JPH0631271B2 - Method for producing aryldihalosilane - Google Patents

Method for producing aryldihalosilane

Info

Publication number
JPH0631271B2
JPH0631271B2 JP61070900A JP7090086A JPH0631271B2 JP H0631271 B2 JPH0631271 B2 JP H0631271B2 JP 61070900 A JP61070900 A JP 61070900A JP 7090086 A JP7090086 A JP 7090086A JP H0631271 B2 JPH0631271 B2 JP H0631271B2
Authority
JP
Japan
Prior art keywords
reaction
compound
aryldihalosilane
catalyst
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61070900A
Other languages
Japanese (ja)
Other versions
JPS62230793A (en
Inventor
博夫 百瀬
智史 伊村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61070900A priority Critical patent/JPH0631271B2/en
Publication of JPS62230793A publication Critical patent/JPS62230793A/en
Publication of JPH0631271B2 publication Critical patent/JPH0631271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アリールジハロシランの製造方法に関する。
更に詳しくは、芳香族炭化水素化合物(以後、アリール
化合物と称す)とジハロシランとの反応によるモノヒド
ロアリールジハロシラン(以後、単にアリールジハロシ
ランと称す)の効率的な製造方法を提供するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing an aryldihalosilane.
More specifically, it provides an efficient method for producing a monohydroaryldihalosilane (hereinafter simply referred to as “aryldihalosilane”) by reacting an aromatic hydrocarbon compound (hereinafter referred to as “aryl compound”) with dihalosilane. Is.

〔従来技術およびその問題点〕[Prior art and its problems]

珪素原子に一つの水素原子と一つの芳香族基(以後、ア
リール基と称す)ならびに二つの同種又は異種のハロゲ
ン原子を結合してなるアリールジハロシランは、シリコ
ーンオイル,シリコーンゴム,シリコーンワニスなどの
始発原料として重要視されている。従来、これらの製造
方法としてはI)トリハロシランと核置換ハロゲン化芳
香族化合物を原料とするグリニヤール法II)アリールト
リハロシランを原料としリチウムアルミニウムヒドリド
を還元剤とする還元法III)アリールハロシラン類を原
料とする不均化法IV)アリール化合物(ArHとあらわ
す)とジハロシラン(HSiXとあらわす)を原料
とし、ArH+HSiX→ArSi(H)X+H
の式であらわされる反応による方法等が知られている。
I)のグリニヤール法やII)の還元法は、一般に高価な
プロセスであるだけでなく、選択的かつ高収率の製造に
は不向きという欠点を有している。III)の不均化法
は、例えば英国特許第663,810号明細書には、ジ
フエクロルシランとジフエニルジクロルシランを原料と
する不均化反応により、フエニルジクロルシランを合成
する例が記載されているが、合成原料の製造それ自体に
困難性を有する場合が多く、また反応による副生物も多
くて必ずしも有利な方法とは言い難い。IV)のアリール
化合物とジハロシランとの反応によるアリールジハロシ
ランの製造方法としては、触媒を用いる方法と用いない
方法があるが、いずれの場合も反応は液相を保つような
条件下に実施する必要がある。触媒を用いない場合、例
えば米国特許第2,775,606号明細書にはフエニ
ルジクロルシランの合成例としてベンゼンとジクロルシ
ランおよびトリクロルシラン(トリクロロシランを共存
させる方が収率が良いとしている)を無触媒で反応させ
る例が記載されているが、反応温度が400℃という高
温を要し、液相を保つ為には反応圧力は200kg/cm2
上の高圧を要することが推測される。かかる高温,高圧
の反応条件は、工業的な実施に於て決して有利なプロセ
スとは言い難い。一方、触媒を用いる場合、通常は三塩
化アルミニウムや三塩化ホウ素の如きルイス酸が触媒と
して用いられ、上記の米国特許第2,775,606号
明細書に同じくフエニルジクロルシランの合成例が記載
されている。しかしながら、ルイス酸触媒の使用によ
り、より低温,低圧の温和な反応条件が採用しうるよう
であるが、目的とするフエニルジクロルシランの最終単
離製品としての収率は、無触媒の反応の場合に比べて著
しく低いものでしかなく、とても実用に供せられるもの
とは言い難い。
Aryl dihalosilanes formed by bonding one hydrogen atom and one aromatic group (hereinafter referred to as an aryl group) to a silicon atom and two halogen atoms of the same or different type are silicone oil, silicone rubber, silicone varnish, etc. It is regarded as important as the starting material. Conventionally, as a production method thereof, I) a Grignard method using trihalosilane and a nucleus-substituted halogenated aromatic compound as a raw material II) a reduction method using aryltrihalosilane as a raw material and lithium aluminum hydride as a reducing agent III) arylhalosilanes IV) Aryl compound (represented by ArH) and dihalosilane (represented by H 2 SiX 2 ) are used as raw materials and ArH + H 2 SiX 2 → ArSi (H) X 2 + H 2
A method based on the reaction represented by the formula is known.
The Grignard method of I) and the reduction method of II) are not only generally expensive processes, but also have the drawback that they are not suitable for selective and high-yield production. As the disproportionation method of III), for example, in British Patent No. 663,810, phenyldichlorosilane is synthesized by a disproportionation reaction using diphenylchlorosilane and diphenyldichlorosilane as raw materials. Although examples have been described, the production of synthetic raw materials often has difficulties in themselves, and there are many by-products due to the reaction, which is not necessarily an advantageous method. The method for producing aryldihalosilane by the reaction of IV) with an aryl compound and dihalosilane includes a method using a catalyst and a method not using a catalyst. In either case, the reaction is carried out under the condition of maintaining a liquid phase. There is a need. When no catalyst is used, for example, in US Pat. No. 2,775,606, benzene, dichlorosilane, and trichlorosilane are mentioned as a synthesis example of phenyldichlorosilane (the coexistence of trichlorosilane gives a higher yield). It is described that the reaction is carried out without a catalyst, but the reaction temperature is as high as 400 ° C., and it is presumed that the reaction pressure needs to be as high as 200 kg / cm 2 or more in order to maintain the liquid phase. Such high temperature and high pressure reaction conditions are by no means an advantageous process in industrial practice. On the other hand, when a catalyst is used, a Lewis acid such as aluminum trichloride or boron trichloride is usually used as a catalyst, and the above-mentioned US Pat. No. 2,775,606 also has a synthesis example of phenyldichlorosilane. Have been described. However, although it seems that milder reaction conditions of lower temperature and lower pressure can be adopted by using the Lewis acid catalyst, the yield of the target phenyldichlorosilane as a final isolated product is uncatalyzed reaction. It is extremely low compared with the case of, and it is hard to say that it can be put to practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる問題にかんがみ、上記IV)のルイ
ス酸触媒を使用してアリールジハロシランを高収率で製
造する方法について鋭意研究を続けた。その結果、アリ
ール化合物とジハロシランよりルイス酸触媒の存在下に
生成するアリールジハロシランが、これを蒸留により他
の副生物と分離する過程に於て変質する為に低収率にし
か製造できない事実を見い出した。そこで、蒸留分離の
段階で、アリールジハロシランの変質を抑制する為の方
法を種々検討した結果、アリールジハロシランの合成に
於て触媒として用いたルイス酸化合物の金属原子と酸塩
基の相互作用を持ちうる特定のルイス塩基化合物を、ア
リール化合物とジハロシランの反応の後に共存させて蒸
留すれば高収率に目的のアリールジハロシランが製造し
得ることを見い出し、本発明を完成するに至った。
In view of such a problem, the present inventors continued the earnest research on a method for producing an aryldihalosilane in a high yield using the Lewis acid catalyst of the above IV). As a result, the fact that the aryldihalosilane formed in the presence of a Lewis acid catalyst from the aryl compound and dihalosilane is modified in the process of separating it from other by-products by distillation and can be produced only in a low yield Found out. Therefore, as a result of investigating various methods for suppressing the alteration of aryldihalosilane at the stage of distillation separation, it was found that the metal atom of the Lewis acid compound used as a catalyst in the synthesis of aryldihalosilane and the acid-base It was found that the target aryldihalosilane can be produced in a high yield by distilling a specific Lewis base compound which can have an action after the reaction of the aryl compound and the dihalosilane, and thus completed the present invention. It was

すなわち本発明は、アリール化合物とジハロシランとを
ルイス酸触媒の存在下に反応させた生成物に、該触媒の
金属原子と酸塩基の相互作用を有し且つチツ素子,リン
原子,イオウ原子の少なくとも一つを含有するルイス塩
基化合物を共存させて蒸留分離することを特徴とする高
収率に目的のアリールジハロシランを製造する方法であ
る。
That is, the present invention provides a product obtained by reacting an aryl compound and a dihalosilane in the presence of a Lewis acid catalyst, which has an interaction between a metal atom of the catalyst and an acid-base and at least a titanium element, a phosphorus atom, and a sulfur atom. A method for producing a target aryldihalosilane in a high yield, which is characterized in that a Lewis base compound containing one is coexistent and is separated by distillation.

本発明に於いて、ルイス酸触媒の存在下でのアリール化
合物とジハロシランとの反応は、従来公知の方法がその
まま好適に採用しうる。すなわち、アリール化合物して
は芳香族環中に少なくとも一つの核置換水素原子を有す
れば基本的に問題ないが、特にベンゼン,トルエンやエ
チルベンゼンに代表させるアルキルベンゼン,クロルベ
ンゼンやフルオルベンゼンに代表されるハロゲン化ベン
ゼンが好適である。この他ナフタレン,アントラセン,
ビフエニル,ジフエニルエーテル等のベンゼン環を二つ
以上有する化合物あるいはそれらのアルキルおよび/又
はハロゲン誘導体も用いうる。ジハロシランとしては、
ジクロルシランが最も好適であるが、ジブロムシラン,
ジフルオルシランあるいはクロルブロムシラン,クロル
フルオルシラン等の異種のハロゲン原子を含むジハロシ
ランも用いうる。また、しばしばトリハロシランの共存
が効果的であるが、この場合はトリクロルシラン,トリ
ブロムシラン,トリフルオルシラン等が好適に採用され
る。ルイス酸触媒としては、従来公知の金属ハロゲン化
ルイス化合物が好適であり、特に本反応にとっては三塩
化ホウ素,三フツ化ホウ素の如きトリハロゲン化ホウ素
や、三塩化アルミニウム,三臭化アルミニウムの如きト
リハロゲン化アルミニウムあるいは五塩化アンチモンや
五臭化アンチモンの如きペンタハロゲン化アンチモンが
効果的な触媒として用いられる。
In the present invention, for the reaction between the aryl compound and the dihalosilane in the presence of the Lewis acid catalyst, a conventionally known method can be suitably adopted as it is. That is, as an aryl compound, there is basically no problem as long as it has at least one nuclear-substituted hydrogen atom in the aromatic ring, but it is typically represented by benzene, alkylbenzene represented by toluene or ethylbenzene, chlorobenzene or fluorobenzene. Preferred are halogenated benzenes. Naphthalene, anthracene,
A compound having two or more benzene rings such as biphenyl and diphenyl ether, or an alkyl and / or halogen derivative thereof can also be used. As dihalosilane,
Most preferred is dichlorosilane, but dibromosilane,
A dihalosilane containing different halogen atoms such as difluorosilane or chlorobromosilane and chlorofluorosilane can also be used. Further, coexistence of trihalosilane is often effective, but in this case, trichlorosilane, tribromosilane, trifluorosilane and the like are preferably adopted. As the Lewis acid catalyst, conventionally known metal halide Lewis compounds are suitable, and particularly for this reaction, triboron halides such as boron trichloride and boron trifluoride, and aluminum trichloride and aluminum tribromide. Aluminum trihalides or antimony pentahalides such as antimony pentachloride and antimony pentabromide are used as effective catalysts.

反応の方法は、一般に耐圧オートクレーブ中に原料のア
リール化合物とジハロシラン(および必要あればトリハ
ロシラン)および触媒のルイス酸化合物を仕込んで加熱
攪拌するバツチ反応方式が好適に採用されるが、上記の
原料と触媒をそれぞれ独立に又は混合体として反応管中
を流通させながら反応させる流通反応方式も採用しう
る。原料の組成は〔アリール化合物〕/〔ジハロシラ
ン〕のモル比として0.3〜20が採用しうるが、通常1
〜10が好ましい。トリハロシランの共存はしばしば効
果的であるが、その場合は〔トリハロシラン〕/〔ジハ
ロシラン〕のモル比として0.1〜10が採用でき、通常
1〜5が効果的であることが多い。触媒のルイス酸化合
物の濃度は、アリール化合物の種類によってもその最適
値が異なるが、仕込原料の総重量に対し0.001〜10重
量%が採用され、通常は0.01〜5重量%が好ましい。反
応温度は100〜500℃が採用しうるが、通常130
〜300℃が好ましい。反応圧力は数〜100kg/cm2
間が一般的であるが、液相を保つ圧力である必要から、
特に流通反応方式にあっては低圧条件側で気相反応とな
らない注意が肝要である。しかし高圧については、例え
ば100kg/cm2を越える条件であっても好適に採用しう
る。
As a reaction method, generally, a batch reaction method in which an aryl compound as a raw material, a dihalosilane (and trihalosilane if necessary) and a Lewis acid compound as a catalyst are charged into a pressure autoclave and heated and stirred is preferably used. It is also possible to employ a flow reaction system in which the catalyst and the catalyst are reacted independently or as a mixture while flowing through the reaction tube. The raw material composition may be 0.3 to 20 as the molar ratio of [aryl compound] / [dihalosilane], but is usually 1
-10 is preferable. Coexistence of trihalosilane is often effective, but in that case, a molar ratio of [trihalosilane] / [dihalosilane] of 0.1 to 10 can be adopted, and 1 to 5 is usually effective. The optimum concentration of the Lewis acid compound in the catalyst varies depending on the kind of the aryl compound, but 0.001 to 10% by weight is adopted, and usually 0.01 to 5% by weight is preferable with respect to the total weight of the charged raw materials. The reaction temperature may be 100 to 500 ° C., but is usually 130.
~ 300 ° C is preferred. The reaction pressure is generally between several and 100 kg / cm 2 , but since it is necessary to maintain the liquid phase,
Especially in the flow reaction system, it is important to note that the gas phase reaction does not occur on the low pressure side. However, the high pressure can be preferably used even under the condition of exceeding 100 kg / cm 2 , for example.

本発明の上記したアリール化合物とジハロシランとの反
応を終えた後、反応液中には目的とするアリールジハロ
シランの他に種々の副生物、例えばアリールトリハロシ
ランやジアリールジハロシランが混在する。また、触媒
として三塩化ホウ素を使用したとき、実はこの大部分が
ベンゼンと複雑に反応して生成する高沸点化合物として
混在しており(Journal of Organometallic Chemistr
y,145,307−314(1978)には、こうし
たホウ素の化合物についての記載がなされている)、こ
うした情況は他の触媒化合物の場合も同様である。そこ
で、このような反応後の液から目的のアリールジハロシ
ランを分離することが必要となってくる。この分離方法
としては分別カラム法も採用しうるが、蒸留操作が最も
一般的であり、かつ効率的である。しかるに、既に述べ
た如く、単に上記の反応液を蒸留した場合には、アリー
ルジハロシランが蒸留の加熱や減圧という操作の過程に
於て変質し、その量を著しく減じてしまう。本発明者ら
は、蒸留前後の液の精密なるマスバランスをガスクロマ
トグラフイー分析により調べた結果、上記した如きアリ
ールジハロシランの変質が2ArSi(H)X→Ar
SiX+HSiXの式に示される不均化反応に起
因し、一旦生成したアリールジハロシランがジアリール
ジハロシランとジハロシランへ経時的に変化することを
見い出した。しかし、アリールジハロシランは本来単独
では加熱や減圧の条件下で上記の如き不均化反応を受け
ぬものである。したがって、前段階のアリール化合物と
ジハロシランの反応に使われたルイス酸触媒が複雑な高
沸点化合物に変化した後、上記の不均化反応の触媒とし
て作用したものと推測された。したがって、上記の蒸留
に先だって、これらの触媒化合物の不均化作用を抑制し
うる化合物を共存させ、しかる後に蒸留を行なえば目的
のアリールジハロシランが高収率に製造しうると期待さ
れた。そのような化合物として種々の検討を行なったと
ころ、上記触媒化合物中の金属原子と酸塩基の相互作用
を有し且つチツ素原子,リン原子,イオウ原子の少なく
とも一つを含有するルイス塩基化合物が有効であること
が判明した。中でもリン原子を含有する化合物は特に効
果的であった。
After the reaction of the above-mentioned aryl compound of the present invention with dihalosilane is completed, various by-products such as aryltrihalosilane and diaryldihalosilane are mixed in the reaction solution in addition to the intended aryldihalosilane. Moreover, when boron trichloride is used as a catalyst, in reality, most of this is mixed as a high-boiling compound that is produced by complex reaction with benzene (Journal of Organometallic Chemistr
y, 145, 307-314 (1978) describes such a boron compound), and the situation is the same for other catalyst compounds. Therefore, it becomes necessary to separate the target aryldihalosilane from the liquid after such reaction. A fractionation column method can also be adopted as this separation method, but the distillation operation is the most general and efficient. However, as described above, when the above reaction solution is simply distilled, the aryldihalosilane is deteriorated in the course of the operation of heating and pressure reduction in the distillation, and the amount thereof is significantly reduced. As a result of examining the precise mass balance of the liquid before and after the distillation by gas chromatography analysis, the present inventors found that the alteration of aryldihalosilane as described above was 2ArSi (H) X 2 → Ar 2
It was found that the aryldihalosilane, which was once formed, was changed into diaryldihalosilane and dihalosilane over time due to the disproportionation reaction represented by the formula of SiX 2 + H 2 SiX 2 . However, aryldihalosilanes do not inherently undergo the above disproportionation reaction under the conditions of heating and reduced pressure. Therefore, it is presumed that the Lewis acid catalyst used for the reaction of the aryl compound and dihalosilane in the previous step changed into a complex high boiling point compound and then acted as a catalyst for the above disproportionation reaction. Therefore, prior to the above-mentioned distillation, a compound capable of suppressing the disproportionation action of these catalyst compounds was allowed to coexist, and if the distillation was carried out thereafter, it was expected that the intended aryldihalosilane could be produced in a high yield. . As a result of various studies as such a compound, a Lewis base compound having an interaction between a metal atom and an acid base in the catalyst compound and containing at least one of a titanium atom, a phosphorus atom and a sulfur atom was found. Proved to be effective. Among them, the compound containing a phosphorus atom was particularly effective.

上記の化合物として用いうるものを以下述べる。まず、
チツ素原子を含む化合物としては、効果的なものとして
各種のアミン類を掲げることができる。例えば、エチル
アミン,プロピルアミン,n−ブチルアミン,n−アミ
ルアミン等の第一級アミン類,ジエチルアミン,ジプロ
ピルアミン,ジ−n−ブチルアミン,ジ−n−アミルア
ミン等の第二級アミン類,トリエチルアミン,トリプロ
ピルアミン,トリ−n−ブチルアミン,トリ−n−アミ
ルアミン,N,N−ジメチルシクロヘキシルアミン,
N,N−ジメチルアニリン,N,N−ジメチルベンジル
アミン等の第三級アミン類およびピリジン,2−メチル
ピリジン,ピペリジン,N−メチルピペリジン等の環状
アミン類,エチレンジアミン,ヘキサメチレンテトラミ
ン,イミダゾール,アンバーリストA−21のようなア
ミノ基を2つ以上有するポリアミン類が用いうる。この
他N,N−ジメチルアセトアミド,2−メチルプロパン
アミド,2−ピロリドン,2−ピペリドン,N,N−ジ
メチルシアナミド等のアミド類やシツフ塩基であるN−
置換イミン類等も用いうる。次にリン原子を含む化合物
を掲げると、例えば、メチルホスフイン,ジ−n−ブチ
ルホスフイン,トリ−n−ブチルホスフイン,トリフエ
リニルホスフイン,ビスジフエニルホスフイノブタン等
のホスフイン類,トリエチルホスフインオキシド,トリ
−n−ブチルホスフインオキシド,トリフエニルホスフ
インオキシド等のホスフインオキシド類,トリプロピル
ホスフアイト,トリ−n−ブチルホスフアイト,トリフ
エニルホスフアイト等のホスフアイト類,その他三塩化
リン,オキシ塩化リン,ジエチルホスフイニツククロリ
ド,ジエチルフエニルホスホナイト,フエニルホスホナ
スジクロリド,メチルホスホニツクジクロリド,メチル
ジメチルホスフイナイト,ジメチルホスフイナスクロリ
ド等が用いうる。また、トリス(2−シアノエチル)ホ
スフインやヘキサメチルホスホン酸トリアミドのように
リン原子とチツ素原子をともに含む化合物も用いうる。
最後にイオウ原子を含む化合物を掲げると、例えば、n
−ブチルメルカプタン,ベンジルメルカプタン,フエニ
ルメルカプタン等のメルカプタン類,ジ−n−ブチルス
ルフイド,ジベンジルスルフイド,ジフエニルスルフイ
ド等のスルフイド類,ジ−n−ブチルスルホキシド,ジ
ベンジルスルホキシド,ジフエニルスルホキシド等のス
ルホキシド類,その他ジフエニルジスルフイド,チオベ
ンゾフエノン,チアシクロブタン,S−フエニルチアベ
ンゼン等が用いうる。また、ジチオ尿素やチオシアヌー
ル酸のようにイオウ原子とチツ素原子をともに含む化合
物,トリフエニルホスフインスルフイドのようにイオウ
原子とリン原子をともに含む化合物等も用いうる。
What can be used as the above compound is described below. First,
As the compound containing a titanium atom, various amines can be cited as effective compounds. For example, primary amines such as ethylamine, propylamine, n-butylamine and n-amylamine, secondary amines such as diethylamine, dipropylamine, di-n-butylamine, di-n-amylamine, triethylamine and triethylamine. Propylamine, tri-n-butylamine, tri-n-amylamine, N, N-dimethylcyclohexylamine,
Tertiary amines such as N, N-dimethylaniline, N, N-dimethylbenzylamine and cyclic amines such as pyridine, 2-methylpyridine, piperidine and N-methylpiperidine, ethylenediamine, hexamethylenetetramine, imidazole, amber Polyamines having two or more amino groups, such as List A-21, can be used. In addition to these, amides such as N, N-dimethylacetamide, 2-methylpropanamide, 2-pyrrolidone, 2-piperidone, N, N-dimethylcyanamide and N- which is a Schiff base.
Substituted imines may also be used. Next, examples of compounds containing a phosphorus atom include, for example, phosphines such as methylphosphine, di-n-butylphosphine, tri-n-butylphosphine, triphenylinphosphine, and bisdiphenylphosphinobutane. Triethyl phosphine oxide, tri-n-butyl phosphine oxide, triphenyl phosphine oxide and other phosphine oxides, tripropyl phosphite, tri-n-butyl phosphite, triphenyl phosphite and other phosphite, and other three Phosphorus chloride, phosphorus oxychloride, diethylphosphinic chloride, diethylphenylphosphonite, phenylphosphonasdichloride, methylphosphonic dichloride, methyldimethylphosphinite, dimethylphosphinus chloride and the like can be used. Also, a compound containing both a phosphorus atom and a titanium atom, such as tris (2-cyanoethyl) phosphine or hexamethylphosphonic acid triamide, can be used.
Finally, a compound containing a sulfur atom is, for example, n
-Mercaptans such as butyl mercaptan, benzyl mercaptan, phenyl mercaptan, sulfides such as di-n-butyl sulfide, dibenzyl sulfide, diphenyl sulfide, di-n-butyl sulfoxide, dibenzyl sulfoxide, diphenyl Sulfoxides such as sulfoxide, diphenyldisulfide, thiobenzophenone, thiacyclobutane, S-phenylthiabenzene and the like can be used. Further, compounds such as dithiourea and thiocyanuric acid containing both a sulfur atom and a titanium atom, and compounds such as triphenylphosphine sulfide containing both a sulfur atom and a phosphorus atom may be used.

上記のチツ素原子,リン原子,イオウ原子の少なくとも
一つを含むルイス塩基化合物は、以下の如く使用するこ
とが好ましい。まず用いる上記ルイス塩基化合物は、前
段階のアリール化合物とジハロシランとの反応の終了後
に反応生成液中に加える必要がある。該反応の前に、ル
イス酸触媒と同時にルイス塩基化合物を共存させると前
段階の反応そのものが進行しなくなる為である。これら
のルイス塩基化合物としては、すでに述べた如く多くの
化合物が用いうるが、蒸留に際し目的のアリールジハロ
シランとの分離が困難となるような化合物、とりわけ沸
点差の小さい化合物の使用を避けることが当然のことな
がら好ましい。この点を注意すれば、共存させるルイス
塩基化合物は何も一種類である必要はなく、同時に二種
以上の化合物を共存させることもできる。これらのルイ
ス塩基化合物の使用量は、その化合物によっても異なる
が、通常はルイス酸触媒の金属原子1個に対し、ルイス
塩基化合物中のチツ素原子,リン原子,イオウ原子の総
和が0.3〜3.0個が好ましく、更に0.5〜2.0個がより効果
的な場合が多い。ただ、ここでルイス塩基化合物のルイ
ス塩基性が、上記のチツ素原子,リン原子,イオウ原子
上以外に酸素原子上にも存する化合物の場合は、より少
量の使用量でも十分効果がありうる。
The Lewis base compound containing at least one of titanium atom, phosphorus atom and sulfur atom is preferably used as follows. The Lewis base compound used first needs to be added to the reaction product solution after the completion of the reaction between the aryl compound and dihalosilane in the previous step. This is because if the Lewis base compound is allowed to coexist with the Lewis acid catalyst before the reaction, the reaction itself in the previous step does not proceed. As these Lewis base compounds, many compounds can be used as described above, but avoid the use of a compound that makes it difficult to separate from the target aryldihalosilane during distillation, especially a compound having a small boiling point difference. Is, of course, preferable. If this point is noted, it is not necessary that the Lewis base compound to coexist is one kind, and two or more kinds of compounds can coexist at the same time. The amount of these Lewis base compounds used varies depending on the compound, but normally, the sum of titanium atom, phosphorus atom, and sulfur atom in the Lewis base compound is 0.3 to 3.0 per metal atom of the Lewis acid catalyst. Individuals are preferable, and 0.5 to 2.0 are often more effective. However, in the case where the Lewis basicity of the Lewis basic compound is present on the oxygen atom in addition to the above-mentioned titanium atom, phosphorus atom, and sulfur atom, a smaller amount of the compound can be sufficiently effective.

蒸留の方法は従来公知の方法が好適に採用される。単蒸
留,精密蒸留,薄膜蒸留等その蒸留の形式はバツチ式,
連続式のいずれを問わず、どれも任意に選択できる。蒸
留の温度は、目的のアリールジハロシランの種類によっ
ても、また蒸留の圧力によっても異なるが、一般に室温
から350℃までの間で選択される。蒸留の効率や分触
による収率低下等を防止する意味からは、50℃〜30
0℃との間で実施するのが好ましい。蒸留の圧力は一般
に数気圧から10-3Torr程度までが採用されるが、通常
は大気圧から10-2Torr程度までが好ましい。
A conventionally known method is preferably adopted as the distillation method. Simple distillation, precision distillation, thin-film distillation, etc.
Regardless of the continuous type, any of them can be arbitrarily selected. The temperature of distillation varies depending on the kind of the target aryldihalosilane and the pressure of distillation, but is generally selected from room temperature to 350 ° C. From the standpoint of preventing the efficiency of distillation and the decrease in yield due to contact, etc., 50 ° C to 30 ° C.
Preference is given to working between 0 ° C. The distillation pressure is generally from several atm to about 10 -3 Torr, but usually from atmospheric pressure to about 10 -2 Torr is preferable.

〔発明の効果〕〔The invention's effect〕

本発明によれば、後記する実施例および比較例からも明
らかなように、目的とするアリールジハロシランをジハ
ロシラン基準の収率として約10倍にも増大する結果を
得ることが出来る。
According to the present invention, as is apparent from Examples and Comparative Examples described later, it is possible to obtain the result that the yield of the target aryldihalosilane can be increased by about 10 times as the yield based on dihalosilane.

〔実施例〕〔Example〕

次に本発明を実施例により説明し、更にその効果を明ら
かにする目的から比較例も掲げるが、本発明はこれらの
実施例に限定されるものではない。
Next, the present invention will be described with reference to examples and comparative examples will be given for the purpose of clarifying the effects thereof, but the present invention is not limited to these examples.

実施例1 電磁誘導式攪拌機を備えた内容積約1のステンレス製
オートクレーブに、あらかじめ脱水蒸留したベンゼン31
2.4g(4.0モル)とジクロルシラン50.4g(0.50モ
ル)、トリクロルシラン141.9g(1.05モル)および触
媒の三塩化ホウ素0.428g(3.65ミリモル)を入れ、1
70℃にて4時間反応させた。圧力は最終的に28kg/c
m2まで上昇し、室温まで冷却すると15kg/cm2であっ
た。
Example 1 Benzene 31 which had been dehydrated and distilled beforehand was placed in a stainless steel autoclave having an internal volume of about 1 equipped with an electromagnetic induction stirrer.
2.4 g (4.0 mol), 50.4 g (0.50 mol) of dichlorosilane, 141.9 g (1.05 mol) of trichlorosilane and 0.428 g (3.65 mmol) of boron trichloride as a catalyst were added.
The reaction was carried out at 70 ° C for 4 hours. The final pressure is 28 kg / c
When the temperature rose to m 2 and was cooled to room temperature, it was 15 kg / cm 2 .

上記の反応で得られた反応生成液497gを内容積1
のガラス製フラスコに移しかえ、ここにトリフエニルホ
スフイン1.0g(3.81ミリモル)を加えた後、還流調節
器を備えた充填塔式の精留器にて、浴温を80℃に保持
し、減圧度を徐々に上昇させる方法にて蒸留分離を行な
った。この結果、フエニルジクロルシランの含有率が9
7%の精留液49.2gを得た(ジクロルシラン基準の収率
として53.9%)。なお、この液中に含まれる不純物はほ
とんどがフエニルトリクロルシランであり、その他わず
かにジフエニルジクロルシランが含まれていた。
497 g of the reaction product solution obtained by the above reaction was added to the internal volume 1
After transferring to a glass flask of No. 1, 1.0 g (3.81 mmol) of triphenylphosphine was added thereto, the bath temperature was kept at 80 ° C. with a packed column type rectifier equipped with a reflux controller, Distillation separation was performed by a method of gradually increasing the degree of vacuum. As a result, the content ratio of phenyldichlorosilane was 9
49.2 g of a 7% rectified liquid was obtained (53.9% as the yield based on dichlorosilane). Most of the impurities contained in this solution were phenyltrichlorosilane, and a small amount of diphenyldichlorosilane was contained in the other impurities.

比較例 実施例1と全く同じ方法によりベンゼンとジクロルシラ
ンの反応を行ない、反応生成液499gを得た。この液
を1のガラス製フラスコに入れ、ここに何ら添加物を
加えることなく、そのまま実施例1と同様の方法にて蒸
留分離を行なった。この結果、フエニルジクロシランを
主成分とする液6.4gを得たが、ガスクロマトグラフイ
ーの分析によると、この蒸留液中に含まれるフエニルジ
クロルシランは5.2g(純度81.3%,ジクロルシラン基
準の収率として5.9%)で他は大部分フエニルトルクロ
ルシランであった。なお、1のフラスコ中の残渣約3
8gを分析してみたが、この中に含まれるフエニルジク
ロルシランは0.3gにすぎず、大部分はジフエニルジク
ロルシランであった。
Comparative Example The reaction between benzene and dichlorosilane was carried out in the same manner as in Example 1 to obtain 499 g of a reaction product liquid. This liquid was placed in a glass flask No. 1 and distilled and separated in the same manner as in Example 1 without adding any additives. As a result, 6.4 g of a liquid containing phenyldichlorosilane as a main component was obtained. According to the analysis by gas chromatography, phenyldichlorosilane contained in this distillate was 5.2 g (purity 81.3%, dichlorosilane standard). The yield was 5.9%), and the remainder was mostly phenyltoluchlorosilane. In addition, the residue in the flask of 1 is about 3
When 8 g was analyzed, the amount of phenyldichlorosilane contained therein was only 0.3 g, and most of the phenyldichlorosilane was diphenyldichlorosilane.

実施例2 実施例1と全く同様の方法によりベンゼンとジクロルシ
ランの反応を行ない、反応生成液496gを得た。この
液を1のガラス製フラスコに入れ、この中にトリ−n
−ブチルアミン0.7g(3.78ミリモル)を加えた後、実
施例1と同様の方法にて蒸留分離を行なった。この結
果、純度96%のフエニルジクロルシラン44.3gを得た
(ジクロルシラン基準の収率として48.0%)。なお、こ
の液中に含まれる不純物の大部分はフエニルトリクロル
シランであった。
Example 2 Benzene and dichlorosilane were reacted in the same manner as in Example 1 to obtain 496 g of a reaction product liquid. This solution was placed in a glass flask of 1, and tri-n
After adding 0.7 g (3.78 mmol) of -butylamine, distillation separation was carried out in the same manner as in Example 1. As a result, 44.3 g of phenyldichlorosilane having a purity of 96% was obtained (yield based on dichlorosilane was 48.0%). Most of the impurities contained in this solution were phenyltrichlorosilane.

実施例3 実施例1と全く同様の方法によりベンゼンとジクロルシ
ランの反応を行ない、反応生成液498gを得た。この
液を1のガラス製フラスコに入れ、この中にジフエニ
ルスルフイド0.7g(3.76ミリモル)を加えた後、実施
例1と同様の方法にて蒸留分離を行なった。この結果、
純度93%のフエニルジクロルシラン40.7gを得た(ジ
クロルシラン基準の収率として42.7%)。なお、この液
中に含まれる不純物の大部分はフエニルトリクロルシラ
ンであった。
Example 3 Benzene and dichlorosilane were reacted in the same manner as in Example 1 to obtain 498 g of a reaction product liquid. This solution was placed in a glass flask No. 1, and 0.7 g (3.76 mmol) of diphenyl sulfide was added to the flask, followed by distillation separation in the same manner as in Example 1. As a result,
40.7 g of phenyldichlorosilane having a purity of 93% was obtained (42.7% as a yield based on dichlorosilane). Most of the impurities contained in this solution were phenyltrichlorosilane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アリール化合物とジハロシランとをルイス
酸触媒の存在下に反応させた生成物に、該触媒の金属原
子と酸塩基の相互作用を有し且つチツ素原子,リン原
子,イオウ原子の少なくとも一つを含有するルイス塩基
化合物を共存させて蒸留分離することを特徴とするアリ
ールジハロシランの製造方法
1. A product obtained by reacting an aryl compound with a dihalosilane in the presence of a Lewis acid catalyst, which has an interaction between a metal atom of the catalyst and an acid-base and which contains a titanium atom, a phosphorus atom or a sulfur atom. A method for producing an aryldihalosilane, characterized in that a Lewis base compound containing at least one is coexistent and separated by distillation.
JP61070900A 1986-03-31 1986-03-31 Method for producing aryldihalosilane Expired - Lifetime JPH0631271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61070900A JPH0631271B2 (en) 1986-03-31 1986-03-31 Method for producing aryldihalosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61070900A JPH0631271B2 (en) 1986-03-31 1986-03-31 Method for producing aryldihalosilane

Publications (2)

Publication Number Publication Date
JPS62230793A JPS62230793A (en) 1987-10-09
JPH0631271B2 true JPH0631271B2 (en) 1994-04-27

Family

ID=13444867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61070900A Expired - Lifetime JPH0631271B2 (en) 1986-03-31 1986-03-31 Method for producing aryldihalosilane

Country Status (1)

Country Link
JP (1) JPH0631271B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206875A1 (en) 2014-04-09 2015-10-15 Wacker Chemie Ag Process for cleaning technical parts of metal halides
DE102014206874A1 (en) * 2014-04-09 2015-10-15 Wacker Chemie Ag Distillation of silane mixtures in the presence of a nitrile or amine

Also Published As

Publication number Publication date
JPS62230793A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
JPH069655A (en) Production of organosilane from polysilane
US3340283A (en) Preparation of organotin-trihalides
US3099670A (en) Addition of silicon hydrides to aliphatically unsaturated organic compounds
JPS60222493A (en) Manufacture of dimethyldichlorosilane
EP0082324B1 (en) Producing oximinosilanes, oximinogermanes and oximinostannanes
JP4387004B2 (en) Method for producing alkylhalosilane
US5629439A (en) Method for preparation of allylsilanes
US3128297A (en) Process for silicon-halogen bond redistribution
EP0083374B1 (en) Novel process for producing silicon hydride
US5756796A (en) Method for preparation of alkenylsilanes
US3660443A (en) Process for the alkylation of halogenated silicon and tin compounds
Becker et al. Hypervalent silicon hydrides: evidence for their intermediacy in the exchange reactions of di-and tri-hydrogenosilanes catalysed by hydrides (NaH, KH and LiAlH4)
JPH0631271B2 (en) Method for producing aryldihalosilane
EP0298487B1 (en) Method for the production of tertiary-alkyldimethylhalosilane
EP0656363A1 (en) Process for preparing a silane having a tertiary hydrocarbon group at the alpha position thereof
EP0771804B1 (en) Process for heat-fractionation or organosilanes
JP2551901B2 (en) Contact alkylation method
JP2002536380A (en) Constrained geometry metallocene catalyst complex
CN106103454B (en) The preparation of trialkyl gallium compound with and application thereof
US3441584A (en) Process for the separation of organotrichlorosilanes
US6077967A (en) Method for obtaining organosilanes using a redistribution reaction
US2813887A (en) Preparation of arylhalosilanes
JPS62263189A (en) Production of diaryldihalosilane
JP2019182793A (en) Method for producing halosilane compound having tertiary hydrocarbon group
EP0325248B1 (en) A process for the chlorodephenylation of phenylsilanes