞板3の直径よりも僅かに小さい直径で、
後述する副反射鏡10の直径よりも大きく形成されるな
お説明すれば、上記閉塞板3の中心軸に沿って透光部5
が設けらており、かつ上記主反射鏡4の光軸Kに沿って
同一直径の透光部6が設けられている。したがって、互
いの透光部5,6は連通している。
An opening at one end of the lens barrel 1 is closed by a closing plate 3 which constitutes a supporting member 2, and a main reflecting mirror 4 whose optical axis K is aligned is attached and supported along the central axis. The main reflecting mirror 4 has a diameter slightly smaller than the diameter of the closing plate 3,
It is formed to have a diameter larger than that of the sub-reflecting mirror 10 described later. To be more specific, the light transmitting portion 5 is formed along the central axis of the closing plate 3.
And a light transmitting portion 6 having the same diameter is provided along the optical axis K of the main reflecting mirror 4. Therefore, the translucent parts 5 and 6 communicate with each other.

【0027】上記鏡筒1の他端開口部には、支持部材3
を構成する支柱7の外端部が連結されていて、この内端
部には環状体8が連設されている。これら支柱7と環状
体8の構成は、図3に詳しい。
A support member 3 is provided at the opening of the other end of the lens barrel 1.
The outer ends of the columns 7 are connected to each other, and the annular body 8 is connected to the inner ends thereof. The structure of the columns 7 and the annular body 8 is detailed in FIG.

【0028】すなわち、支柱7は、ここでは3枚の帯板
体であって、環状体8の中心軸(光軸Kと一致する)に
対して等角度を存して突設されることになる。各支柱7
は、光軸Kと直交する面の幅寸法aを剛性の許容する範
囲内で最小限薄くするよう設定する。光軸Kに沿う面の
幅寸法bは、剛性を充分確保することを必要条件とし
て、安全率を考慮した上で設定される。
That is, the support columns 7 are three strip plate members in this case, and are provided so as to project at an equal angle to the central axis of the annular member 8 (which coincides with the optical axis K). Become. Each prop 7
Is set so that the width dimension a of the surface orthogonal to the optical axis K is made as thin as possible within the range where the rigidity allows. The width b of the surface along the optical axis K is set in consideration of the safety factor, on the condition that sufficient rigidity is ensured.

【0029】このことから、支柱7は光の進行方向に対
して矩形状の断面Fを有し、かつその矩形状断面Fは光
の進行方向に平行な面Gよりも幅が狭く形成される。支
柱7の材質は、ばね材として適している、ヤング率の大
きなものを用いることとする。熱膨張係数は、上記環状
体8および鏡筒1と一致するものを選択することが望ま
しい。
For this reason, the pillar 7 has a rectangular cross section F with respect to the light traveling direction, and the rectangular cross section F is formed to be narrower than the plane G parallel to the light traveling direction. . The pillar 7 is made of a material having a large Young's modulus, which is suitable as a spring material. It is desirable to select a coefficient of thermal expansion that matches that of the annular body 8 and the lens barrel 1.

【0030】支柱7の光軸K方向と直交する面Fは、光
学機器としての用途に応じて、表面処理される。たとえ
ば、大出力な光の集光機能として用いる場合には、高反
射特性を有する処理を施さなければならない。
The surface F of the pillar 7 which is orthogonal to the optical axis K direction is surface-treated according to the application as an optical device. For example, when it is used as a function of condensing light with a large output, it is necessary to perform a treatment having a high reflection characteristic.

【0031】また、小出力な光の結像機能として用いる
場合には、支柱7の光軸K方向と直交する面Fを、光の
吸収効率の優れた無反射特性を有する処理を施さなけれ
ばならない。
When used as an image-forming function for light with a small output, the surface F of the column 7 which is orthogonal to the direction of the optical axis K must be treated so as to have a non-reflective property with excellent light absorption efficiency. I won't.

【0032】上記環状体8は、その軸方向長さが、支柱
7の光軸K方向に沿う面Gの幅寸法に一致させて、設定
される。再び図1および図2に示すように、上記環状体
8の内径部には、副反射鏡10を取着支持する副反射鏡
支持板11が嵌合固着される。
The annular body 8 is set such that its axial length matches the width dimension of the surface G of the column 7 along the optical axis K direction. As shown in FIGS. 1 and 2 again, a sub-reflecting mirror support plate 11 for mounting and supporting the sub-reflecting mirror 10 is fitted and fixed to the inner diameter portion of the annular body 8.

【0033】すなわち、副反射鏡支持板11の中心軸
は、ここに取付けられる副反射鏡10の光軸Kと一致す
ることとなる。しかして、光束直径の比較的大きな光
が、副反射鏡10の周囲と鏡筒1との間に架設される支
持部材2を介して鏡筒1内に導かれる。
That is, the central axis of the sub-reflecting mirror support plate 11 coincides with the optical axis K of the sub-reflecting mirror 10 attached thereto. Thus, light having a relatively large luminous flux diameter is guided into the lens barrel 1 via the support member 2 that is provided between the periphery of the sub-reflecting mirror 10 and the lens barrel 1.

【0034】この光は主反射鏡4へ入光され、かつ反射
される。主反射鏡4は凹面鏡であるから、光束を絞った
状態で反射する。この反射方向に対向して副反射鏡が位
置しており、光を受けた副反射鏡10は、再び主反射鏡
4に向かって反射する。
This light enters the main reflecting mirror 4 and is reflected. Since the main reflecting mirror 4 is a concave mirror, it reflects a light beam in a narrowed state. The sub-reflecting mirror is located so as to face this reflection direction, and the sub-reflecting mirror 10 that receives the light reflects again toward the main reflecting mirror 4.

【0035】ここで、光束がさらに絞られた状態になっ
て、各透光部5,6を透過し、閉塞板3の外部で焦点を
結ぶ。逆に、光束の小さい光を拡大することもできる。
Here, the light flux is further narrowed down, passes through the respective light transmitting portions 5 and 6, and is focused outside the closing plate 3. Conversely, light with a small luminous flux can be expanded.

【0036】すなわち、閉塞板3の外部から各透光部
5,6を介して鏡筒1内に入光する光束直径の小さい光
を、光軸Kに沿って導く。この光を副反射鏡10で反射
させ、さらに主反射鏡4で反射させる。結局、光束が拡
大した状態で、副反射鏡10の周囲から鏡筒1外部に導
かれることとなる。
That is, light with a small light beam diameter entering the lens barrel 1 from the outside of the blocking plate 3 through the light transmitting portions 5 and 6 is guided along the optical axis K. This light is reflected by the sub-reflecting mirror 10 and further reflected by the main reflecting mirror 4. Eventually, the light flux is guided to the outside of the lens barrel 1 from around the sub-reflecting mirror 10 in the expanded state.

【0037】いずれにしても、副反射鏡10と鏡筒1間
に光が透過する。そしてこの位置には、支持部材2の特
に各支柱7…が架設されていて、光を部分的に遮る。し
かしながら、上記支柱7は、光の進行方向に対向する面
(光軸Kと直交する面)である光の照射面Fの幅寸法a
を狭く設定したから、光を遮る量がより少なくてすみ、
透過波面収差の低下を抑制する。
In any case, light is transmitted between the sub-reflecting mirror 10 and the lens barrel 1. At this position, in particular, the columns 7 of the support member 2 are provided so as to partially block light. However, the column 7 has a width dimension a of a light irradiation surface F which is a surface (a surface orthogonal to the optical axis K) facing the traveling direction of light.
Since it was set to be narrower, less light is blocked,
It suppresses the reduction of transmitted wavefront aberration.

【0038】さらに支柱7は、光の進行方向(光軸K)
に沿って支柱7の幅寸法bを大にし、かつヤング率の高
い材質のものを選択したから、高剛性を保持し、かつ張
力の作用が容易で、副反射鏡10に対する支持の安定化
を得られる。
Further, the column 7 is a light traveling direction (optical axis K).
Since the width dimension b of the column 7 is increased along with, and a material having a high Young's modulus is selected, high rigidity is maintained, tension is easily applied, and the support for the sub-reflecting mirror 10 is stabilized. can get.

【0039】しかも、支柱7の光照射面Fは、光学機器
としての用途に応じて、すなわち光の特性に応じて、こ
の表面処理を異ならせてある。天体望遠鏡や、宇宙空間
に位置して微弱レーザ光をキャッチする光通信手段に用
いるなど、小出力な光の結像機能として場合は、支柱7
の光照射面Fに無反射特性の表面処理を施す。
In addition, the light irradiation surface F of the column 7 is subjected to different surface treatments depending on the use as an optical device, that is, the characteristics of light. When used as an astronomical telescope or as an optical communication means for catching a weak laser beam located in outer space, the support 7
The light-irradiated surface F is subjected to a surface treatment having non-reflection characteristics.

