JPH06313684A - Arc furnace and induction heater - Google Patents

Arc furnace and induction heater

Info

Publication number
JPH06313684A
JPH06313684A JP5104164A JP10416493A JPH06313684A JP H06313684 A JPH06313684 A JP H06313684A JP 5104164 A JP5104164 A JP 5104164A JP 10416493 A JP10416493 A JP 10416493A JP H06313684 A JPH06313684 A JP H06313684A
Authority
JP
Japan
Prior art keywords
output
generator
arc furnace
prime mover
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5104164A
Other languages
Japanese (ja)
Inventor
Mitsuo Kasahara
満男 笠原
Yuji Ishizaka
雄二 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5104164A priority Critical patent/JPH06313684A/en
Publication of JPH06313684A publication Critical patent/JPH06313684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To eliminate influences of flicker and harmonic waves to a power network. CONSTITUTION:A generator 12 is driven by a prime mover 11. The generator 12 is so constituted as to obtain an output frequency of about 100-800Hz. An output of the generator 12 is supplied to an arc furnace 15 through a transformer 14 for the furnace. A melted material previously preheated by waste heat of the mover 11 is introduced to the furnace 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はアーク炉装置および誘
導加熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc furnace device and an induction heating device.

【0002】[0002]

【従来の技術】アーク炉は図4に示すような給電システ
ムにより電力が供給される。図4において、66〜15
4KVの受電電圧を受電変圧器T1と炉用変圧器T2でス
テップダウンしてアーク炉Rに供給する手段をとってい
た。なお、図4において、TCRは電極昇降制御装置、
TUDは電極昇降装置、CBは炉用遮断器、DSは断路
器である。上記のようにアーク炉に給電される電力品質
は50HZ/60HZ±1HZである。また、電縫管等
の製造に使用される誘導加熱装置も上記と同様の電力品
質である。
2. Description of the Related Art Electric power is supplied to an arc furnace by a power supply system as shown in FIG. In FIG. 4, 66 to 15
The means for supplying the received voltage of 4 KV to the arc furnace R by stepping down with the receiving transformer T 1 and the transformer T 2 for the furnace is used. In FIG. 4, TCR is an electrode lift control device,
TUD is an electrode lifting device, CB is a furnace breaker, and DS is a disconnector. As described above, the power quality supplied to the arc furnace is 50HZ / 60HZ ± 1HZ. Further, the induction heating device used for manufacturing electric resistance welded pipes and the like has the same power quality as the above.

【0003】[0003]

【発明が解決しようとする課題】アーク炉において最も
大きな問題は、アーク電極と溶解スクラップ材との関係
が一定にならず、炉中のスクラップ材がメルトダウンす
る際の電極と材料との間の相対関係が一挙にくずれるた
め、アーク長が大きく変動する性質を持っていて、その
際の負荷特性の大きな変化(最大変化短絡)が繰返し、
頻繁に発生する。このため、電圧の急峻な変動(フリッ
カ)が発生し、需要者側から電力会社側へ電力品質を低
下させる影響がある。この品質を許容値に収めるために
は非常に高価なフリッカ防止装置(アクティブフィル
タ)を設置する必要がある。
The biggest problem in an arc furnace is that the relationship between the arc electrode and the molten scrap material is not constant, and the scrap material in the furnace melts down between the electrode and the material. Since the relative relationship collapses all at once, it has the property that the arc length fluctuates greatly, and large changes in load characteristics (maximum change short circuit) repeat at that time,
It happens frequently. As a result, a sharp voltage fluctuation (flicker) occurs, which has the effect of deteriorating the power quality from the consumer side to the power company side. In order to keep this quality within the allowable value, it is necessary to install a very expensive flicker prevention device (active filter).

【0004】一般に電力会社の電力変換効率は全体的に
約35%である。全国的に散在している不特定多数の需
要家に電力を供給するためには、送配電網を用いてネッ
トワークを組み、しかも安定供給のための監視、制御、
保護を行っている。熱という電力を積分しながら使用す
る用途ばかりでなく、周波数の値が重要な需要家もあ
り、(瞬時の回転数)1HZ以上変化しないように品質
を整える制御が電力会社にて行われている。
Generally, the power conversion efficiency of a power company is about 35% overall. In order to supply power to an unspecified number of customers scattered throughout the country, a network is constructed using a power transmission and distribution network, and monitoring, control, and
Protects. Not only for the purpose of integrating the power of heat, but also for the users whose frequency value is important, the electric power company controls the quality so that it does not change more than 1HZ (instantaneous speed). .

【0005】しかし、設備が熱を得る目的に対しては電
力の品質にあまり問題にならず、そのために無駄な設備
の償却代金を支払っていることになる。また、負荷特性
の変動が大きいことにも関連して電力会社との契約電力
量(デマンド)を越えないように絶えず注意しなければ
ならないわずらわしさがある。
However, for the purpose of obtaining heat from the equipment, the quality of the electric power does not become a problem so much, so that the wasteful depreciation of the equipment is paid. Also, due to the large fluctuations in the load characteristics, there is a need to constantly be careful not to exceed the contracted electric energy (demand) with the electric power company.

【0006】上記はアーク炉の場合であるが、誘導加熱
装置の場合には50HZ又は60HZの買電電力では加
熱特性が得られないために、周波数を変換して使用す
る。周波数を変換するには一旦50HZ又は60HZの
交流を直流に変換し、その後所望の周波数に逆変換する
手段が採用されている。合わせて出力を制御するため
に、通常、サイリスタによる位相制御を用いて整流し、
直流の出力を得ている。しかし、サイリスタを位相制御
すると、各次数の高調波が含まれる歪電圧を電力網に及
ぼす。これを許容値に収めるためには非常に高価な高調
波抑制装置(アクティブフィルタやLCフィルタ)を設
置する必要がある。この他、アーク炉と同様の問題があ
る。上記のようにアーク炉及び誘導加熱装置においては
上述したような問題がある。
The above is the case of the arc furnace, but in the case of the induction heating device, since the heating characteristics cannot be obtained with the purchased power of 50 HZ or 60 HZ, the frequency is converted and used. In order to convert the frequency, a means of once converting the alternating current of 50HZ or 60HZ into the direct current and then converting it back to the desired frequency is adopted. In order to control the output together, rectification is usually performed using phase control with a thyristor,
You are getting DC output. However, the phase control of the thyristor exerts a distorted voltage containing harmonics of each order on the power grid. In order to keep this within an allowable value, it is necessary to install a very expensive harmonic wave suppression device (active filter or LC filter). Besides, there are the same problems as in the arc furnace. As described above, the arc furnace and the induction heating device have the above-mentioned problems.

【0007】この発明は上記の事情に鑑みてなされたも
ので、電力網にフリッカおよび高調波の影響を与えない
ようにしたアーク炉装置および誘導加熱装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an arc furnace apparatus and an induction heating apparatus in which the influence of flicker and harmonics on the electric power network is prevented.

【0008】[0008]

【課題を解決するための手段】この発明は上記の目的を
達成するために、第1発明は原動機と、この原動機で駆
動され、周波数が100HZ〜800HZの出力を送出
する発電機と、この発電機の出力が1次側に供給され、
2次側にアーク炉供給電圧を出力する変圧器と、前記原
動機の排熱が供給され、前記アーク炉で溶解する材料を
予熱する予熱炉とを備えたものである。
In order to achieve the above object, the present invention is directed to a first aspect of the present invention, a prime mover, a generator that is driven by the prime mover, and outputs an output having a frequency of 100HZ to 800HZ, and this power generation. The output of the machine is supplied to the primary side,
A transformer for outputting the arc furnace supply voltage to the secondary side and a preheating furnace for supplying the exhaust heat of the prime mover to preheat the material melted in the arc furnace are provided.

