JPH0631320Y2 - Fluidized bed heat exchanger - Google Patents

Fluidized bed heat exchanger

Info

Publication number
JPH0631320Y2
JPH0631320Y2 JP8976590U JP8976590U JPH0631320Y2 JP H0631320 Y2 JPH0631320 Y2 JP H0631320Y2 JP 8976590 U JP8976590 U JP 8976590U JP 8976590 U JP8976590 U JP 8976590U JP H0631320 Y2 JPH0631320 Y2 JP H0631320Y2
Authority
JP
Japan
Prior art keywords
perforated plate
fluidized bed
heat exchanger
gas
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8976590U
Other languages
Japanese (ja)
Other versions
JPH0449757U (en
Inventor
秀雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP8976590U priority Critical patent/JPH0631320Y2/en
Publication of JPH0449757U publication Critical patent/JPH0449757U/ja
Application granted granted Critical
Publication of JPH0631320Y2 publication Critical patent/JPH0631320Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、流動層式熱交換器の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an improvement of a fluidized bed heat exchanger.

〔従来の技術〕[Conventional technology]

従来のこの種の流動層式熱交換器は、例えば、第5図に
示すように、下端にガス入口(20a)、および上端にガス
出口(20b)を備え、内部をガス流路とした略垂直にのび
るケーシング(20)と、ケーシング(20)内に水平に配置さ
れた、多数の通気孔が形成された多孔板(22)と、前記ケ
ーシング(20)内における多孔板(22)上に適当な厚さに形
成された砂層(23)とを有している。また、ケーシング(2
0)には、略U字形のパイプからなり、被加熱流体として
の水を移送する伝熱管(24)が、その湾曲部(24c)がガス
流路(20)の外部に露出し、2つの平行部(24a),(24b)が
ガス流路を貫通するように取付けられるとともに、一方
の平行部(24a)が砂層(23)内に配置され、他方の平行部
(24b)が前記砂層(23)の上方に配置される。そして、前
記一方の平行部(24a)の先端が水取入口(25)、他方の平
行部(24b)の先端が水取出口(26)として形成される。ま
た、平行部(24a),(24b)の外側面には、効率の良い熱交
換作用を図るためにフィン(27),(27)が取り付けられ
る。
A conventional fluidized bed heat exchanger of this type has a gas inlet (20a) at the lower end and a gas outlet (20b) at the upper end, as shown in FIG. A vertically extending casing (20), a perforated plate (22) horizontally arranged in the casing (20) and having a large number of vent holes, and a perforated plate (22) in the casing (20). It has a sand layer (23) formed to have an appropriate thickness. Also, the casing (2
In (0), a heat transfer tube (24) consisting of a substantially U-shaped pipe for transferring water as a fluid to be heated has its curved portion (24c) exposed to the outside of the gas flow path (20). The parallel parts (24a) and (24b) are attached so as to penetrate the gas flow path, and one parallel part (24a) is arranged in the sand layer (23) and the other parallel part is arranged.
(24b) is arranged above the sand layer (23). The tip of the one parallel portion (24a) is formed as the water intake port (25), and the tip of the other parallel portion (24b) is formed as the water intake port (26). Further, fins (27) and (27) are attached to the outer surfaces of the parallel portions (24a) and (24b) in order to achieve an efficient heat exchange action.

そして、ガス入口(20a)が、例えばディーゼル機関の排
気ガス放出系に接続され、また、伝熱管(24)の水取入口
(25)および水取出口(26)が、例えばボイラの温水または
蒸気循環系に接続される。
The gas inlet (20a) is connected to, for example, the exhaust gas discharge system of a diesel engine, and the water inlet of the heat transfer pipe (24).
(25) and the water outlet (26) are connected to, for example, the hot water or steam circulation system of the boiler.