【0040】このことにより、たとえば支柱7の角部等
に光が当たって散乱したり、迷光となって反射するよう
なことがなく、したがって、ノイズの発生を抑制し、結
像性能の向上をなす。
This prevents light from striking the corners of the column 7 and scattering, or being reflected as stray light. Therefore, noise is suppressed and the imaging performance is improved. Eggplant

【0041】また、たとえば、数 kW単位のCO2 レー
ザ光を用いて、切断加工するなどの大出力な光の集光機
能として使用する場合には、支柱7の光照射面Fを、高
反射特性の表面処理を施す。
Further, for example, when the CO 2 laser light of several kW unit is used as a condensing function of high output light such as cutting, the light irradiation surface F of the column 7 has a high reflection characteristic. Surface treatment.

【0042】このことにより、支柱7の光照射面Fに当
たる大出力の光は、ここで高反射され、支柱7に対する
悪影響がなく、損傷等の不具合を阻止できる。図4は、
支柱7aに、微小変位素子Sを一体的に備えた例を示
す。
As a result, the high-power light striking the light irradiation surface F of the column 7 is highly reflected here, has no adverse effect on the column 7, and can prevent problems such as damage. Figure 4
An example in which the minute displacement element S is integrally provided on the column 7a is shown.

【0043】すなわち、それぞれの支柱7aの外側端部
と、ここでは図示しない鏡筒との連結部間に、微小変位
素子である、たとえば圧電素子20を介在させる。この
圧電素子20は、垂直および水平方向(X−Y方向)
と、光軸方向(Z方向)への微小伸縮が可能であるもの
を用いる。
That is, a piezoelectric element 20, which is a minute displacement element, is interposed between the outer end of each of the columns 7a and the connecting portion of a lens barrel (not shown). The piezoelectric element 20 has vertical and horizontal directions (XY directions).
And a material that can be slightly expanded and contracted in the optical axis direction (Z direction) is used.

【0044】また、支柱7aの内側端部と環状体8との
間には、変位量検出手段である歪みゲージ21を介設す
る。この歪みゲージ21は、上記圧電素子20を必要方
向に伸縮させて副反射鏡10の光軸調整を行った状態
で、出力を記録しており、ベスト調整時のゲージ出力を
記憶する。
A strain gauge 21, which is a displacement amount detecting means, is provided between the inner end of the column 7a and the annular body 8. The strain gauge 21 records an output in a state where the piezoelectric element 20 is expanded and contracted in a necessary direction to adjust the optical axis of the sub-reflecting mirror 10, and the gauge output at the time of best adjustment is stored.

【0045】したがって、何らかの事情で副反射鏡10
の光軸位置がずれた場合であっても、最適な状態に復帰
調整が可能である。なお、上記実施例で、微小変位素子
Sを圧電素子20として説明したが、これに限定される
ものではなく、たとえば光歪素子、磁歪素子に変えても
よい。
Therefore, under some circumstances, the sub-reflecting mirror 10
Even if the position of the optical axis is shifted, the return adjustment can be performed in the optimum state. Although the minute displacement element S is described as the piezoelectric element 20 in the above embodiment, the present invention is not limited to this, and may be replaced by, for example, a photostrictive element or a magnetostrictive element.

【0046】図5に示すような、微小変位素子Saであ
ってもよい。この場合、副反射鏡支持板11aを、形状
記憶合金から構成し、ここでは、副反射鏡10支持面の
裏面側に、電気抵抗体などで作られる高温加熱器22お
よび温度計23を設ける。
A minute displacement element Sa as shown in FIG. 5 may be used. In this case, the sub-reflecting mirror support plate 11a is made of a shape memory alloy, and a high temperature heater 22 and a thermometer 23 made of an electric resistor or the like are provided on the back surface side of the supporting surface of the sub-reflecting mirror 10 here.

【0047】そして、形状記憶合金からなる副反射鏡支
持板11aを変位させて光軸調整をなし、ベスト位置調
整時において高温加熱器22の加熱作用によってその位
置を記憶させることが可能である。
Then, the sub-reflecting mirror support plate 11a made of a shape memory alloy is displaced to adjust the optical axis, and the position can be memorized by the heating action of the high temperature heater 22 during the best position adjustment.