【0009】第2発明は原動機と、この原動機で駆動さ
れ、周波数が100HZ〜800HZの出力を送出する
発電機と、この発電機の出力端が1次側に接続され、2
次側に誘導加熱コイルが接続された整合トランスと、こ
の整合トランスの2次側に接続されたコンデンサと、前
記原動機の排熱が供給され、被加熱材を予熱する予熱炉
とを備えたものである。
A second aspect of the present invention is directed to a prime mover, a generator driven by the prime mover and delivering an output having a frequency of 100HZ to 800HZ, and an output end of the generator is connected to a primary side.
A matching transformer having an induction heating coil connected to the secondary side thereof, a capacitor connected to the secondary side of the matching transformer, and a preheating furnace to which the exhaust heat of the prime mover is supplied to preheat a material to be heated Is.

【0010】第3発明は発電機の交流出力が入力され、
出力に直流出力を得る順変換器と、この順変換器の直流
出力が入力され、誘導加熱コイルに発電機の出力周波数
より高い周波数の出力を与える逆変換器とを備えたもの
である。
According to a third aspect of the invention, the AC output of the generator is input,
A forward converter that obtains a DC output is provided, and an inverse converter that receives the DC output of the forward converter and that provides an induction heating coil with an output of a frequency higher than the output frequency of the generator is provided.

【0011】[0011]

【作用】原動機で駆動される発電機の出力周波数を10
0HZ〜800HZに設定したため、アーク炉あるいは
誘導加熱による加熱特性を良好にできる。また、予め、
溶解材や被加熱材は、原動機の排熱を利用して予熱させ
るようにしたので、発熱エネルギの利用効率を向上させ
ることができる。
Operation: The output frequency of the generator driven by the prime mover is set to 10
Since it is set to 0HZ to 800HZ, the heating characteristics by the arc furnace or induction heating can be improved. Also, in advance,
Since the melted material and the material to be heated are preheated by using the exhaust heat of the prime mover, it is possible to improve the utilization efficiency of the heat generation energy.

【0012】[0012]

【実施例】以下この発明の実施例を図面に基づいて説明
する。図1は第1実施例で、図1において、11は船舶
用エンジン等からなる原動機で、この原動機11には発
電機12が連結される。この発電機12は出力が5MW
〜100MWぐらいのものを使用し、かつ出力周波数は
100HZ〜800HZぐらいのものを使用する。例え
ば、出力周波数300HZ±15HZの発電機を使用す
ると、鉄心の重量が50HZの約6分の1で済む利点が
ある。発電機12の出力端はアルミ母線13を用いてア
ーク炉用変圧器14の1次側に接続される。アーク炉用
変圧器14の2次側にはアーク炉15がフレキシブルケ
ーブル16を用いて接続される。17は溶解材を予熱す
る予熱炉で、この予熱炉17には原動機11から排出さ
れる熱が供給される。この原動機11からの排熱温度は
高温で約400℃である。この温度でアーク炉15に入
れられる前に溶解材を予熱しておくことにより、アーク
炉15での変換効率が良好になる。18は発電機12の
界磁制御を行う回路である。19は真空しゃ断器であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a first embodiment, and in FIG. 1, 11 is a prime mover composed of a marine engine or the like, and a generator 12 is connected to the prime mover 11. The output of this generator 12 is 5 MW
.About.100 MW and an output frequency of 100 HZ to 800 HZ are used. For example, using a generator with an output frequency of 300 HZ ± 15 HZ has the advantage that the weight of the iron core is about 1/6 of 50 HZ. The output end of the generator 12 is connected to the primary side of the arc furnace transformer 14 using an aluminum bus 13. An arc furnace 15 is connected to the secondary side of the arc furnace transformer 14 using a flexible cable 16. Reference numeral 17 denotes a preheating furnace for preheating the molten material, and the heat discharged from the prime mover 11 is supplied to the preheating furnace 17. The exhaust heat temperature from the prime mover 11 is about 400 ° C. at high temperature. By preheating the melted material at this temperature before being put into the arc furnace 15, the conversion efficiency in the arc furnace 15 becomes good. A circuit 18 controls the field of the generator 12. 19 is a vacuum breaker.

【0013】上記のように構成された第1実施例におい
て、アーク炉15に溶解材を投入する前に予熱炉17で
溶解材を予熱する。予熱が終了した溶解材はアーク炉1
5に投入される。アーク炉15は発電機12からの出力
で溶解材を溶解させる。なお、アーク炉15におけるア
ーク電流制御は界磁制御回路18により行う。
In the first embodiment constructed as described above, the molten material is preheated in the preheating furnace 17 before the molten material is charged into the arc furnace 15. The molten material that has been preheated is the arc furnace 1
It is thrown in 5. The arc furnace 15 melts the melting material with the output from the generator 12. The arc current control in the arc furnace 15 is performed by the field control circuit 18.

【0014】第1実施例のように構成すると、次に述べ
るような効果が得られる。
With the construction as in the first embodiment, the following effects can be obtained.

【0015】(a)化石燃料の発熱エネルギを90%以
上(排熱の再利用も含めて)以上利用できる。
(A) The exothermic energy of fossil fuel can be used 90% or more (including the reuse of exhaust heat).

【0016】(b)燃焼エネルギ(温度、エネルギ密
度)では得られない高レベルのエネルギ(アーク)を電
気エネルギの形態を用いて使用できる。
(B) High level energy (arc) that cannot be obtained by combustion energy (temperature, energy density) can be used in the form of electric energy.

【0017】(c)電力会社の電力網にフリッカの影響
を与えない。
(C) Flicker does not affect the electric power network of the electric power company.

【0018】(d)大容量船舶用エンジンが利用でき
る。これにより熱費が買電より安くできる。
(D) A large-capacity marine engine can be used. As a result, heat costs can be lower than electricity purchase.

【0019】(e)±1HZの周波数変動制御を持たせ
ず、フライホイールを除くか最小限に抑えることができ
る。
(E) The flywheel can be eliminated or minimized without the frequency variation control of ± 1 HZ.

【0020】(f)電力会社との契約条件のデマンド値
を越えないように、電力需要を管理装置または操作員を
配置する必要がない。
(F) It is not necessary to allocate a management device or an operator to the power demand so that the demand value of the contract condition with the power company is not exceeded.

【0021】(g)負荷短絡時、減磁特性が発電機に働
き、出力低下をもたらすと同時に周波数(100HZ〜
800HZ)が高いため、短絡インピーダンスの上昇に
よって電流値自身も低下かつ電流の立上がり特性(di
/dt)が大幅に低下し、短絡しゃ断させずに限流制御
を可能にする。これにより稼働率の向上を図ることがで
きる。
(G) When the load is short-circuited, the demagnetization characteristics act on the generator, resulting in a decrease in output and at the same time, the frequency (100 Hz-
800 HZ), the current value itself also decreases due to the increase in short-circuit impedance, and the current rising characteristic (di
/ Dt) is significantly reduced, and current limiting control is possible without short-circuit interruption. As a result, the operating rate can be improved.

【0022】(h)オンロードタップチェンジを不要と
する。
(H) No on-road tap change is required.

【0023】(i)トータルコスト対パホーマンスが大
幅に改善できる。
(I) The total cost versus performance can be greatly improved.