こうして、流動層式熱交換器の運転時には、高温の排気
ガスがケーシング(20)内をガス入口(20a)からガス出口
(20b)へ向かって通過するが、このとき、排気ガスが多
孔板(22)下側から砂層(23)内へ噴出するため、砂層(23)
が激しく攪拌および、加熱され、流動層が形成される。
一方、伝熱管(24)の2つの平行部(24a),(24b)は、共に
この流動層内にあり、水取入口(25)から伝熱管(24)内に
流入した水は、伝熱管(24)内を通過しながら、流動層に
よって加熱された後、水取出口(26)から出ていく。
Thus, during operation of the fluidized bed heat exchanger, high-temperature exhaust gas flows through the casing (20) from the gas inlet (20a) to the gas outlet.
It passes toward (20b), but at this time, since the exhaust gas jets from the lower side of the perforated plate (22) into the sand layer (23), the sand layer (23)
Is vigorously stirred and heated to form a fluidized bed.
On the other hand, the two parallel portions (24a) and (24b) of the heat transfer tube (24) are both inside this fluidized bed, and the water flowing into the heat transfer tube (24) from the water intake (25) is While passing through the inside of (24), after being heated by the fluidized bed, it exits from the water outlet (26).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、上記在来の流動層式熱交換器には次のような
問題があった。
By the way, the conventional fluidized bed heat exchanger has the following problems.

第1に上記の流動層式熱交換器に用いられる多孔板(22)
は、第6図、第7図に示すように切曲げ加工(プレス加
工の一種)により、多数の膨出部(30)を形成してあり、
これら膨出部(30)を形成する際に、各膨出部(30)の同一
の一側縁を切開いてガス噴出孔(31)としている。
First, a perforated plate (22) used in the above fluidized bed heat exchanger.
Has a large number of bulges (30) formed by cutting and bending (a type of pressing) as shown in FIGS. 6 and 7.
When forming these bulging portions (30), the same one side edge of each bulging portion (30) is cut open to form a gas ejection hole (31).

そのため、多孔板(22)から噴出する排ガスは、固体粒子
層(砂層)(23)内に一方向から流入するため固体粒子層
の粒度層化が均一に行われず、しかも流動層の温度分布
が均一にならないという問題が生じている。
Therefore, the exhaust gas ejected from the porous plate (22) flows into the solid particle layer (sand layer) (23) from one direction, so that the solid particle layer is not uniformly layered and the temperature distribution of the fluidized bed is not uniform. The problem is that they are not uniform.

更に、上述の如き、多孔板では、膨出部(30)におけるガ
ス噴出孔(31)の両端縁が過熱され易く、焼損等が生じ易
いという問題もある。
Further, as described above, the porous plate has a problem that both end edges of the gas ejection hole (31) in the bulging portion (30) are easily overheated and burning or the like is likely to occur.

第2に、上記多孔板(22)は、上述の如き簡単な構造であ
るため、一枚板で構成されており、更に、排気ガス中の
SOx,NOx等に起因する腐食を防止するために耐食
性の高い材料(例えばSUS−304)が用いられてい
る。そのため、この多孔板(22)は、排ガスからの熱によ
り膨張して変形し、伝熱管(24)との間隙が不均一になっ
てしまう。すると流動層の厚さが不均一になってしま
い、伝熱管(24)での熱の回収効率が低下してしまう。
Secondly, since the porous plate (22) has the simple structure as described above, it is composed of a single plate. Furthermore, in order to prevent corrosion due to SOx, NOx, etc. in the exhaust gas, A material having high corrosion resistance (for example, SUS-304) is used. Therefore, the perforated plate (22) is expanded and deformed by the heat from the exhaust gas, and the gap with the heat transfer tube (24) becomes nonuniform. Then, the thickness of the fluidized bed becomes uneven, and the heat recovery efficiency of the heat transfer tube (24) is reduced.

更に、上述のような焼損や熱変形が生じた多孔板(22)を
交換等のため取外す場合、上記在来の多孔板(22)は、一
枚板構造であり、伝熱管(24)が近接していることもあっ
て、この伝熱管(24)を取外した後、多孔板(22)を取外す
必要があり、しかもこの伝熱管(24)は重いため、作業性
が悪く、手間がかかるという問題がある。
Furthermore, when removing the perforated plate (22) that has been burnt or thermally deformed as described above for replacement, etc., the conventional perforated plate (22) has a single plate structure, and the heat transfer tube (24) is Due to the proximity, it is necessary to remove the perforated plate (22) after removing the heat transfer tube (24). Moreover, since the heat transfer tube (24) is heavy, workability is poor and time consuming. There is a problem.

〔課題を解決するための手段〕[Means for Solving the Problems]

この考案は、上記課題を解決するためになされたもの
で、ガスを実質上、下方から上方に向かって通過させる
ガス流路を形成したケーシング(20)と、このケーシング
内にガス流路を遮るように配置された多孔板と、前記多
孔板上に形成され、その頂面が開放状態であってガスの
通過時に流動状態となり得る固体粒子層と、少なくとも
1部分が前記固体粒子層に接触することができるように
前記ガス流路内に配置された伝熱管とを有する流動層式
熱交換器において、上記多孔板は、ケーシングと実質上
同等の熱膨張率を有する耐食材料製であって、複数枚の
多孔板部材を分割可能に連結することによって構成し、
この連結部分によっても熱膨張の吸収と強度・向上を計
った上記多孔板の表面には、多数の膨出部を形成すると
共に各膨出部の少なくとも両側にスリット状のガス噴出
孔を形成したことを特徴とする流動層式熱交換器であ
る。
The present invention has been made to solve the above-mentioned problems, and a casing (20) having a gas flow passage that allows gas to pass substantially upward from below is provided, and the gas flow passage is blocked in this casing. And a solid particle layer which is formed on the porous plate and has a top surface which is in an open state and which can be in a fluidized state when a gas passes through, and at least a part of the solid particle layer is in contact with the solid particle layer. In a fluidized bed heat exchanger having a heat transfer tube arranged in the gas flow path so that the perforated plate is made of a corrosion resistant material having a coefficient of thermal expansion substantially equivalent to that of the casing, It is configured by connecting a plurality of perforated plate members in a separable manner,
A large number of bulging portions are formed on the surface of the perforated plate whose absorption and strength / improvement of thermal expansion are also achieved by this connecting portion, and slit-shaped gas ejection holes are formed on at least both sides of each bulging portion. It is a fluidized bed type heat exchanger characterized by the above.

〔作用〕[Action]

この考案に係る流動層式熱交換器によれば、多孔板をケ
ーシングと略同様の熱膨張率を有する材料で形成してあ
るから、熱による多孔板の変形を防止でき、更に多孔板
を複数の多孔板部材を連結して構成してあるから、狭い
スペースからでも容易に取出すことができ、又、上記の
ように連結して構成することによりこの部分の剛性を増
すことができる。
In the fluidized bed heat exchanger according to the present invention, since the perforated plate is made of a material having substantially the same thermal expansion coefficient as that of the casing, it is possible to prevent the perforated plate from being deformed by heat. Since the perforated plate members are connected to each other, they can be easily taken out from a narrow space, and the rigidity can be increased in this part by connecting them as described above.

更に、この流動層式熱交換器におけるガス噴出孔は、各
膨出部の少なくとも両面にスリット状に形成してあるか
ら、膨出部の局部的な過熱が生じず、焼損等の事故を防
止することができる。
Further, since the gas ejection holes in this fluidized bed heat exchanger are formed in a slit shape on at least both sides of each bulging portion, local overheating of the bulging portion does not occur and accidents such as burnout are prevented. can do.

〔実施例〕〔Example〕

第1図〜第4図は、この考案に係る流動層式熱交換器の
一実施例を示すもので、第5図〜第7図と対応する部材
には、同一参照番号を附して詳細説明を省略する。
1 to 4 show an embodiment of a fluidized bed heat exchanger according to the present invention, in which members corresponding to those in FIGS. 5 to 7 are designated by the same reference numerals and are described in detail. The description is omitted.

図面において、(1)は多孔板、(10)は、伝熱管を示す。In the drawing, (1) shows a perforated plate, and (10) shows a heat transfer tube.