【0048】なお、上記実施例においては、微小変位素
子S,Saは、副反射鏡10の光軸調整用として備える
ようにしたが、これに限定されるものではなく、主反射
鏡4の光軸調整用として備えてもよく、主,副反射鏡
4,10両方の光軸調整を同時になすように備えてもよ
い。
In the above embodiment, the minute displacement elements S and Sa are provided for adjusting the optical axis of the sub-reflecting mirror 10, but the present invention is not limited to this, and the light of the main reflecting mirror 4 is not limited thereto. It may be provided for adjusting the axis, or may be provided so as to adjust the optical axes of both the main and sub-reflecting mirrors 4 and 10 at the same time.

【0049】また、上記鏡筒1は、必ずしも筒体である
必要はない。すなわち、主反射鏡4にその一端部が直接
連結され、他端部が各支柱7…の端部に直接連結され
る、複数本の支持杆に代えてもよい。この場合、主反射
鏡4および副反射鏡10とも露出するが、用途によって
は充分使用に耐える。
The lens barrel 1 does not necessarily have to be a cylindrical body. That is, one end may be directly connected to the main reflecting mirror 4, and the other end may be directly connected to the ends of the columns 7 ... In this case, both the main reflecting mirror 4 and the sub-reflecting mirror 10 are exposed, but depending on the application, they are sufficiently durable.

【0050】[0050]

【発明の効果】以上説明したように、第1の発明によれ
ば、上記支持部材の光路中に位置する部位は、矩形断面
の光の進行方向に対する幅を光の進行方向に平行な幅よ
りも狭く形成したから、光路を遮る支持部材の剛性を保
持しながら、より光を遮る量を低減させて透過波面収差
の低下を抑制し、反射効率の向上を図れる効果を奏す
る。
As described above, according to the first aspect of the present invention, the portion of the supporting member located in the optical path has a rectangular cross section whose width with respect to the light traveling direction is smaller than the width parallel to the light traveling direction. Since the support member that blocks the optical path is kept rigid, the amount of light that is blocked is further reduced, the reduction of the transmitted wavefront aberration is suppressed, and the reflection efficiency is improved.

【0051】第2の発明によれば、上記支持部材の光路
に位置する部位は、少なくとも光の進行方向に対向して
幅を狭くするとともに、光の進行方向に対向する面は、
大出力な光の集光機能として用いる場合において、高反
射特性を有する光学反射面としたから、もしくは、小出
力な光の結像機能として用いる場合において、無反射特
性を有する光学反射面としたから、光路中にある支持部
材の光照射面を、反射する光の特性に適応する面とし
て、それぞれの特性に最適な条件を有する効果を奏す
る。
According to the second aspect of the present invention, the portion of the support member located in the optical path is narrowed at least so as to face the light traveling direction, and the surface facing the light traveling direction is
When used as a light condensing function for high output light, it is an optical reflection surface having a high reflection characteristic, or when used as an imaging function for a small output light, it is an optical reflection surface having non-reflection characteristics. Therefore, the light irradiation surface of the support member in the optical path is used as a surface that adapts to the characteristics of the reflected light, and there is an effect of having optimal conditions for the respective characteristics.

【0052】第3の発明によれば、上記支持部材は、主
反射鏡と副反射鏡の少なくともいずれか一方に対する光
軸調整をなす微小変位素子を備えたから、組み立てられ
た状態でもなお、反射鏡の光軸調整が可能で、その位置
を保持でき、高精度と高分解能化を図れる効果を奏す
る。
According to the third aspect of the invention, since the supporting member includes the minute displacement element for adjusting the optical axis with respect to at least one of the main reflecting mirror and the sub-reflecting mirror, the reflecting mirror is still in the assembled state. The optical axis can be adjusted, its position can be held, and high precision and high resolution can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における、一実施例の、光学機器の概略
縦断面図。
FIG. 1 is a schematic vertical sectional view of an optical device according to an embodiment of the present invention.

【図2】同実施例の、光学機器の要部の斜視図。FIG. 2 is a perspective view of a main part of an optical device according to the embodiment.

【図3】同実施例の、支持部材の一部斜視図。FIG. 3 is a partial perspective view of a support member of the embodiment.

【図4】他の実施例の、支持部材の一部斜視図。FIG. 4 is a partial perspective view of a support member according to another embodiment.

【図5】他の実施例の、支持部材の一部縦断面図。FIG. 5 is a partial vertical cross-sectional view of a supporting member according to another embodiment.

【符号の説明】[Explanation of symbols]

K…光軸、6…透光部、4…主反射鏡、10…副反射
鏡、1…鏡筒、2…支持部材、20…圧電素子、11a
…形状記憶合金、22…高温加熱器。
K ... Optical axis, 6 ... Translucent part, 4 ... Main reflecting mirror, 10 ... Sub-reflecting mirror, 1 ... Lens barrel, 2 ... Support member, 20 ... Piezoelectric element, 11a
… Shape memory alloy, 22… High temperature heater.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光軸に沿って透光部を備えた大きな直径の
凹面鏡からなる主反射鏡と、 光軸上に、上記主反射鏡と相対向して配置される小さな
直径の凸面鏡からなる副反射鏡を備え、 副反射鏡の周囲から主反射鏡への入光、もしくは主反射
鏡の透光部から副反射鏡への入光を、主反射鏡と副反射
鏡とで互いに反射関係をなし、光束の縮小もしくは拡大
をなす光学機器において、 上記主反射鏡および副反射鏡を、その内部に収容する鏡
筒と、 この鏡筒に対して、主反射鏡および副反射鏡を所定の位
置に支持し、かつ光の進行方向に対して矩形断面を有す
る支持部材とを具備し、 上記支持部材の矩形断面は、光の進行方向に対向する幅
を光の進行方向に平行な幅よりも狭く形成したことを特
徴とする光学機器。
1. A main reflecting mirror comprising a large-diameter concave mirror having a light transmitting portion along the optical axis, and a small-diameter convex mirror arranged on the optical axis so as to face the main reflecting mirror. Equipped with a sub-reflector, the incident light from the surroundings of the sub-reflector to the main reflector or from the translucent part of the main reflector to the sub-reflector is reflected by the main reflector and the sub-reflector. In the optical device for reducing or expanding the luminous flux, a lens barrel that houses the main reflecting mirror and the sub-reflecting mirror therein, and a main reflecting mirror and a sub-reflecting mirror for the lens barrel A supporting member that is supported at a position and has a rectangular cross section with respect to the light traveling direction, and the rectangular cross section of the supporting member has a width facing the light traveling direction from a width parallel to the light traveling direction. An optical device characterized by being formed narrower.
【請求項2】上記支持部材の光路に位置し、光の進行方
向に対向して幅を狭く形成した部位は、 大出力の光の集光機能として用いる場合において、高反
射特性を有する反射面としたことを特徴とする請求項1
記載の光学機器。
2. A reflection surface having a high reflection characteristic when it is used in the optical path of the support member and has a narrow width facing the traveling direction of the light when it is used for condensing light of high output. Claim 1 characterized in that
The described optical equipment.
【請求項3】上記支持部材の光路に位置し、光の進行方
向に対向して幅を狭く形成した部位は、 小出力の光の結像機能として用いる場合において、無反
射特性を有する反射面としたことを特徴とする請求項1
記載の光学機器。
3. A reflection surface having a non-reflective property when used as an image forming function of light of small output, which is located in the optical path of the support member and has a narrow width facing the traveling direction of light. Claim 1 characterized in that
The described optical equipment.
【請求項4】光軸に沿って透光部を備えた大きな直径の
凹面鏡からなる主反射鏡と、 光軸上に、上記主反射鏡と相対向して配置される小さな
直径の凸面鏡からなる副反射鏡を備え、 副反射鏡の周囲から主反射鏡への入光、もしくは主反射
鏡の透光部から副反射鏡への入光を、主反射鏡と副反射
鏡とで互いに反射関係をなし、光束の縮小もしくは拡大
をなす光学機器において、 上記主反射鏡および副反射鏡を、その内部に収容する鏡
筒と、 この鏡筒に対して、主反射鏡および副反射鏡を所定の位
置に支持する支持部材とを具備し、 上記支持部材は、主反射鏡と副反射鏡の少なくともいず
れか一方に対する光軸調整をなす微小変位素子を備えた
ことを特徴とする光学機器。
4. A main reflecting mirror comprising a large-diameter concave mirror having a light transmitting portion along the optical axis, and a small-diameter convex mirror arranged on the optical axis so as to face the main reflecting mirror. Equipped with a sub-reflector, the incident light from the surroundings of the sub-reflector to the main reflector or from the translucent part of the main reflector to the sub-reflector is reflected by the main reflector and the sub-reflector. In the optical device for reducing or expanding the luminous flux, a lens barrel that houses the main reflecting mirror and the sub-reflecting mirror therein, and a main reflecting mirror and a sub-reflecting mirror for the lens barrel An optical device, comprising: a support member that is supported at a position, wherein the support member includes a minute displacement element that adjusts an optical axis of at least one of a main reflection mirror and a sub reflection mirror.
【請求項5】上記微小変位素子は、圧電素子、光歪素
子、磁歪素子のうちの、少なくともいずれか一つを用い
たことを特徴とする請求項4記載の光学機器。
5. The optical device according to claim 4, wherein at least one of a piezoelectric element, a photostrictive element, and a magnetostrictive element is used as the minute displacement element.
【請求項6】上記微小変位素子は、形状記憶合金と、こ
の形状記憶合金の周囲に配置される高温加熱器とからな
ることを特徴とする請求項4記載の光学機器。
6. The optical device according to claim 4, wherein the micro-displacement element comprises a shape memory alloy and a high-temperature heater arranged around the shape memory alloy.
【請求項7】上記支持部材には、変位量検出手段が設け
られていることを特徴とする請求項4記載の光学機器。
7. The optical apparatus according to claim 4, wherein the support member is provided with displacement amount detecting means.
JP5104403A 1993-04-30 1993-04-30 Optical equipment Expired - Lifetime JP2854781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104403A JP2854781B2 (en) 1993-04-30 1993-04-30 Optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104403A JP2854781B2 (en) 1993-04-30 1993-04-30 Optical equipment

Publications (2)

Publication Number Publication Date
JPH06313846A true JPH06313846A (en) 1994-11-08
JP2854781B2 JP2854781B2 (en) 1999-02-03

Family

ID=14379759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104403A Expired - Lifetime JP2854781B2 (en) 1993-04-30 1993-04-30 Optical equipment

Country Status (1)

Country Link
JP (1) JP2854781B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782425A (en) * 2019-03-28 2019-05-21 青岛海纳光电环保有限公司 Transceiver telescope and open path gas analyzer
CN110703408A (en) * 2019-11-30 2020-01-17 中国人民解放军战略支援部队航天工程大学 Primary and secondary mirror telescopic system
EP3859422A1 (en) * 2020-01-28 2021-08-04 Diehl Defence GmbH & Co. KG Seeker lens, seeker head and guided missile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782425A (en) * 2019-03-28 2019-05-21 青岛海纳光电环保有限公司 Transceiver telescope and open path gas analyzer
CN110703408A (en) * 2019-11-30 2020-01-17 中国人民解放军战略支援部队航天工程大学 Primary and secondary mirror telescopic system
CN110703408B (en) * 2019-11-30 2022-05-31 中国人民解放军战略支援部队航天工程大学 Primary and secondary mirror telescopic system
EP3859422A1 (en) * 2020-01-28 2021-08-04 Diehl Defence GmbH & Co. KG Seeker lens, seeker head and guided missile

Also Published As

Publication number Publication date
JP2854781B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP2951842B2 (en) Optical scanning device
JP4991539B2 (en) Imaging optical system including a telescope and an uncooled warm stop structure
EP1291690A2 (en) Optical switch with converging element
CA2171590C (en) Method and device for focusing laser beam
JP2008508569A5 (en)
US4554448A (en) Optical elements
JP4344094B2 (en) Hole-linked laser scanning device
JPH03148044A (en) Spectroscopic measuring apparatus using microscope method
KR101626737B1 (en) Projection exposure apparatus for semiconductor lithography comprising an optical correction arrangement
JP2854781B2 (en) Optical equipment
EP1618424B1 (en) Infrared imaging system comprising monolithic lens/reflector optical component
IL148740A (en) Image-recording device for a printing form, having macrooptics of the offner type
US4029389A (en) Radiation scanning system
JPH03179420A (en) Optical apparatus
US20060102603A1 (en) Laser machine tool
SU1701120A3 (en) Optical members fixing device
JP3529086B2 (en) Optical scanning device
JP2996679B2 (en) Optical device
JP2857395B2 (en) Scanning optical lens unit
FR2552240A1 (en) OPTICAL REPRODUCTION SYSTEM
JPH05341204A (en) Reflecting telescope
JPH04289814A (en) Optical scanning device
JPH054644B2 (en)
JP2907292B2 (en) Achromatic laser scanning optics
JPH03125112A (en) Optical scanning device