【0024】図2Aはこの発明の第2実施例を示すもの
で、図1の第1実施例と同一部分には同一符号を付して
示す。図2Aにおいて、20は発電機12の出力電流I
および電圧Vの検出部で、この検出部20で検出された
電流Iと電圧Vを界磁制御回路18に供給する。界磁制
御回路18は上記電流Iと電圧Vに基づいて発電機12
の界磁が制御されその出力制御が行われる。21a,2
1b,21cは整合変圧器で、この変圧器21a,21
b,21cの1次側は発電機12の出力端に接続され、
2次側は被加熱材であるワーク22を加熱するための誘
導加熱コイル23a,23b,23cに接続される。2
4a,24b,24cは力率調整コンデンサ、25a,
25b,25cは予熱炉17で予熱されるワーク22を
搬送させるロールである。
FIG. 2A shows a second embodiment of the present invention. The same parts as those of the first embodiment of FIG. 1 are designated by the same reference numerals. In FIG. 2A, 20 is the output current I of the generator 12.
The voltage V detection unit supplies the current I and voltage V detected by the detection unit 20 to the field control circuit 18. The field control circuit 18 uses the current I and the voltage V to generate the power from the generator 12.
Field is controlled and its output is controlled. 21a, 2
1b and 21c are matching transformers, and these transformers 21a and 21c
The primary side of b, 21c is connected to the output end of the generator 12,
The secondary side is connected to induction heating coils 23a, 23b, 23c for heating the work 22 which is the material to be heated. Two
4a, 24b, 24c are power factor adjusting capacitors, 25a,
Reference numerals 25b and 25c denote rolls that convey the work 22 preheated in the preheating furnace 17.

【0025】上記のように構成された第2実施例におい
て、ワーク22を予め予熱炉17で予熱(図2Bに示す
時間対温度特性のように破線で示す室温より高くなるよ
うに加熱する)し、誘導加熱コイル23a,23b,2
3cに搬送させる。誘導加熱コイル23a,23b,2
3cには発電機12から出力された例えば300HZの
周波数が供給されているので、ワーク22は図示左方か
ら右方に向かうに従って次第に加熱されてその温度が上
昇して行く。その昇温の経過状態を示したものが図2B
である。図2Bにも示すようにワーク22は誘導加熱コ
イル23cで約950℃くらいまで加熱される。なお、
第2実施例全体の制御は発電機12の界磁制御によって
行う。
In the second embodiment configured as described above, the work 22 is preheated in the preheating furnace 17 in advance (heated to be higher than room temperature indicated by the broken line as in the time-temperature characteristic shown in FIG. 2B). , Induction heating coils 23a, 23b, 2
3c to carry. Induction heating coils 23a, 23b, 2
Since the frequency of, for example, 300 HZ output from the generator 12 is supplied to 3c, the work 22 is gradually heated from the left side to the right side in the drawing, and its temperature rises. FIG. 2B shows the progress of the temperature rise.
Is. As shown in FIG. 2B, the work 22 is heated to about 950 ° C. by the induction heating coil 23c. In addition,
The field control of the generator 12 controls the entire second embodiment.

【0026】図3Aは第3実施例を示すもので、図1、
図2の第1、第2実施例と同一部分には同一符号を付し
て示す。図3Aにおいて、31は周波数が300HZの
インバータ変圧器で、このインバータ変圧器31の1次
側は発電機12の出力端に接続され、2次側は順変換器
32に接続される。順変換器32で直流に変換された出
力は逆変換器33a,33b,33cにより再び交流に
変換されるが、このとき、出力周波数が発電機12の約
5倍(約1500HZ)となるように変換される。逆変
換器33a,33b,33cの出力は誘導加熱コイル2
3a,23b,23cに供給されてワーク22が図3B
に示すような温度分布に昇温される。第3実施例のよう
に高い周波数(1500HZ)でワーク22を加熱する
ため加熱特性が良好になる。また、全体の制御は第2実
施例と同様に発電機の界磁制御によって行われる。
FIG. 3A shows a third embodiment, which is shown in FIG.
The same parts as those of the first and second embodiments of FIG. 2 are designated by the same reference numerals. In FIG. 3A, 31 is an inverter transformer with a frequency of 300 HZ, the primary side of this inverter transformer 31 is connected to the output end of the generator 12, and the secondary side is connected to the forward converter 32. The output converted into the direct current by the forward converter 32 is again converted into the alternating current by the reverse converters 33a, 33b, and 33c, but at this time, the output frequency is about 5 times that of the generator 12 (about 1500 HZ). To be converted. The outputs of the inverse converters 33a, 33b, 33c are the induction heating coil 2
3a, 23b, 23c, and the work 22 is fed to the work 22 shown in FIG.
The temperature is raised to the temperature distribution shown in. Since the work 22 is heated at a high frequency (1500 HZ) as in the third embodiment, the heating characteristic becomes good. Further, the entire control is performed by the field control of the generator as in the second embodiment.

【0027】上記第2,第3実施例のように構成する
と、第1実施例に揚げた効果の他に以下のような効果が
得られる。
With the configuration as in the second and third embodiments, the following effects can be obtained in addition to the effects of the first embodiment.

【0028】(イ)電力網に高調の影響を与えない。(B) Harmonic effects are not given to the power network.

【0029】(ロ)電力会社の送電網拡充スケジュール
に左右されず、独自のリードタイムで建設することがで
き、設備投資のタイミングを失することがない。
(B) It is possible to construct with its own lead time without being influenced by the transmission network expansion schedule of the electric power company, and the timing of capital investment is not lost.

【0030】(ハ)発電機の極数を増加して出力周波数
を高くすることにより鉄心量を減少させて発電機の形状
を縮小して製造コストを低下させることができる。
(C) By increasing the number of poles of the generator and increasing the output frequency, it is possible to reduce the amount of iron core, reduce the shape of the generator, and reduce the manufacturing cost.

【0031】[0031]

【発明の効果】以上述べたように、この発明によれば、
化石燃料の発熱エネルギを有効に利用でき、かつ電力網
にフリッカや高調波等の悪影響を与えることがなく、し
かも周波数変動の制御を行わなくても良くなる等の利点
がある。この他、電力会社との契約条件のデマンド値を
越えないように電力需要を管理する必要がない利点があ
る。
As described above, according to the present invention,
There are advantages that the heat generation energy of fossil fuels can be effectively used, that the power grid is not adversely affected by flicker and harmonics, and that frequency fluctuations do not have to be controlled. In addition, there is an advantage that it is not necessary to manage the power demand so as not to exceed the demand value of the contract conditions with the power company.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】Aは第2実施例を示す概略構成図、Bは温度分
布特性図である。
FIG. 2A is a schematic configuration diagram showing a second embodiment, and B is a temperature distribution characteristic diagram.

【図3】Aは第3実施例を示す概略構成図、Bは温度分
布特性図である。
FIG. 3A is a schematic configuration diagram showing a third embodiment, and B is a temperature distribution characteristic diagram.

【図4】従来のアーク炉給電システムを示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a conventional arc furnace power supply system.

【符号の説明】[Explanation of symbols]

11…原動機 12…発電機 14…アーク炉用変圧器 15…アーク炉 17…予熱炉 11 ... motor 12 ... generator 14 ... arc furnace transformer 15 ... arc furnace 17 ... preheating furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原動機と、この原動機で駆動され、周波
数が100HZ〜800HZの出力を送出する発電機
と、この発電機の出力が1次側に供給され、2次側にア
ーク炉供給電圧を出力する変圧器と、前記原動機の排熱
が供給され、前記アーク炉で溶解する材料を予熱する予
熱炉とを備えたことを特徴とするアーク炉装置。
1. A prime mover, a generator driven by this prime mover and delivering an output of a frequency of 100 HZ to 800 HZ, the output of this generator is supplied to a primary side, and an arc furnace supply voltage is supplied to a secondary side. An arc furnace apparatus comprising: a transformer for outputting; and a preheating furnace which is supplied with exhaust heat of the prime mover and preheats a material melted in the arc furnace.
【請求項2】 原動機と、この原動機で駆動され、周波
数が100HZ〜800HZの出力を送出する発電機
と、この発電機の出力端が1次側に接続され、2次側に
誘導加熱コイルが接続された整合トランスと、この整合
トランスの2次側に接続されたコンデンサと、前記原動
機の排熱が供給され、被加熱材を予熱する予熱炉とを備
えたことを特徴とする誘導加熱装置。
2. A prime mover, a generator driven by this prime mover and delivering an output having a frequency of 100 HZ to 800 HZ, an output end of this generator is connected to the primary side, and an induction heating coil is provided on the secondary side. An induction heating apparatus comprising: a matching transformer connected thereto; a condenser connected to a secondary side of the matching transformer; and a preheating furnace for preheating a material to be heated to which exhaust heat of the prime mover is supplied. .
【請求項3】 発電機の交流出力が入力され、出力に直
流出力を得る順変換器と、この順変換器の直流出力が入
力され、誘導加熱コイルに発電機の出力周波数より高い
周波数の出力を与える逆変換器とを備えた請求項2記載
の誘導加熱装置。
3. A forward converter for receiving an AC output of a generator and obtaining a DC output as an output, and a DC output of this forward converter for inputting an induction heating coil with a frequency higher than the output frequency of the generator. The inverse heating device according to claim 2, further comprising:
JP5104164A 1993-04-30 1993-04-30 Arc furnace and induction heater Pending JPH06313684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104164A JPH06313684A (en) 1993-04-30 1993-04-30 Arc furnace and induction heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104164A JPH06313684A (en) 1993-04-30 1993-04-30 Arc furnace and induction heater

Publications (1)

Publication Number Publication Date
JPH06313684A true JPH06313684A (en) 1994-11-08

Family

ID=14373417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104164A Pending JPH06313684A (en) 1993-04-30 1993-04-30 Arc furnace and induction heater

Country Status (1)

Country Link
JP (1) JPH06313684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2335730B (en) * 1998-03-26 2000-05-10 Axel Leona Georges M Thienpont A heat furnace having complementary electric heating means
JP2003181054A (en) * 2001-12-14 2003-07-02 Ace Denken:Kk Game machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2335730B (en) * 1998-03-26 2000-05-10 Axel Leona Georges M Thienpont A heat furnace having complementary electric heating means
JP2003181054A (en) * 2001-12-14 2003-07-02 Ace Denken:Kk Game machine

Similar Documents

Publication Publication Date Title
Ladoux et al. A comparative study of AC/DC converters for high-power DC arc furnace
JP2961146B2 (en) Controlled power supply
Grunbaum SVC Light: A powerful means for dynamic voltage and power quality control in industry and distribution
CN110350606B (en) DC chopper power supply device and method for electric arc furnace
CN109193655B (en) Flexible power supply equipment for alternating current electric arc furnace
JPH07170742A (en) Power converter for supplying direct current to arc electric furnace
EP3682523A1 (en) Sub-station transformer load balancing system
AU2020397708B2 (en) Plant for melting and/or heating metal material and method to power it
JPH06313684A (en) Arc furnace and induction heater
WO2018233833A1 (en) A method for operating an electric-arc furnace, a power electronic converter, and an electric-arc furnace system
CN102573163B (en) High-voltage power supply of electron beam melting furnace
Iagăr et al. Analysis the electrical parameters of a high-frequency coreless induction furnace
Ioan et al. Comparative study for EAF's reactive energy compensation methods and power factor improvement
RU2697505C1 (en) Automatic device and method for compensation of losses for reactive component in alternating current networks
EA010412B1 (en) The three-phase ac speed adjustable motor
Plaisant et al. An active filter for AC harmonics from HVDC converters. Basic concepts and design principles
US6246595B1 (en) Series control of electric ARC furnaces
US20230236573A1 (en) Plant for melting and/or heating metal material, and method to supply electrical energy to said plant
Longrigg DC-to-AC Inverters for Photovoltaics
Grunbaum et al. Energy and Environmental Savings in Steelmaking by Means of SVC Light
Furga et al. Shunt active filter for four wire low‐voltage systems: Theoretical operating limits and measures for performance improvement
CN202551400U (en) High-voltage power supply device for electron-beam melting furnace
JPH0246214Y2 (en)
Kose et al. Two-folded implementation of a 12-pulse TCR with dissimilar transformers for a ladle furnace: reactive power compensation and power system redundancy
Smith Resistance-Welding Machine and Power Supply