上記多孔板(1)は、略短形形状の膨出部(3)を多数個整列
させた状態で形成し、これら各膨出部(3)の両長辺部分
にスリット状のガス噴出孔(4)を形成してある。上記ガ
ス噴出孔(4)の形成要領は、例えば、上記膨出部(3)を切
曲げ加工(プレス加工の一種)する際に、膨出部(3)の
両長辺部分を切断しておくことにより同時に形成するこ
とができる。尚、上記膨出部(3)は排気ガスの流通方向
下流側に凸となるように形成され、上記スリット状のガ
ス噴出孔(4)は、固体粒子層(23)を構成する伝熱粒子の
通過を阻止する寸法に設定してある。
The perforated plate (1) is formed in a state where a large number of substantially bulging portions (3) are aligned, and slit-shaped gas ejection holes are formed on both long sides of each of these bulging portions (3). Formed (4). The procedure for forming the gas ejection holes (4) is, for example, when cutting and bending the bulged portion (3) (a type of press working), cutting both long side portions of the bulged portion (3). It can be formed simultaneously by placing. Incidentally, the bulging portion (3) is formed to be convex on the downstream side in the flow direction of the exhaust gas, the slit-shaped gas ejection holes (4), heat transfer particles constituting the solid particle layer (23) The size is set to prevent the passage of the.

更に、上記多孔板(1)は、複数の多孔板部材(2)を平面状
に連結して構成したもので、その連結部分は、第2図に
示すような構造になっている。即ち、各多孔板部材(2)
の連結部となる縁部を下方に折曲して連結片(5)を形成
し、多孔板部材(2)同志の連結時には隣り合う多孔板部
材(2)の連結片(5)を重ね合わせた状態で両者をボルト等
によって締結している。この際、連結片(5)に適宜のス
ペーサ(6)を介在させてあってもよい。
Further, the perforated plate (1) is formed by connecting a plurality of perforated plate members (2) in a plane, and the connecting portion has a structure as shown in FIG. That is, each perforated plate member (2)
Bend the edge part that becomes the connecting part of to form the connecting piece (5), and when connecting the porous plate members (2), the connecting pieces (5) of the adjacent porous plate members (2) are overlapped. Both are fastened with bolts etc. At this time, an appropriate spacer (6) may be interposed in the connecting piece (5).

ここで、上記多孔板(1)は、従来同様、耐熱性、耐食性
を有する材料で作成してあるが、上述ケーシング(20)と
の熱膨張率が近似する材料としてある。例えば、ケーシ
ング(20)がSS41材であれば、多孔板(1)は、SUS
405,SUH409等の材料が好ましい。
Here, the porous plate (1) is made of a material having heat resistance and corrosion resistance as in the conventional case, but is a material having a coefficient of thermal expansion similar to that of the casing (20). For example, if the casing (20) is made of SS41 material, the perforated plate (1) is made of SUS.
Materials such as 405 and SUH409 are preferred.

上記伝熱管(10)は、従来同様の略U字形状のパイプから
なるもので、この実施例においては、複数のU字形状の
パイプの同側端を夫々ヘッダ(11)(12)で連結してある。
そして、各ヘッダ(11)(12)のうち、下方側のヘッダ(11)
に水取入口(13)を、上方側のヘッダ(12)に水取出口(14)
を設けてある。そして上記各パイプの2つの平行部(10
a)(10b)には、平板状のフィン(15)を溶接によって多数
枚取り付けてある。上記フィン(15)は、各パイプの径方
向両側から対向するように、2枚1組として固定してあ
り、この状態で各組のフィン(15)は、パイプを中心とす
る略短形形状となっている。
The heat transfer tube (10) is made of a substantially U-shaped pipe similar to the conventional one. In this embodiment, the same side ends of a plurality of U-shaped pipes are connected by headers (11) and (12), respectively. I am doing it.
Then, of the headers (11) (12), the lower header (11)
To the water inlet (13) and to the upper header (12) to the water inlet (14)
Is provided. And the two parallel parts (10
A large number of flat fins (15) are attached to a) and (10b) by welding. The fins (15) are fixed as a set of two so as to face each other in the radial direction of each pipe, and in this state, the fins (15) of each set have a substantially rectangular shape centered on the pipe. Has become.

上記各伝熱管(10)の平行部(10a),(10b)は互いに千鳥状
配列としてある。
The parallel portions (10a) and (10b) of the heat transfer tubes (10) are arranged in a staggered arrangement.

更に、この実施例においては、伝熱管(10)の平行部(10
a)(10b)の両端側には、夫々、熱交換器のケーシング(2
0)への取付けの便宜を図るためのホルダ部材(16a)(16b)
とフランジ部材(17a)(17b)とを設けて、上記伝熱管を互
いに連結し、1つのユニットとしてある。
Further, in this embodiment, the parallel portion (10
At both ends of a) and (10b), the heat exchanger casing (2
Holder member (16a) (16b) for convenience of mounting to (0)
And flange members (17a) and (17b) are provided to connect the heat transfer tubes to each other to form one unit.

上記各ホルダとフランジ部材の組(16a)(17a),(16a)(17
b)は、各ホルダ部材(16a)(16b)が、伝熱管(10)の湾曲部
(10c)側となるように設けられており、夫々の外形寸法
は、湾曲部(10c)に近い側の部材ほど小さくなるように
設定してある。尚、ケーシング(20)には、上記ホルダ部
材(16a)(16b)に対応する窓孔(18a)(18b)を形成してあ
る。従って大形の窓孔(18a)側から、上記伝熱管(10)の
湾曲部(10c)を先にして挿入することにより、伝熱管(1
0)を所定の位置に装着することができ、点検、修理時の
伝熱管の脱着作業性が極めて高い。
Each set of holder and flange member (16a) (17a), (16a) (17
In b), each holder member (16a) (16b) is a curved part of the heat transfer tube (10).
They are provided so as to be on the (10c) side, and the outer dimensions of each of them are set so that the closer to the curved portion (10c) the member is. The casing (20) has window holes (18a) (18b) corresponding to the holder members (16a) (16b). Therefore, by inserting the curved portion (10c) of the heat transfer tube (10) first from the large window (18a) side, the heat transfer tube (1
0) can be installed in a predetermined position, and the workability of attaching and detaching the heat transfer tube at the time of inspection and repair is extremely high.

上記構成において、流動層式熱交換器の運転時に、前述
同様に高温の排気ガスをケーシング(20)内に導入すると
排気ガスが多孔板(1)下側から砂層(23)内へ噴出する。
このときの排気ガスは、多孔板(1)上の多数の膨出部(3)
の夫々のスリット状ガス噴出孔(4)から2方向に噴出す
るため従来の流動層式熱交換器に比べ、砂層(23)の流動
層化が均一に行われ、流動層の温度分布も均一になる。
更に、ガス噴出孔(4)を上述の如く膨出部(3)の両側に形
成したため、膨出部(3)に過熱が生じたとしても中央部
分が熱膨張により湾曲することにより、湾曲部(3)の熱
による破損が防止できる。
In the above structure, when the high temperature exhaust gas is introduced into the casing (20) during operation of the fluidized bed heat exchanger, the exhaust gas is ejected from the lower side of the porous plate (1) into the sand layer (23).
Exhaust gas at this time is a large number of bulges (3) on the perforated plate (1).
Since the gas is ejected from each slit-shaped gas ejection hole (4) in two directions, the sand bed (23) is fluidized more uniformly than the conventional fluidized bed heat exchanger, and the temperature distribution of the fluidized bed is also uniform. become.
Furthermore, since the gas ejection holes (4) are formed on both sides of the bulging portion (3) as described above, even if the bulging portion (3) is overheated, the central portion is bent by thermal expansion, so that the curved portion The damage due to the heat of (3) can be prevented.

上記熱交換器の稼働時、ケーシング(20)並びに多孔板
(1)全体も熱膨張するが、夫々は、略同様の熱膨張率を
有する材料で製作してあるため、両者間の寸法差はほと
んど生じない。更に、上記多孔板(1)は、連結片(5)を介
して複数の多孔板部材(2)を連結した構造であるので、
この部分にて熱膨張を吸収し、寸法の変化を少なく抑え
ることができ、又、連結片(5)が補強リブとして機能す
るため、剛性が向上する。即ち、熱による多孔板(1)の
湾曲等の変形を有効に防止することにより伝熱管(24)と
の間隙を一定に保つことができるため、流動層からの熱
回収を効率よく行うことができる。
When the heat exchanger is in operation, the casing (20) and the perforated plate
(1) The whole also undergoes thermal expansion, but since each is made of a material having substantially the same coefficient of thermal expansion, there is almost no dimensional difference between the two. Furthermore, since the perforated plate (1) has a structure in which a plurality of perforated plate members (2) are connected via a connecting piece (5),
This portion absorbs thermal expansion and can suppress dimensional change to a small extent, and since the connecting piece (5) functions as a reinforcing rib, rigidity is improved. That is, since the gap between the heat transfer tube (24) can be kept constant by effectively preventing the deformation of the perforated plate (1) due to heat, it is possible to efficiently recover the heat from the fluidized bed. it can.

更に上記熱交換器において、点検等のために、多孔板
(1)を取外す必要が生じた場合、多孔板(1)を連結部分で
複数の多孔板部材(2)に分割して容易に取外すことがで
きる。
Furthermore, in the above heat exchanger, a perforated plate for inspection etc.
When it becomes necessary to remove (1), the perforated plate (1) can be easily removed by dividing it into a plurality of perforated plate members (2) at the connecting portion.

〔考案の効果〕[Effect of device]

以上説明したように、この流動層式熱交換器におけるガ
ス噴出孔は、各膨出部の少なくとも両面にスリット状に
形成してあるから、膨出部の局部的な過熱が生じず、し
かもこの考案に係る流動層式熱交換器によれば、多孔板
をケーシングと略同様の熱膨張率を有する材質で形成し
てあるから、熱による多孔板の変形を防止でき、更に多
孔板を複数の多孔板部材を連結して構成してあるから、
狭いスペースからでも容易に取出すことができ、又、上
述のように連結して構成することにより、この部分の剛
性を増すことができる。固体粒子層の均一な流動化並び
この流動層の温度分布の均一化ができ、熱回収率の向上
が図れると共に、熱による多孔板の破損を防止でき、し
かも、万一多孔板が破損した場合等、ケーシングから取
外す際には容易に行える。
As described above, since the gas ejection holes in this fluidized bed heat exchanger are formed in the shape of slits on at least both surfaces of each bulging portion, local overheating of the bulging portion does not occur, and this In the fluidized bed heat exchanger according to the invention, since the perforated plate is formed of a material having a thermal expansion coefficient substantially similar to that of the casing, it is possible to prevent the perforated plate from being deformed by heat, and further Since it is configured by connecting the perforated plate members,
It can be easily taken out even from a narrow space, and the rigidity of this portion can be increased by connecting and constructing as described above. Uniform fluidization of the solid particle layer and uniform temperature distribution of this fluidized bed can improve the heat recovery rate, prevent damage to the perforated plate due to heat, and even if the perforated plate is damaged In cases such as when removing from the casing, it can be easily done.

従って、この考案によれば、安定して熱回収を行え、し
かも、保守の容易に行える実用性大なる流動層式熱交換
器を提供することができる。
Therefore, according to the present invention, it is possible to provide a fluidized bed heat exchanger which is capable of recovering heat in a stable manner and can be easily maintained, and which is highly practical.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は、この考案に係る流動層式熱交換器の
一実施例を示すもので、第1図は要部の断面図、第2図
は多孔板の構造を示す斜視図、第3図は多孔板の孔形状
を示す斜視図、第4図は第3図の断面図である。 第5図は、従来の流動層式熱交換器の概略構成図、第6
図は、従来の流動層式熱交換器の多孔板を示す斜視図、
第7図は第6図の断面図である。 (1)…多孔板 (2)…多孔板部材 (3)…膨出部 (4)…ガス噴出孔 (10)…伝熱管 (20)…ケーシング (23)…固体粒子層
1 to 4 show an embodiment of a fluidized bed heat exchanger according to the present invention. FIG. 1 is a sectional view of a main part, and FIG. 2 is a perspective view showing a structure of a perforated plate. 3 is a perspective view showing the hole shape of the perforated plate, and FIG. 4 is a sectional view of FIG. FIG. 5 is a schematic configuration diagram of a conventional fluidized bed heat exchanger, FIG.
The figure is a perspective view showing a porous plate of a conventional fluidized bed heat exchanger,
FIG. 7 is a sectional view of FIG. (1) ... perforated plate (2) ... perforated plate member (3) ... bulging part (4) ... gas ejection hole (10) ... heat transfer tube (20) ... casing (23) ... solid particle layer

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ガスを実質上、下方から上方に向かって通
過させるガス流路を形成したケーシング(20)と、このケ
ーシング(20)内にガス流路を遮るように配置された多孔
板(1)と、前記多孔板(1)上に形成され、その頂面が開放
状態であってガスの通過時に流動状態となり得る固体粒
子層(23)と、少なくとも1部分が前記固体粒子層(23)に
接触することができるように前記ガス流路内に配置され
た伝熱管(10)とを有する流動層式熱交換器において、上
記多孔板(1)は、ケーシング(20)と実質上同等の熱膨張
率を有する耐食材料製であって、複数枚の多孔板部材
(2)を分割可能に連結することによって構成し、上記多
孔板部材(2)の表面には、多数の膨出部(3)を形成すると
共に各膨出部(3)の少なくとも両側にスリット状のガス
噴出孔(4)を形成したことを特徴とする流動層式熱交換
器。
1. A casing (20) having a gas flow passage that allows gas to pass substantially upward from below, and a perforated plate () disposed in the casing (20) so as to block the gas flow passage. 1), a solid particle layer (23) formed on the perforated plate (1) and having an open top surface that can be in a fluidized state when a gas passes, and at least a part of the solid particle layer (23 ), A fluidized bed heat exchanger having a heat transfer tube (10) arranged in the gas flow path so that the perforated plate (1) is substantially equivalent to the casing (20). Made of a corrosion-resistant material having a coefficient of thermal expansion of
(2) is configured by connecting in a separable manner, on the surface of the perforated plate member (2), a large number of bulges (3) are formed and slits are formed on at least both sides of each bulge (3). A fluidized bed heat exchanger characterized in that a gas discharge hole (4) in the form of a gas is formed.
JP8976590U 1990-08-27 1990-08-27 Fluidized bed heat exchanger Expired - Fee Related JPH0631320Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8976590U JPH0631320Y2 (en) 1990-08-27 1990-08-27 Fluidized bed heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8976590U JPH0631320Y2 (en) 1990-08-27 1990-08-27 Fluidized bed heat exchanger

Publications (2)

Publication Number Publication Date
JPH0449757U JPH0449757U (en) 1992-04-27
JPH0631320Y2 true JPH0631320Y2 (en) 1994-08-22

Family

ID=31823981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8976590U Expired - Fee Related JPH0631320Y2 (en) 1990-08-27 1990-08-27 Fluidized bed heat exchanger

Country Status (1)

Country Link
JP (1) JPH0631320Y2 (en)

Also Published As

Publication number Publication date
JPH0449757U (en) 1992-04-27

Similar Documents

Publication Publication Date Title
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
EP2208874B1 (en) Heat recovery system
EP2715266B1 (en) Heat transfer sheet
BRPI0807410A2 (en) Heat Exchanger and Method
JP3613709B2 (en) Heat transfer element assembly
EP2491326A2 (en) Improvements to a heat-exchanger for a boiler
JP2002537540A (en) Heat transfer element assembly
JPH0631320Y2 (en) Fluidized bed heat exchanger
JPH03168595A (en) Heat-transmitting element assembly
JP3594606B2 (en) Plate heat exchanger
US5549238A (en) Heat exchanger brazing tray
JP5747335B2 (en) Heat exchanger for heat engine
US6769479B2 (en) Primary surface recuperator sheet
JP2009139053A (en) Heat exchanger for cooling exhaust gas
JP4221260B2 (en) Heat exchanger and manufacturing method thereof
KR100424854B1 (en) A body heat exchanger of condensing gas boiler
JP3054888U (en) Plate fin type heat exchanger
JP6099003B2 (en) Heat exchanger and hot water device provided with the same
JPH064228Y2 (en) Plate heat exchanger
JPH0619971Y2 (en) Heat exchanger
JPH0624713Y2 (en) Stacked heat exchanger element
CN212902791U (en) Boiler flue gas waste heat recovery device
JP7030036B2 (en) Heat exchanger
JPS6210628Y2 (en)
JP2574480Y2 (en) Fluidized bed heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees