JPH06312179A - Purified water sterilizing device and use thereof - Google Patents

Purified water sterilizing device and use thereof

Info

Publication number
JPH06312179A
JPH06312179A JP5103098A JP10309893A JPH06312179A JP H06312179 A JPH06312179 A JP H06312179A JP 5103098 A JP5103098 A JP 5103098A JP 10309893 A JP10309893 A JP 10309893A JP H06312179 A JPH06312179 A JP H06312179A
Authority
JP
Japan
Prior art keywords
water
mode
voltage
signal
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5103098A
Other languages
Japanese (ja)
Other versions
JP3080808B2 (en
Inventor
Motoharu Sato
元春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP05103098A priority Critical patent/JP3080808B2/en
Publication of JPH06312179A publication Critical patent/JPH06312179A/en
Application granted granted Critical
Publication of JP3080808B2 publication Critical patent/JP3080808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the treatment capacity of raw water while ensuring the safety as drinking water and to inexpensively purify the raw water in an energy- saving manner by preventing the overheating of an adsorbing part by a temp. detection means and an oxygen detection means when a usual time and a regeneration time are repeated at a definite interval and preferentially achieving the changeover to a sterilizing mode. CONSTITUTION:When the temp. of an adsorbing part 20 detected by a temp. detection means 18 exceeds an upper limit value during a period when a usual time and a regeneration time are repeated at a definite interval, a signal is sent to a changeover means 29 from a control unit 30 in order to return the temp. of the adsorbing part 20 to a set region to control a power supply circuit 28. When the temp. of the adsorbing part 20 falls below a lower limit value, the power supply circuit 28 is changed over to a sterilizing mode and AC voltage is allowed to flow to the adsorbing part 20 to generate heat in the adsorbing part 20 to raise the temp. of the adsorbing part 20. Since the concn. of dissolved oxygen in the treated water passing through the adsorbing part 20 falls below an objective value when a detection signal is sent out from an oxygen detection means 19, the sterilizing mode is taken in preference to all of processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水や地下水等の原
水を浄化殺菌して一般家庭用及び業務用の飲料水として
供給する浄水殺菌装置及びその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification apparatus for purifying and sterilizing raw water such as tap water or ground water and supplying it as drinking water for general households and business and a method of using the same.

【0002】[0002]

【従来の技術】この種浄水殺菌装置において原水の殺菌
に関する最近の技術動向としては、中空糸膜モジュール
(市販製品)を用いて細菌等の微生物を殺菌し繁殖を抑
制して制菌する装置、原水を電気分解して殺菌する装
置、そして適量に発生させた塩素で殺菌を行う装置など
が知られている。
2. Description of the Related Art Recent technical trends relating to sterilization of raw water in this type of water purification apparatus include an apparatus for sterilizing microorganisms such as bacteria by using a hollow fiber membrane module (commercially available product) to suppress breeding and to control bacteria. A device for sterilizing raw water by electrolysis and a device for sterilizing with an appropriate amount of chlorine are known.

【0003】一般に、水処理装置としての浄水装置の場
合、水道水や地下水等の原水に含まれる次亜塩素酸(C
lO-)や有機塩素系化合物などの残留塩素成分、かび
臭、トリハロメタン、或いは一般雑菌や色素は、吸着剤
や殺菌装置を通過させて吸着除去される。経時使用によ
って、活性炭及びその収納槽壁面にはこうして吸着され
た吸着物質によって、藻類、細菌や微生物が繁殖するた
め、フィルタの負荷が増したり、装置寿命を低下させた
りする。吸着剤は吸着物質によってその機能が低下する
ため、吸着物質を脱離して吸着剤の再生を図り、また種
々の殺菌手段を装置に組み込むことで、浄水効率の向
上、装置のメンテナンスや保全に対応している。
Generally, in the case of a water purification device as a water treatment device, hypochlorous acid (C) contained in raw water such as tap water or ground water is used.
lO -) and residual chlorine components such as organic chlorine compounds, musty odor, trihalomethane, or general bacteria and the dye is adsorbed and removed by passing through an adsorbent or sterilizer. With the use over time, algae, bacteria, and microorganisms propagate due to the adsorbed substances adsorbed on the activated carbon and the wall surface of the storage tank in this manner, which increases the load on the filter and shortens the life of the device. Since the function of the adsorbent decreases depending on the adsorbed substance, the adsorbent is desorbed to regenerate the adsorbent, and various sterilization means are incorporated into the device to improve water purification efficiency and support maintenance and maintenance of the device. is doing.

【0004】[0004]

【発明が解決しようとする課題】ところで、中空糸膜モ
ジュールによる殺菌装置の場合、長期使用によって原水
中の不純物で糸膜モジュールに目詰まりが生じ易く、総
じて処理能力が低い。電解による殺菌装置では電力消費
等の経済性の面で問題がある。また、塩素を使用した殺
菌装置の場合、安全性を配慮して好適な塩素濃度にコン
トロールするための制御や管理が困難である。このよう
に、従来から知られてきた殺菌方法ではそれぞれに解決
すべき問題を残している。
By the way, in the case of a sterilizer using a hollow fiber membrane module, the fiber membrane module is apt to be clogged with impurities in the raw water due to long-term use, and the treatment capacity is generally low. Electrolytic sterilizers have problems in terms of economy such as power consumption. Further, in the case of a sterilizer using chlorine, it is difficult to control and manage it in order to control it to a suitable chlorine concentration in consideration of safety. As described above, the conventionally known sterilization methods each have a problem to be solved.

【0005】本発明の目的は、飲料水としての安全性を
確保したうえで原水の処理能力を高め、しかも省電力化
が可能で経費的にも有利な浄水装置を提供することにあ
る。
An object of the present invention is to provide a water purification apparatus which secures safety as drinking water, enhances the treatment capacity of raw water, can save power, and is advantageous in terms of cost.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明による請求項1の浄水殺菌装置は、所要形状
に成形された導電性活性炭による吸着部を水槽内に配置
して、給水弁から水槽内に導入された原水を吸着部で浄
化殺菌して使用に供するとき、通常時は使用不使用を繰
り返すことによって原水が吸着部に通水しもしくは停水
し、吸着部の再生時は排水弁から水槽内及び吸着部内の
原水を排水する装置において、一部を導電質で多数の通
水孔を設けた導電管部として吸着部の中心に挿通させた
注出管と、再生時に吸着部を発熱させて原水中の細菌等
を殺菌する殺菌モードとしての電圧が印加される陰陽一
対の第1電極及び第2電極と、注出管の導電管部に設け
られて通常時は原水中の細菌等を捕捉及び繁殖抑制する
制菌モードとしての電圧が第1電極または第2電極のい
ずれか一方との間に印加される第3電極と、一定インタ
ーバルで繰り返す通常時及び再生時の各実行時間をカウ
ントするタイマー回路と、電圧を殺菌モードまたは制菌
モードに切り換える切換手段と、切換手段によって切り
換えられたとき殺菌モードまたは制菌モードに対応した
電圧を印加する電源回路と、吸着部の内部に設けられて
吸着部の温度を検出する温度検出手段と、吸着部の内部
または吸着部の原水流通下流側の出口端に設けられ、吸
着部を通過した処理水中の溶存酸素濃度が目標値を下回
ったときこれを検出する酸素検出手段と、タイマー回路
からのタイムアップ信号に基づいて給水弁、排水弁及び
切換手段に動作信号を送出すると共に、温度検出手段か
ら吸着部の温度が上下限値間の領域を外れたことの検出
信号が送出されたとき温度ベース優先モードの切換信号
を切換手段に送り、酸素検出手段から検出信号が送出さ
れたとき酸素ベース優先モードの切換信号を切換手段に
送る制御装置と、を備えた構成になっている。
In order to achieve this object, in the water purifying and sterilizing apparatus according to the first aspect of the present invention, an adsorbing section made of conductive activated carbon having a required shape is arranged in a water tank, and a water supply valve is provided. When purifying and sterilizing the raw water introduced into the water tank from the adsorber at the adsorption section before use, in normal times, the raw water passes through or stops at the adsorption section by repeated use and non-use. In a device that drains raw water in the water tank and in the adsorption section from the drain valve, a pouring tube inserted in the center of the adsorption section as a conductive tube section with a large number of water passage holes made of a conductive material, and adsorption during regeneration A pair of first and second electrodes to which a voltage is applied as a sterilization mode for sterilizing the bacteria in the raw water by sterilizing the parts, and the conductive pipe part of the spout pipe, which is normally provided in the raw water. As a bacteriostatic mode that captures and reproduces Pressure is applied between either the first electrode or the second electrode, a third electrode, a timer circuit that counts each execution time during normal and repetitive intervals, and a voltage in sterilization mode or Switching means for switching to the bacteriostatic mode, a power supply circuit for applying a voltage corresponding to the sterilization mode or the bacteriostatic mode when switched by the switching means, and temperature detection provided inside the adsorption part for detecting the temperature of the adsorption part Means, an oxygen detection means provided inside the adsorption part or at the outlet end of the adsorption part on the downstream side of the raw water flow of the adsorption part, for detecting when the dissolved oxygen concentration in the treated water passing through the adsorption part falls below a target value, and a timer. Based on the time-up signal from the circuit, an operation signal is sent to the water supply valve, drain valve, and switching means, and the temperature of the adsorption unit is controlled by the temperature detection means to indicate the region between the upper and lower limit values. A control signal for sending a switching signal for the temperature-based priority mode to the switching means when a detection signal indicating that the oxygen-based priority mode has been sent, and a switching signal for sending the switching signal for the oxygen-based priority mode to the switching means when a detection signal is sent from the oxygen detection means. It has a configuration including.

【0007】請求項2の浄水殺菌装置の使用方法は、通
常時と再生時とを一定のインターバルで繰り返すとき、
通常時は、制御装置からの制御信号で切換手段の切り換
えにより、電源回路によって微弱電圧を第1電極または
第2電極のいずれか一方と第3電極との間に印加する制
菌モード過程と、再生時は、制菌モード過程を終了した
ことのタイムアップ信号に基づく制御装置からの制御信
号により、給水弁を閉じて原水の水槽内導入を停止しか
つ排水弁を開いて水槽内及び吸着部内の原水を排出する
排水過程と、排水過程を終了したことのタイムアップ信
号に基づく制御装置からの制御信号で切換手段を切り換
え、電源回路によって吸着部の発熱が可能な電圧を第1
電極及び第2電極間に印加する殺菌モード過程と、から
なっている。
The method of using the water purification apparatus of claim 2 is that when normal time and regeneration are repeated at regular intervals,
Normally, a sterilization mode process in which a weak voltage is applied between one of the first electrode or the second electrode and the third electrode by the power supply circuit by switching the switching means by a control signal from the control device, At the time of regeneration, the water supply valve is closed to stop the introduction of raw water into the water tank and the drain valve is opened to open the water tank and the inside of the adsorption unit by the control signal from the controller based on the time-up signal indicating that the bacteriostatic mode process has been completed. Of the drainage process for discharging the raw water and the control signal from the control device based on the time-up signal indicating that the drainage process has been completed, the switching means is switched, and the power supply circuit sets the voltage at which the heat of the adsorption portion can be generated.
And a sterilization mode process applied between the electrode and the second electrode.

【0008】この通常時及び再生時によるインターバル
を繰り返す間に、吸着部の温度が上限値及び下限値間の
設定温度領域内に収まるよう、温度検出手段の検出信号
に基づいた制御装置からの切換信号で電源回路を制御
し、下限値を下回ったときはこの検出信号に基づいて電
源回路を殺菌モードに切り換える温度ベース優先モード
の過程と、酸素検出手段から検出信号が送出されたと
き、殺菌モードをすべての過程に優先させるモード切換
信号を切換手段に送る酸素ベース優先モードの過程と、
を割り込ませることができる。
During the normal and regenerating intervals, the control unit switches the temperature based on the detection signal of the temperature detecting means so that the temperature of the adsorption unit falls within the set temperature range between the upper limit value and the lower limit value. The power supply circuit is controlled by a signal, and when the lower limit value is exceeded, the process of temperature-based priority mode in which the power supply circuit is switched to the sterilization mode based on this detection signal and the sterilization mode when the detection signal is sent from the oxygen detection means. The oxygen-based priority mode process that sends a mode switching signal to the switching means, which prioritizes all processes.
Can be interrupted.

【0009】請求項3の使用方法では、制菌モードでは
微弱な直流電圧を、殺菌モードでは吸着部の発熱可能な
交流電圧または直流電圧を印加することができる。
In the method of use according to the third aspect, a weak DC voltage can be applied in the antibacterial mode, and an AC voltage or a DC voltage capable of generating heat in the adsorption section can be applied in the sterilization mode.

【0010】また、同じく請求項4の使用方法の場合、
通常時の使用中で原水が通水しているときは、制菌モー
ドの電圧印加をオフする制御も可能である。
Similarly, in the case of the method of use according to claim 4,
It is also possible to control to turn off the voltage application in the bacteriostatic mode when the raw water is flowing during normal use.

【0011】[0011]

【作用】請求項1、2の浄水殺菌装置と使用方法にあっ
ては、制御装置から切換手段に切換信号が送られ、第
1、第2及び第3の各電極のなかで選択された電極間に
電圧を印加する。通常時の段階で、第1電極及び第3電
極(または第2電極及び第3電極間)に微弱電圧を印加
することにより、原水中の細菌等を吸着部に捕捉させて
繁殖を抑える。再生時の段階では、吸着部の再生を行う
にあたり、タイムアップ信号に基づいた制御装置からの
動作信号で給水弁を閉じて原水供給を止め、排水弁を開
いて水槽内の原水を排水する。次いで、第1電極及び第
2電極間に電圧を印加して吸着部を発熱させ、通常時の
段階で吸着部に捕捉させた細菌等を殺菌する。
In the water purification apparatus and method of use according to claims 1 and 2, a switching signal is sent from the control device to the switching means and the electrode selected from the first, second and third electrodes. Apply voltage between them. By applying a weak voltage to the first electrode and the third electrode (or between the second electrode and the third electrode) at a normal stage, bacteria and the like in the raw water are trapped in the adsorption part to suppress the reproduction. At the stage of regeneration, when the adsorption unit is regenerated, the water supply valve is closed by the operation signal from the control device based on the time-up signal to stop the raw water supply, and the drain valve is opened to drain the raw water in the water tank. Next, a voltage is applied between the first electrode and the second electrode to heat the adsorption portion, and the bacteria and the like trapped in the adsorption portion at the normal stage are sterilized.

【0012】こうした通常時と再生時とを一定のインタ
ーバルで繰り返す間、温度検出手段から吸着部の温度が
上限値を上回ったとき、これを検出した温度検出手段か
らの信号に基づいて、吸着部の温度を設定領域に戻すた
めに(省電力と、吸着部の高温劣化防止)、制御装置か
ら切換手段に切換信号を送って電源回路を制御する。下
限値を下回ったときは、この検出信号に基づいて電源回
路を殺菌モードに切り換え、吸着部に交流電圧による電
流を流して発熱させ温度を上げる。
When the temperature of the adsorbing section exceeds the upper limit value from the temperature detecting means while repeating the normal time and the regenerating time at a constant interval, the adsorbing section is detected based on the signal from the temperature detecting means which detects this. In order to return the temperature of 1 to the set region (power saving and prevention of high temperature deterioration of the adsorption part), the control device sends a switching signal to the switching means to control the power supply circuit. When the temperature falls below the lower limit, the power supply circuit is switched to the sterilization mode based on this detection signal, and a current due to an AC voltage is passed through the adsorption section to generate heat and raise the temperature.

【0013】一方、酸素検出手段から検出信号が送出さ
れたとき、これは吸着部を通過した処理水中の酸素溶存
濃度が目標値を下回ったこと(好気性細菌等の微生物が
酸素を多く消費して発育、増殖したことを示す)である
から、そのとき仮に通常時の制菌モード過程が実行中で
あっても、また他の過程を実行中であっても、これらす
べての過程に優先して殺菌モードに切り換えるモード切
換信号が制御装置から切換手段に送られる。
On the other hand, when a detection signal is sent from the oxygen detection means, this means that the dissolved oxygen concentration in the treated water that has passed through the adsorption section is below the target value (microorganisms such as aerobic bacteria consume much oxygen). Therefore, even if a normal bacteriostatic mode process is in progress or another process is in progress, it has priority over all of these processes. A mode switching signal for switching to the sterilization mode is sent from the control device to the switching means.

【0014】また、請求項3の使用方法のように、通常
時の制菌モード過程において、微弱な直流電圧を印加す
ることにより、吸着部に原水中の細菌等を捕捉させかつ
増殖を抑制する。微弱直流電圧による吸着部への通電に
より、一般に細菌等の微生物の表面は弱い陰イオンを帯
びているという特性を利用して、吸着部に細菌等を捕捉
させる。また、再生時の殺菌モード過程において、吸着
部の発熱が可能なある程度高い電圧を印加することによ
り、制菌モード過程で捕捉した細菌等を殺菌する。
Further, as in the method of use according to claim 3, by applying a weak DC voltage in the normal bacteriostatic mode process, bacteria and the like in the raw water are trapped in the adsorption part and the growth is suppressed. . Bacteria and the like are trapped in the adsorption unit by utilizing the characteristic that the surface of microorganisms such as bacteria generally bears weak anions when electricity is applied to the adsorption unit by a weak DC voltage. In addition, in the sterilization mode process at the time of regeneration, by applying a voltage that is high enough to generate heat in the adsorption unit, the bacteria and the like captured in the sterilization mode process are sterilized.

【0015】更に、請求項4の使用方法のように、通常
時の使用中で原水が通水しているときは、吸着部に細菌
等が付着して能力低下という観点からみた場合、停水中
よりも原水中の細菌等が流れることで吸着部に停滞する
のがまだしも少ない。このことから許容される細菌等の
範囲内であれば、通水中に限っては制菌モードによる電
圧印加をオフすることもできる。これは電力消費を考慮
した制御である。しかし、通水と停水を繰り返す通常時
の全過程を通して、微弱電圧の印加による細菌等の捕捉
及び繁殖抑制を行う制御が望ましい。
Further, as in the method of use of claim 4, when raw water is flowing during normal use, from the viewpoint of deterioration of capacity due to bacteria etc. adhering to the adsorbing part, water stoppage occurs. Bacteria and the like in the raw water flow more than in the inside, and it is still less likely that it will stay in the adsorption part. For this reason, the voltage application in the bacteriostatic mode can be turned off only in the passage of water as long as the bacteria and the like are allowed. This is a control that considers power consumption. However, it is desirable to control the capture of bacteria and the like by the application of a weak voltage and the suppression of reproduction throughout the normal process of repeating water supply and water stoppage.

【0016】[0016]

【実施例】以下、本発明による浄水殺菌装置及びその使
用方法の実施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a water purification apparatus and a method of using the same according to the present invention will be described below with reference to the drawings.

【0017】図1は、実施例の浄水殺菌装置の断面図で
ある。装置は水槽10を有し、例えば水道水等の原水が
槽の下部に設けられた導入口11から給水管路12を通
して導入される。給水管路12には原水の導入を制限す
る電磁弁等による給水弁13が設けられ、給水管路12
の途中から分岐した排水管14には同じく電磁弁等によ
る排水弁15が設けられている。管路の切り換えによっ
て排水管15から水槽10内の原水を排水投棄すること
ができる。排水時は当然ながら給水弁13は閉じられ
る。
FIG. 1 is a cross-sectional view of the purified water sterilizer of the embodiment. The apparatus has a water tank 10, and raw water such as tap water is introduced from an inlet 11 provided at the bottom of the tank through a water supply pipe 12. The water supply pipe 12 is provided with a water supply valve 13 such as a solenoid valve that restricts the introduction of raw water.
A drain valve 15 that is a solenoid valve or the like is also provided in the drain pipe 14 that is branched off from the middle. By switching the pipeline, the raw water in the water tank 10 can be drained and discarded from the drain pipe 15. Of course, the water supply valve 13 is closed during drainage.

【0018】水槽10内には、導電性を有し、定形性を
有する繊維状の活性炭を用いてこれを円筒形に成形した
吸着部20が配置されている。この吸着部20の円筒形
内外周面にはフィルタ部材21、22が嵌め込まれてい
る。円筒形の吸着部20と水槽10との間は、吸着部2
0を取り囲む環状の通路16となっていて、この外環通
路16には前述の原水の導入口11が連通している。し
たがって導入口11から導入された原水は外環通路16
に回り込んでから、外周側のフィルタ部材21を通り吸
着部20に供給されて接触可能である。
Inside the water tank 10, there is disposed an adsorption portion 20 which is formed into a cylindrical shape by using fibrous activated carbon which is electrically conductive and has a fixed shape. Filter members 21 and 22 are fitted on the cylindrical inner and outer peripheral surfaces of the suction portion 20. Between the cylindrical adsorption unit 20 and the water tank 10, the adsorption unit 2
0 is an annular passage 16 which surrounds 0, and the above-mentioned raw water inlet 11 communicates with this outer annular passage 16. Therefore, the raw water introduced from the introduction port 11 will not pass through the outer ring passage 16
Then, it is supplied to the adsorbing portion 20 through the filter member 21 on the outer peripheral side and can come into contact therewith.

【0019】また、内周側のフィルタ部材22に内側か
ら嵌合する形で、円筒の注出管23が吸着部20の中心
を挿通して設けられている。この注出管23は、一部を
例えばステンレス鋼等で成形された導電管部23Aとし
てあり、ここには多数の通水孔24が設けられている。
導電管部23Aの上には軸方向に樹脂管部23Bが接合
してあって、注出管23は2つの異種材の接合管であ
る。また、導電管部23Aの下部は有底で閉塞してあ
り、吸着部20を通過して浄化された水は内周側にフィ
ルタ部材22を通して注出管23に通水孔24から導入
可能である。上部の樹脂管部23Bには浄水管17が連
結され、浄水管17の末端に設けた注水栓(図示せず)
を開き飲料水として使用に供することができる 吸着部20とこの内外周側フィルタ部材21、22から
なる筒形構造体は、その上下端で陰陽一対からなるドー
ナツ円板形の第1、第2電極25、26で挟持され、上
部の例えば陽極としての第1電極25からは端子棒25
aが、下部の陰極である第2電極26からは端子棒26
aがそれぞれ水槽10の外部に導出して電源回路28に
接続されている。また、吸着部20に挿通した注出管2
3の導電管部23Aには、この下部有底部の外側に第3
電極27が装着してあり、第3電極27の端子棒27a
も水槽10外に出て電源回路28に接続されている。
A cylindrical outlet pipe 23 is provided so as to be fitted into the filter member 22 on the inner peripheral side from the inside so as to pass through the center of the suction portion 20. A part of the spout pipe 23 is a conductive pipe portion 23A formed of stainless steel or the like, and a large number of water passage holes 24 are provided therein.
A resin pipe portion 23B is joined to the conductive pipe portion 23A in the axial direction, and the spout pipe 23 is a joint pipe of two different materials. Further, the lower portion of the conductive pipe portion 23A is closed with a bottom, and the water purified by passing through the adsorbing portion 20 can be introduced into the spout pipe 23 through the water passage hole 24 through the filter member 22 on the inner peripheral side. is there. The water purification pipe 17 is connected to the upper resin pipe portion 23B, and a water injection plug (not shown) provided at the end of the water purification pipe 17
The tubular structure composed of the adsorbing part 20 and the inner and outer peripheral filter members 21 and 22 is a donut disc-shaped first and second upper and lower end formed of a pair of Yin and Yang. It is sandwiched between the electrodes 25 and 26, and from the upper part, for example, the first electrode 25 as an anode, the terminal rod 25
a is the terminal rod 26 from the second electrode 26 which is the lower cathode.
a is led out of the water tank 10 and connected to the power supply circuit 28. In addition, the extraction pipe 2 inserted into the suction unit 20
The third conductive tube portion 23A has a third outer surface on the lower bottom portion.
The electrode 27 is attached, and the terminal rod 27a of the third electrode 27 is attached.
Also goes out of the water tank 10 and is connected to the power supply circuit 28.

【0020】電源回路28は、交直流の切り換えが可能
な回路となっており、簡単には実施例のように直流電源
28Aと交流電源28Bの両電源を備えていて、例えば
回路中に設けられた電磁式の切換スイッチ(切換手段)
29によって、第1電極25と第2電極26との間に交
流電圧を印加し、或いは第1電極25(または第2電極
26)と第3電極27との間に直流電圧を印加する切り
換えが可能である。
The power supply circuit 28 is a circuit capable of switching between alternating current and direct current, and is simply provided with both the direct current power supply 28A and the alternating current power supply 28B as in the embodiment, and is provided in the circuit, for example. Electromagnetic changeover switch (changeover means)
Switching of applying an alternating voltage between the first electrode 25 and the second electrode 26 or applying a direct voltage between the first electrode 25 (or the second electrode 26) and the third electrode 27 by means of 29. It is possible.

【0021】図2のブロック図に示すように、本発明の
装置はマイクロコンピュータ等による制御装置30を備
えて自動化されている。制御装置30は中央演算装置
(CPU)31、制御プログラムを記憶しているメモリ
32、制御対象の外部機器に入出力するI/Oポート3
3等が含まれている。また、タイマー回路34が設けら
れ、一連の制御の各過程のタイムアップ信号を制御装置
30に送出するようになっている。制御装置30から
は、タイマー回路34のタイムアップ信号に基づいた制
御信号が給水弁13及び排水弁15に動作信号として送
られる。また、タイムアップ信号で電源回路28の切換
スイッチ29には制御装置30から切換信号が送られ、
直流電源28Aまたは交流電源28Bのいずれか一方の
電源回路とし、第1〜第3電極25〜26のうち選択さ
れた電極間に直流電圧または交流電圧を印加するように
なっている。
As shown in the block diagram of FIG. 2, the device of the present invention is automated by including a control device 30 such as a microcomputer. The control device 30 includes a central processing unit (CPU) 31, a memory 32 storing a control program, and an I / O port 3 for inputting / outputting to / from an external device to be controlled.
3 etc. are included. In addition, a timer circuit 34 is provided to send a time-up signal for each series of control processes to the control device 30. A control signal based on the time-up signal of the timer circuit 34 is sent from the control device 30 to the water supply valve 13 and the drain valve 15 as an operation signal. Further, a changeover signal is sent from the control device 30 to the changeover switch 29 of the power supply circuit 28 by the time-up signal,
Either the DC power supply 28A or the AC power supply 28B is used as a power supply circuit, and a DC voltage or an AC voltage is applied between selected electrodes of the first to third electrodes 25 to 26.

【0022】また、図1に示すように、本発明の装置に
は、吸着部20の周辺に温度検出手段として実施例では
サーミスタ18と、酸素濃度検出手段の酸素センサ19
が装着されている。サーミスタ18は吸着部20の内部
の下部領域に設けられて吸着部20の温度を逐一検出
し、酸素センサ19は吸着部20の内部か、もしくは原
水が流通する下流側で吸着部20の出口側に、つまり実
施例では注出管23の内部下端に配置され、吸着部20
を通過した処理水中の溶存酸素濃度が目標値を下回った
ときにこれを検出する。ちなみに処理水中の溶存酸素の
濃度が少なく下回ったということは、好気性細菌等の微
生物が酸素を多く消費して発育、増殖したことを示すも
のである。
Further, as shown in FIG. 1, in the apparatus of the present invention, a thermistor 18 as a temperature detecting means and an oxygen sensor 19 of the oxygen concentration detecting means are provided around the adsorbing portion 20 as a temperature detecting means.
Is installed. The thermistor 18 is provided in a lower region inside the adsorption unit 20 to detect the temperature of the adsorption unit 20 one by one, and the oxygen sensor 19 is provided inside the adsorption unit 20 or on the outlet side of the adsorption unit 20 at the downstream side where raw water flows. That is, that is, in the embodiment, it is arranged at the inner lower end of the spout pipe 23, and
This is detected when the dissolved oxygen concentration in the treated water that has passed through is lower than the target value. By the way, the fact that the concentration of dissolved oxygen in the treated water is low and low indicates that microorganisms such as aerobic bacteria consume much oxygen and grow and grow.

【0023】上下の第1、第2電極25、26の各内側
面には、それぞれ適当数のダボ状の突起25b、26b
が設けてあり、これらを吸着部20の上下端面から突き
入れることにより、第1、第2電極25、26の吸着部
20に対する接触と通電性を高め、また組立の位置決め
を確実にしている。
An appropriate number of dowel-shaped projections 25b and 26b are formed on the inner surfaces of the upper and lower first and second electrodes 25 and 26, respectively.
Are provided, and by making these stick out from the upper and lower end surfaces of the adsorption portion 20, the contact and electrical conductivity of the first and second electrodes 25, 26 with respect to the adsorption portion 20 are enhanced, and the positioning of the assembly is ensured.

【0024】次に、以上の構成による浄水殺菌装置の実
施例の使用方法及び作用について、図3の動作フローチ
ャート、図4のタイミングチャート及び図5の吸着部菌
保有個数と電圧の相関の特性図を併用して説明する。
Next, regarding the method of use and the operation of the embodiment of the water purification apparatus having the above-mentioned structure, the operation flowchart of FIG. 3, the timing chart of FIG. 4, and the characteristic diagram of the correlation between the number of bacteria in the adsorbent section and the voltage of FIG. Will be described together.

【0025】装置の動作は、通常時(1)と再生時
(2)を一定のインターバルで繰り返して制御される。
即ち、通常時(1)は飲料水として浄水の注出中は原水
に流れが生じ、使用を止めているときは原水の流れが停
滞して通水・停水を反復し、この間に原水中の細菌等を
吸着部20に捕捉させかつ繁殖を抑える過程であり、以
下これを「制菌モード」の過程と呼ぶ。これに対して、
再生時(2)は通常時(1)が終了した段階で原水の供
給を止め、水槽10内から原水を排水投棄したうえで吸
着部20に吸着した細菌等を殺菌する過程であり、再生
時はこの排水過程と「殺菌モード」過程からなってい
る。
The operation of the apparatus is controlled by repeating the normal time (1) and the reproduction time (2) at regular intervals.
That is, in the normal time (1), a flow occurs in the raw water while the purified water is being poured out as drinking water, and when the use is stopped, the flow of the raw water stagnates and water passing / stopping is repeated. This is a process of trapping the bacteria and the like in the adsorbing section 20 and suppressing the reproduction thereof, and hereinafter, this is referred to as a "bacteriostatic mode" process. On the contrary,
Regeneration (2) is a process of stopping the supply of raw water at the stage when the normal time (1) is finished, draining the raw water from the water tank 10 and disinfecting the bacteria and the like adsorbed to the adsorption unit 20, Consists of this drainage process and the "sterilization mode" process.

【0026】いま図4のタイミングチャートに示すよう
に、通常時の制菌モード過程の時間t1から再生時の排
水過程に移行し、次いで殺菌モード過程を終えてまた次
回の殺菌を行うまでのインターバル時間をt4とする。
再生時に原水の供給を停止して、水槽10及び吸着部2
0内に停滞している原水一切を排水投棄する排水過程の
時間をt2、排水過程を終えて殺菌を開始する殺菌モー
ド過程の時間をt3とする。
As shown in the timing chart of FIG. 4, from time t 1 in the normal bacteriostatic mode process to the drainage process during regeneration, the sterilization mode process is terminated and the next sterilization is performed again. The interval time is t 4 .
When regenerating, the supply of raw water is stopped, and the water tank 10 and the adsorption unit 2
Let t 2 be the time of the drainage process of draining and discarding all raw water stagnating within 0, and t 3 the time of the sterilization mode process of finishing the drainage process and starting sterilization.

【0027】図3のフローチャートにおいて、まず通常
時(1)は、装置の起動で制御装置30からの制御信号
で排水弁15が閉じ、給水弁13は開いて原水である水
道水が給水管路12から外環通路16にいったん入り、
水槽10内にほぼ満杯に導入される(ステップS1)。
In the flow chart of FIG. 3, first, in the normal time (1), the drain valve 15 is closed and the water supply valve 13 is opened by the control signal from the control device 30 when the device is started, and the tap water which is the raw water is supplied to the water supply pipe line. Enter the outer ring passage 16 from 12 once,
The water is introduced almost completely into the water tank 10 (step S 1 ).

【0028】導入された原水は外周側のフィルタ部材2
1でろ過されてから吸着部20の活性炭に接触する。吸
着部20への接触によって原水中の溶存物質、例えば微
量有機塩素化合物、微量有機化合物やかび臭等が吸着除
去される。浄化処理された浄水は内周側フィルタ部材2
2で再びろ過され、注出管23に多数の通水孔24を通
して入る。この注出管23から浄水管17を経て飲料水
などに使用される。浄水管17の末端の給水栓を使用者
が開いて注出使用の際は水槽10内で原水の流れが生じ
ている。反対に給水栓を閉じた不使用時とか、長期短期
の留守中は当然原水の流れは停滞している。
The introduced raw water is filtered by the filter member 2 on the outer peripheral side.
After being filtered by 1, the activated carbon of the adsorption unit 20 is contacted. By contact with the adsorption unit 20, dissolved substances in the raw water, for example, trace organic chlorine compounds, trace organic compounds, musty odor, etc. are adsorbed and removed. The purified water that has been purified is the inner filter member 2
It is filtered again at 2 and enters the outlet pipe 23 through a number of water passage holes 24. It is used for drinking water, etc. from this pouring pipe 23 through the water purification pipe 17. When the user opens the water tap at the end of the water purification pipe 17 and uses it for pouring, raw water flows in the water tank 10. On the other hand, the flow of raw water is naturally stagnant when the water tap is closed and not in use, or during long-term short-term absence.

【0029】このように原水の通水/停水が反復されて
いる時間的な期間を過去のデータや経験値に基づいて設
定し、この期間が通常時(1)として設定されている。
通常時(1)の水槽10内の吸着部20にあっては、制
御装置30からの切換信号で切換スイッチ29は電源回
路28を直流電源28Aによる回路に切り換えている。
即ち、この直流電源28Aによって、上側の第1電極2
5を(+)極として注出管23の第3電極27を(−)
極とする両電極間に微弱な直流電圧を印加すると、吸着
部20には微弱電流が流される(ステップS2)。実施
例では第1電極25及び第3電極27間に電圧を印加す
る構造がとられているが、下の第2電極板26と第3電
極27との間に電圧を印加する形態も可能である。通常
時(1)を制菌モード過程として吸着部20に微弱な直
流電圧を印加する意味は次の理由からである。
The time period during which the passage / stopping of raw water is repeated is set based on past data and empirical values, and this period is set as the normal time (1).
In the adsorption unit 20 in the water tank 10 at the normal time (1), the changeover switch 29 switches the power supply circuit 28 to a circuit by the DC power supply 28A by a switching signal from the control device 30.
That is, by the DC power supply 28A, the upper first electrode 2
5 as the (+) electrode and the third electrode 27 of the extraction pipe 23 as the (-)
When a weak DC voltage is applied between the electrodes serving as the poles, a weak current is passed through the adsorption unit 20 (step S 2 ). In the embodiment, the structure in which the voltage is applied between the first electrode 25 and the third electrode 27 is adopted, but a mode in which the voltage is applied between the lower second electrode plate 26 and the third electrode 27 is also possible. is there. The reason for applying a weak DC voltage to the adsorption unit 20 in the normal mode (1) as the sterilization mode process is as follows.

【0030】つまり導電体である吸着部20に微弱な直
流電流を流すことにより、一般に細菌等の微生物の表面
は弱い陰イオンを帯びているという特性を利用して、吸
着部に細菌等を捕捉させると共に、特に不使用による原
水の停滞中に吸着部20でそれ以上細菌の増殖を抑制す
ることである。特に、ユーザーが長期にわたって留守し
た折りなど、原水が吸着部20中に滞留して細菌の増殖
を促進させ易い。したがってこれを抑制するための処置
でもある。この制菌モード過程で第1電極25と第3電
極27との間に印加される微弱な直流電圧を以下制菌電
圧EACと呼ぶ。
That is, by applying a weak direct current to the adsorbing part 20 which is a conductor, the surface of microorganisms such as bacteria generally has a weak anion, so that the adsorbing part can catch bacteria and the like. In addition, the growth of bacteria is further suppressed in the adsorbing section 20 while the raw water is stagnant due to nonuse. In particular, when the user stays away for a long period of time, raw water is likely to stay in the adsorption unit 20 and promote bacterial growth. Therefore, it is also a treatment for suppressing this. The weak DC voltage applied between the first electrode 25 and the third electrode 27 in the bacteriostatic mode process is hereinafter referred to as bacteriostatic voltage E AC .

【0031】本発明でいう通常時の制菌モード過程は、
水の殺菌法の一環として学術的にも目下盛んに研究され
ている分野である。例えば「鉄と鋼:第76年(199
0)第9号」に掲載の論文『イオン交換膜電気透析法を
用いた新しい殺菌法』(昭和薬科大学薬学部講師 佐藤
利夫、横浜国立大学工学部教授 大矢晴彦)には、化学
的殺菌法と物理的殺菌法の問題点を解決して、原理的に
まったく新規な殺菌法の開発が必要であるとしたうえで
詳しく述べられている。
The normal bacteriostatic mode process in the present invention is as follows.
This is a field that is being actively researched academically as part of the water sterilization method. For example, "Iron and Steel: 1976 (199
0) No. 9 ”," A New Sterilization Method Using Ion Exchange Membrane Electrodialysis Method "(Showa Pharmaceutical University Faculty of Pharmacy Toshio Sato, Yokohama National University Faculty of Engineering Professor Haruhiko Oya) has a chemical sterilization method and physics. It is said that it is necessary to solve the problems of the sterilization method and to develop a completely new sterilization method in principle.

【0032】本発明の制菌モード過程の根拠は、細菌学
分野では微生物表面は弱い帯電状態で陰イオン化されて
いるという通説に基づいており、したがって発明者らの
実験によれば、例えば5ボルト程度の直流電流を吸着部
20に流すことで、原水中の細菌が吸着部20に捕捉さ
れ、原水中の細菌がそのまま注出管23内に流出するの
を防止できることを確認している。また、一度捕捉した
細菌を電圧を更に高めることにより殺菌することが可能
である。この殺菌への過程は前記論文に理論的に詳述さ
れている。
The basis of the bacteriostatic mode process of the present invention is based on the common theory that in the field of bacteriology, the surface of microorganisms is anionized in a weakly charged state, and therefore, according to the experiments by the inventors, for example, 5 volts. It has been confirmed that it is possible to prevent bacteria in the raw water from being captured by the adsorption unit 20 and flowing out into the pouring pipe 23 as they are, by allowing a certain amount of direct current to flow through the adsorption unit 20. Further, it is possible to sterilize the bacteria once captured by further increasing the voltage. The process for this sterilization is theoretically detailed in the article.

【0033】いま、通常時(1)で通水/停水の反復使
用による時間総計を制菌モード過程として経験値からt
1に設定すると、この設定時間t1を制御装置30のメモ
リ32に予め記憶させておくことができる。即ち、制御
装置30では、設定時間t1を計測したタイマー回路3
4からのタイムアップ信号が入力されると(ステップS
3)、この信号をメモリ32に記憶されたデータとCP
U31内の制御部で判断処理して、再生時(2)を開始
すべく指令信号をI/Oポート33から制御対象となる
給水弁13と排水弁15に向けて送出する。動作信号に
よって給水弁13が閉じられ水槽10内への原水導入を
停止させ、これに同期して排水弁15が開かれて排水管
路14から水槽10内全域に滞留している原水全部を排
出投棄する。この排水過程の時間はt2である(ステッ
プS4)。
Now, in the normal time (1), the total amount of time due to repeated use of water flow / stoppage is set as the bacteriostatic mode process from the experience value to t.
When set to 1 , this set time t 1 can be stored in the memory 32 of the control device 30 in advance. That is, in the control device 30, the timer circuit 3 measuring the set time t 1
When the time-up signal from 4 is input (step S
3 ), this signal is stored in the memory 32 and CP
The control unit in U31 determines and sends a command signal from the I / O port 33 to the water supply valve 13 and the drain valve 15 to be controlled in order to start the regeneration (2). The water supply valve 13 is closed by the operation signal to stop the introduction of raw water into the water tank 10, and in synchronization with this, the drain valve 15 is opened to discharge all the raw water accumulated in the entire water tank 10 from the drain pipe 14. Discard. The time of this drainage process is t 2 (step S 4 ).

【0034】給水弁13及び排水弁15の動作に電源回
路28は関係しない実施例となっており、両弁に電磁弁
を用いて制御装置30からの制御信号で別の電源でオン
オフすることができる。この両弁の動作電圧としては、
図4のタイムチャートに示すように、次の殺菌モード過
程の殺菌電圧EABよりも、かなり高い電圧Evを要す
る。
The power supply circuit 28 is an embodiment in which the operation of the water supply valve 13 and the drainage valve 15 is not related to the operation. It is possible to use a solenoid valve for both valves to turn them on and off with a different power supply by a control signal from the control device 30. it can. As the operating voltage of both valves,
As shown in the time chart of FIG. 4, a voltage Ev that is considerably higher than the sterilization voltage E AB in the next sterilization mode process is required.

【0035】排水時間t2を終了したことをタイマー回
路33はカウントし、このタイムアップ信号が制御装置
30に送られ(ステップS5)、制御装置30から切換
信号が切換スイッチ29に送られて、電源回路28の交
流電源28Bを閉回路とする。第1電極25と第2電極
26との間には交流電源28Bによって交流電圧が印加
される。この交流電圧は前回の制菌モードにおける制菌
電圧EACよりも高く、制菌モードで吸着部20に捕捉し
た細菌等を熱で殺菌できる程度の殺菌電圧EABとして印
加されて殺菌モード過程を開始する(ステップS6)。
殺菌モード過程において第1電極25及び第2電極26
間に殺菌電圧EABを印加する時間はt3である。これに
よって導電体である吸着部20に交流電流を流し、吸着
部20から単位時間に流出する熱量、つまりジュール熱
を発熱させて吸着部20に付着した細菌を殺菌して減少
させる。実施例では交流電圧を印加したが、殺菌モード
過程では細菌捕捉を要しないので直流電圧でも可能であ
る。図5の電圧特性で明らかなように、殺菌電圧EAB
高圧になるほど吸着部20中の菌保有個数が減少してい
る。
The timer circuit 33 counts the completion of the drainage time t 2 , the time-up signal is sent to the control device 30 (step S 5 ), and the switching signal is sent from the control device 30 to the change-over switch 29. The AC power supply 28B of the power supply circuit 28 is closed. An AC voltage is applied between the first electrode 25 and the second electrode 26 by an AC power supply 28B. The AC voltage is higher than bacteriostatic voltage E AC in the previous bacteriostatic mode, a sterilizing mode process bacteria or the like trapped in the suction unit 20 in bacteriostatic mode is applied as fungicidal voltage E AB enough to sterilization by heat Start (step S 6 ).
In the sterilization mode process, the first electrode 25 and the second electrode 26
The time during which the sterilization voltage E AB is applied is t 3 . As a result, an alternating current is caused to flow through the adsorbing portion 20 which is a conductor, and the amount of heat flowing out from the adsorbing portion 20 per unit time, that is, Joule heat is generated to sterilize and reduce the bacteria attached to the adsorbing portion 20. Although an AC voltage is applied in the embodiment, it is possible to use a DC voltage because bacteria are not required to be captured in the sterilization mode process. As is clear from the voltage characteristics of FIG. 5, the higher the sterilization voltage E AB , the smaller the number of bacteria held in the adsorption unit 20.

【0036】印加時間t3が経過して殺菌過程を終了す
ると(ステップS11)、次回の殺菌開始インターバル時
間t1になるまで再び前述の通常時(1)における制菌
モードの過程に入る。
When the application time t 3 has passed and the sterilization process is completed (step S 11 ), the process in the bacteriostatic mode at the normal time (1) is resumed until the next sterilization start interval time t 1 .

【0037】一方、以上のような通常時と再生時とを一
定のインターバルで繰り返す間に、前述のステップS6
の段階で、例えば殺菌モード過程で第1電極25及び第
2電極26間に殺菌電圧EABを印加されているときな
ど、仮に吸着部20の発熱温度が上限値T℃を上回った
とき(ステップS7)、吸着部20の温度を設定領域の
殺菌モードに戻す必要がある。この理由は、吸着部20
の発熱温度が必要以上に高くなれば、省電力の面からも
不利であり、吸着部20の高温劣化防止の意味がある。
On the other hand, while the normal time and the reproduction time as described above are repeated at a constant interval, the above-mentioned step S 6
At the stage, for example, when the sterilization voltage E AB is applied between the first electrode 25 and the second electrode 26 in the sterilization mode process, if the heat generation temperature of the adsorption unit 20 exceeds the upper limit value T ° C. (step S 7), it is necessary to return to the sterilizing mode of the set area the temperature of the suction unit 20. The reason for this is that the suction unit 20
If the heat generation temperature is higher than necessary, it is also disadvantageous in terms of power saving, and it has the meaning of preventing high temperature deterioration of the adsorption unit 20.

【0038】したがって、サーミスタ18が吸着部20
の発熱温度が上限値T1℃を上回ったことを検出する
と、この検出信号は制御装置30に送られ、制御信号が
切換スイッチ29に送られて切換信号で電源回路28を
オフにし(ステップS8)、吸着部20の温度を下げ
る。但し、吸着部20の発熱温度が上限値T1℃を上回
ったときは電源回路28をオフするといったが、本発明
では電源回路28を完全にオフしないまでも、吸着部2
0を抵抗とするジュール熱が発生しない程度の弱電圧を
かけておいてもよい。こうすれば発熱以外の電流による
殺菌効果も期待できる。また、下限値T2℃を下回った
場合(ステップS9)、これを検出したサーミスタ18
からの信号に基づいて電源回路28を殺菌モードに切り
換え、吸着部20を発熱する適正温度にまで上げる。
Therefore, the thermistor 18 is attached to the suction portion 20.
When it is detected that the exothermic temperature of exceeds the upper limit value T 1 ° C, this detection signal is sent to the control device 30, the control signal is sent to the changeover switch 29, and the power supply circuit 28 is turned off by the changeover signal (step S 8 ) Lower the temperature of the adsorption unit 20. However, the power supply circuit 28 is said to be turned off when the heat generation temperature of the adsorption part 20 exceeds the upper limit value T 1 ° C. However, in the present invention, the adsorption part 2 is not completely turned off.
A weak voltage may be applied to the extent that Joule heat having a resistance of 0 is not generated. In this way, a sterilizing effect by an electric current other than heat generation can be expected. When the temperature is below the lower limit T 2 ° C (step S 9 ), the thermistor 18 that detects this
The power supply circuit 28 is switched to the sterilization mode on the basis of the signal from and the temperature of the adsorption unit 20 is raised to an appropriate temperature for generating heat.

【0039】このようにして吸着部20の温度が上下限
値間の設定領域であるように管理される。以上が温度ベ
ースの優先モードである。
In this way, the temperature of the adsorption section 20 is managed so as to be in the set region between the upper and lower limit values. The above is the temperature-based priority mode.

【0040】また一方で、酸素センサ19から検出信号
が送出されたとき(ステップS10)、これは吸着部20
を通過した処理水中の酸素溶存濃度Cが目標値Coを下
回ったことを示すものである。このとき仮に通常時の制
菌モード過程の実行中であっても、また他の過程を実行
中であっても、これらすべての過程に優先して電源回路
28を殺菌モードに切り換えるべく、切換信号が制御装
置30から切換スイッチ29に送られる。これによって
好気性細菌等の微生物が酸素を多く消費して発育、増殖
するのを防ぐ。以上が酸素濃度ベースの優先モードであ
る。
On the other hand, when the detection signal is sent from the oxygen sensor 19 (step S 10 ), this is the adsorption unit 20.
It shows that the oxygen dissolved concentration C in the treated water that has passed through is less than the target value Co. At this time, even if the normal sterilization mode process is being executed or other processes are being executed, a switching signal is issued to switch the power supply circuit 28 to the sterilization mode with priority over all these processes. Is sent from the control device 30 to the changeover switch 29. This prevents microorganisms such as aerobic bacteria from consuming a large amount of oxygen to grow and grow. The above is the oxygen concentration-based priority mode.

【0041】なお、以上の実施例装置における使用方法
では、原水の通水/停水が反復されている通常時(1)
は、通水中と停水中の全過程を通して制菌電圧EACが第
1電極板25と第3電極板27間に印加されていた。こ
の実施例の変形例として、本発明では通水中は制菌電圧
ACを印加する必要なしとした制御も可能である。
In the method of use in the apparatus of the above-described embodiment, in the normal time (1) when the passage / stopping of raw water is repeated.
The bacteriostatic voltage E AC was applied between the first electrode plate 25 and the third electrode plate 27 during the entire process of passing water and stopping water. As a modification of this embodiment, in the present invention, it is possible to perform control in which it is not necessary to apply the bacteriostatic voltage E AC during the passage of water.

【0042】即ち、通常時の使用中で原水が通水してい
るときは、吸着部30に細菌等が付着して能力低下とい
う観点からすれば、停水中よりも原水中の細菌等が流れ
ることで吸着部30に停滞するのがまだしも少ない。こ
のことから許容される細菌等の範囲内であれば、通水中
に限っては制菌モードによる電圧印加をオフすることも
できる。これは電力消費を考慮した制御である。しか
し、通水と停水を繰り返す通常時の全過程を通して、微
弱な直流電圧の印加による細菌等の捕捉及び繁殖抑制を
行う制御が望ましい。
That is, when the raw water is flowing during normal use, from the viewpoint of bacteria and the like adhering to the adsorbing section 30 and lowering the capacity, the bacteria and the like in the raw water are more than those in the water stoppage. There is still little chance that it will stay in the adsorption unit 30 as it flows. For this reason, the voltage application in the bacteriostatic mode can be turned off only in the passage of water as long as the bacteria and the like are allowed. This is a control that considers power consumption. However, it is desirable to control the capture of bacteria and the suppression of reproduction by applying a weak DC voltage throughout the normal process of repeating water supply and water stoppage.

【0043】[0043]

【発明の効果】以上説明したように、本発明による請求
項1、2の浄水殺菌装置とその使用方法によれば、水槽
内に配置された導電性活性炭による吸着部に対し、3つ
の電極間で選択して微弱電圧から高い電圧へ段階的に印
加することにより、微弱電流により吸着部で捕捉した細
菌等を次の高い電圧電流で発熱させて殺菌する方式であ
るから、従来この種装置のように、原水を直接電解して
原水中の細菌等を殺菌す装置に比べて大幅に電力消費を
抑える利点がある。また、原水の処理容量増大を狙って
装置全体を大型化する必要もなく、コンパクト化が図れ
る。
As described above, according to the water purification apparatus and the method of using the same of claims 1 and 2 according to the present invention, between the three electrodes with respect to the adsorption part made of conductive activated carbon arranged in the water tank. By gradually applying from a weak voltage to a high voltage by selecting with, it is a method of sterilizing by heating the bacteria and the like trapped in the adsorption section with a weak current at the next high voltage current, so that the conventional device As described above, there is an advantage that power consumption is significantly reduced as compared with a device that directly electrolyzes raw water to sterilize bacteria and the like in the raw water. Further, it is not necessary to increase the size of the entire apparatus in order to increase the treatment capacity of raw water, and the size can be reduced.

【0044】請求項2、3の使用方法によれば、通水と
停水の反復による通常時は制菌モード過程として微弱な
直流電圧を印加して原水中の細菌等を吸着部に捕捉させ
かつそれ以上の繁殖を抑え、制菌モード過程が一定時間
(期間)を過ぎた時点で吸着部に付着した細菌等を殺菌
モード過程で大きい交流電圧を印加して殺菌し、この一
連の制御を一定のインターバルで効率的に行うことがで
きる。
According to the method of use of claims 2 and 3, a weak direct current voltage is applied as a bacteriostatic mode process during normal operation by repeating water flow and water stoppage to trap bacteria and the like in the raw water in the adsorption part. In addition, further growth is suppressed, and when a sterilization mode process has passed a certain time (period), bacteria attached to the adsorption unit are sterilized by applying a large AC voltage in the sterilization mode process, and this series of control is performed. It can be done efficiently at regular intervals.

【0045】また、こうした装置の使用方法において、
通常時と再生時とを一定のインターバルで繰り返す間、
温度検出手段と酸素検出手段からの検出信号で、吸着部
の過熱防止による省電力と、吸着部の高温劣化防止が図
られ、また好気性細菌等の微生物が酸素を多く消費して
発育、増殖するのを管理できる。
In the method of using such a device,
While repeating normal time and playback at regular intervals,
The detection signals from the temperature detection means and oxygen detection means save power by preventing overheating of the adsorption part and prevent high temperature deterioration of the adsorption part, and microorganisms such as aerobic bacteria consume much oxygen to grow and grow. You can control what you do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例の浄水殺菌装置の断面図FIG. 1 is a sectional view of a water purification sterilizer according to an embodiment of the present invention.

【図2】実施例の浄水殺菌装置の制御形態のブロック図FIG. 2 is a block diagram of a control mode of the water purification apparatus of the embodiment.

【図3】実施例の浄水殺菌装置及び殺菌方法における動
作のフローチャート
FIG. 3 is a flowchart of operations in the water purification apparatus and the sterilization method according to the embodiment.

【図4】実施例の浄水殺菌装置及び殺菌方法のタイムチ
ャート
FIG. 4 is a time chart of a purified water sterilizing apparatus and a sterilizing method according to an embodiment.

【図5】実施例の浄水殺菌装置において菌保有個数と電
圧との相関を示す特性グラフ
FIG. 5 is a characteristic graph showing the correlation between the number of bacteria and the voltage in the water purification apparatus of the embodiment.

【符号の説明】[Explanation of symbols]

10…水槽、13…給水弁、15…排水弁、17…浄水
管、18…サーミスタ(温度検出手段)、18…酸素セ
ンサ(酸素濃度検出手段)、20…活性炭吸着部、23
…注出管、23A…導電管部、23B…樹脂管部、25
…第1電極、26…第2電極、27…第3電極、28…
電源回路、28A…交流電源、28B…直流電源、29
…切換スイッチ、30…制御装置。
DESCRIPTION OF SYMBOLS 10 ... Water tank, 13 ... Water supply valve, 15 ... Drain valve, 17 ... Water purification pipe, 18 ... Thermistor (temperature detection means), 18 ... Oxygen sensor (oxygen concentration detection means), 20 ... Activated carbon adsorption part, 23
... Pour-out pipe, 23A ... Conductive pipe part, 23B ... Resin pipe part, 25
... first electrode, 26 ... second electrode, 27 ... third electrode, 28 ...
Power supply circuit, 28A ... AC power supply, 28B ... DC power supply, 29
... Changeover switch, 30 ... Control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所要形状に成形された導電性活性炭によ
る吸着部を水槽内に配置して、給水弁から水槽内に導入
された原水を吸着部で浄化殺菌して使用に供するとき、
通常時は使用不使用を繰り返すことによって原水が吸着
部に通水しもしくは停水し、吸着部の再生時は排水弁か
ら水槽内及び吸着部内の原水を排水する浄水殺菌装置に
おいて、 一部を導電質で多数の通水孔を設けた導電管部として吸
着部の中心に挿通させた注出管と、 再生時に吸着部を発熱させて原水中の細菌等を殺菌する
殺菌モードとしての電圧が印加される陰陽一対の第1電
極及び第2電極と、 注出管の導電管部に設けられて通常時は原水中の細菌等
を捕捉及び繁殖抑制する制菌モードとしての電圧が第1
電極または第2電極のいずれか一方との間に印加される
第3電極と、 一定インターバルで繰り返す通常時及び再生時の各実行
時間をカウントするタイマー回路と、 電圧を殺菌モードまたは制菌モードに切り換える切換手
段と、 切換手段によって切り換えられたとき殺菌モードまたは
制菌モードに対応した電圧を印加する電源回路と、 吸着部の内部に設けられて吸着部の温度を検出する温度
検出手段と、 吸着部の内部または吸着部の原水流通下流側の出口端に
設けられ、吸着部を通過した処理水中の溶存酸素濃度が
目標値を下回ったときこれを検出する酸素検出手段と、 タイマー回路からのタイムアップ信号に基づいて給水
弁、排水弁及び切換手段に動作信号を送出すると共に、
温度検出手段から吸着部の温度が上下限間の領域を外れ
たことの検出信号が送出されたとき温度ベース優先モー
ドの切換信号を切換手段に送り、酸素検出手段から検出
信号が送出されたとき酸素ベース優先モードの切換信号
を切換手段に送る制御装置と、を備えたことを特徴とす
る浄水殺菌装置。
1. When the adsorbing part made of conductive activated carbon formed into a required shape is arranged in the water tank, and the raw water introduced into the water tank from the water supply valve is purified and sterilized by the adsorbing part before use,
In normal times, raw water passes through or stops water in the adsorption unit by repeating use and non-use, and when regenerating the adsorption unit, part of the water purification device that drains the raw water in the water tank and adsorption unit from the drain valve A conductive tube with a large number of water holes made of a conductive material, which is inserted in the center of the adsorption section, and a voltage as a sterilization mode that sterilizes bacteria in raw water by heating the adsorption section during regeneration. A pair of first and second electrodes to be applied, and a voltage as a bacteriostatic mode that is provided in the conductive tube part of the spout tube and normally suppresses and reproduces bacteria in raw water
A third electrode that is applied between either the electrode or the second electrode, a timer circuit that counts each execution time during normal time and regeneration that repeats at regular intervals, and the voltage is set to the sterilization mode or sterilization mode. Switching means for switching, a power supply circuit for applying a voltage corresponding to the sterilization mode or antibacterial mode when switched by the switching means, a temperature detection means provided inside the adsorption part for detecting the temperature of the adsorption part, The oxygen detection means installed inside the section or at the outlet end of the adsorption section on the downstream side of the raw water flow, to detect when the dissolved oxygen concentration in the treated water that has passed through the adsorption section falls below the target value, and the time from the timer circuit. Based on the up signal, send an operation signal to the water supply valve, drain valve and switching means,
When a detection signal is sent from the temperature detecting means that the temperature of the adsorption part is out of the range between the upper and lower limits When a switching signal of the temperature base priority mode is sent to the switching means and when a detection signal is sent from the oxygen detecting means A water purification apparatus, comprising: a control device that sends a switching signal for the oxygen-based priority mode to the switching means.
【請求項2】 通常時と再生時とを一定のインターバル
で繰り返す請求項1記載の浄水殺菌装置の使用方法であ
って、 通常時は、 制御装置からの制御信号で切換手段の切り換えにより、
電源回路によって微弱電圧を第1電極または第2電極の
いずれか一方と第3電極との間に印加する制菌モード過
程と、 再生時は、 制菌モード過程を終了したことのタイムアップ信号に基
づく制御装置からの制御信号により、給水弁を閉じて原
水の水槽内導入を停止しかつ排水弁を開いて水槽内及び
吸着部内の原水を排出する排水過程と、 排水過程を終了したことのタイムアップ信号に基づく制
御装置からの制御信号で切換手段を切り換え、電源回路
によって吸着部の発熱が可能な電圧を第1電極及び第2
電極間に印加する殺菌モード過程と、 からなって通常時及び再生時によるインターバルを繰り
返す間に、 吸着部の温度が上限値及び下限値間の設定温度領域内に
収まるよう温度検出手段の検出信号に基づいた制御装置
からの切換信号で電源回路を制御し、下限値を下回った
ときはこの検出信号に基づいて電源回路を殺菌モードに
切り換える温度ベース優先モードの過程と、 酸素検出手段から検出信号が送出されたとき、殺菌モー
ドをすべての過程に優先させるモード切換信号を切換手
段に送る酸素ベース優先モードの過程と、 を割り込ませることを特徴とする使用方法。
2. The method of using the water purifying apparatus according to claim 1, wherein the normal time and the regenerating time are repeated at regular intervals, wherein in normal time, the switching means is switched by a control signal from the controller.
A bactericidal mode process in which a weak voltage is applied between the first electrode or the second electrode and the third electrode by the power supply circuit, and a time-up signal indicating that the bacteriostatic mode process has ended during regeneration. Based on the control signal from the control device based on this, the drainage process of closing the water supply valve to stop the introduction of raw water into the water tank and opening the drainage valve to discharge the raw water in the water tank and the adsorption unit, and the time of the completion of the drainage process The switching means is switched by a control signal from the control device based on the up signal, and a voltage capable of generating heat in the adsorption portion is set by the power supply circuit to the first electrode and the second electrode.
During the sterilization mode process applied between the electrodes and during the normal and regeneration intervals, the detection signal of the temperature detection means is set so that the temperature of the adsorption part falls within the set temperature range between the upper and lower limits. The power supply circuit is controlled by the switching signal from the control device based on the above, and when the lower limit value is exceeded, the process of the temperature-based priority mode in which the power supply circuit is switched to the sterilization mode based on this detection signal and the detection signal from the oxygen detection means. When oxygen is sent, the process of the oxygen-based priority mode which sends a mode switching signal to the switching means to prioritize the sterilization mode over all the processes, and the method of use.
【請求項3】 制菌モードでは微弱な直流電圧を、殺菌
モードでは吸着部の発熱可能な交流電圧または直流電圧
を印加する請求項2記載の使用方法。
3. The method according to claim 2, wherein a weak DC voltage is applied in the antibacterial mode, and an AC voltage or DC voltage capable of generating heat in the adsorption section is applied in the sterilization mode.
【請求項4】 通常時の使用中で原水が通水していると
きは、制菌モードの電圧印加をオフする請求項2記載の
使用方法。
4. The method of use according to claim 2, wherein the voltage application in the bacteriostatic mode is turned off when the raw water is flowing during normal use.
JP05103098A 1993-04-28 1993-04-28 Water purification device and method of using the same Expired - Fee Related JP3080808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05103098A JP3080808B2 (en) 1993-04-28 1993-04-28 Water purification device and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05103098A JP3080808B2 (en) 1993-04-28 1993-04-28 Water purification device and method of using the same

Publications (2)

Publication Number Publication Date
JPH06312179A true JPH06312179A (en) 1994-11-08
JP3080808B2 JP3080808B2 (en) 2000-08-28

Family

ID=14345163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05103098A Expired - Fee Related JP3080808B2 (en) 1993-04-28 1993-04-28 Water purification device and method of using the same

Country Status (1)

Country Link
JP (1) JP3080808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114457380A (en) * 2022-01-21 2022-05-10 佛山市顺德区美的电子科技有限公司 Control method and device of electrolysis device, disinfection machine and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752855B1 (en) * 2017-03-06 2017-06-30 유지씨 주식회사 Hera-type brush for surface finishing of crack area and finishing method of crack surface using the hera-type brush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114457380A (en) * 2022-01-21 2022-05-10 佛山市顺德区美的电子科技有限公司 Control method and device of electrolysis device, disinfection machine and storage medium

Also Published As

Publication number Publication date
JP3080808B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
KR101734194B1 (en) Sterilizing method for water treatment apparatus
JP6543630B2 (en) CDI water treatment system
KR101686131B1 (en) Water purifier for automatic sterilization
JP2003164880A (en) Water treatment method, water treatment plant and hydroponic system using the same
JP2010136738A (en) Washing machine
JPH06312179A (en) Purified water sterilizing device and use thereof
JPH06312178A (en) Purified water sterilizing device and use thereof
KR20140020342A (en) Water treatment apparatus
JP3570087B2 (en) Wastewater treatment equipment
JP6513676B2 (en) CDI water treatment system
JPH10128310A (en) Water purifying and sterilizing apparatus
KR20140022937A (en) Water treatment apparatus and water treatment method
KR101447963B1 (en) Water treatment method
JPH09234459A (en) Water purifying and sterilizing device
JPH09239368A (en) Circulating purifier for contaminated liquid
KR20130016551A (en) Sterilization method of ice tank of water treatment apparatus
JPH1110156A (en) Method for regenerating porous carbon electrode of water purification and disinfection apparatus
KR20120008442U (en) Sterilizing water treatment apparatus
JPH0731970A (en) Method for regenerating adsorbent of water purifying and sterilizing device
JP2744395B2 (en) Water purification equipment
JP3841926B2 (en) Water purification device
JPH10151444A (en) Water purifing-sterilizing apparatus
KR101447519B1 (en) Water treatment method
JPH10109086A (en) Purified water sterilization device
JPH10235360A (en) Water purifier of porous carbon electrode-regenerating type and regeneration of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees