JPH06312156A - Coating method - Google Patents

Coating method

Info

Publication number
JPH06312156A
JPH06312156A JP10394393A JP10394393A JPH06312156A JP H06312156 A JPH06312156 A JP H06312156A JP 10394393 A JP10394393 A JP 10394393A JP 10394393 A JP10394393 A JP 10394393A JP H06312156 A JPH06312156 A JP H06312156A
Authority
JP
Japan
Prior art keywords
film
epoxy resin
coating
xylylene
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10394393A
Other languages
Japanese (ja)
Inventor
Moritaka Takayama
盛隆 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PARIREN KK
Original Assignee
NIPPON PARIREN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PARIREN KK filed Critical NIPPON PARIREN KK
Priority to JP10394393A priority Critical patent/JPH06312156A/en
Publication of JPH06312156A publication Critical patent/JPH06312156A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a good coating film by forming a gas phase deposition polymerized film of poly-p-xylylene by the specified film thickness on a base and then applying epoxy resin by the specified film thickness. CONSTITUTION:Di-p-xylylene of a solid dimer is gasified to generate p-xyhylene di-free-radical by means of heat decomposition, and the adsorption and polymerization of p-xylylene di-free-radical to a base are carried out simultaneously and a gas phase deposition polymerized film of poly-p-xylylene having the film thickness of 0.1-100mum is formed on the base. Then, epoxy resin is applied by the film thickness of 1-100mum. Thus the poly-p-xylylene film is reinforced with an epoxy resin film, and also the base is protected from dissolving into a diluent of epoxy resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基材表面に皮膜をコーテ
ィングする方法、特にポリパラキシリレン及びエポキシ
樹脂の二重皮膜によるコーティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a film on a surface of a substrate, and more particularly to a method for coating a double film of polyparaxylylene and epoxy resin.

【0002】[0002]

【従来の技術】従来より、コーティング材料は傷、埃、
腐食等からの基材の保護、強度アップ、摩擦係数の低
減、耐ひっかき性の向上等の特性付与、作業のし易さ、
出荷時の傷付き防止、寸法精度の維持等の生産性向上等
の目的から種々考案されて来た。
2. Description of the Related Art Conventionally, coating materials are scratched, dusty,
Protecting the base material from corrosion, increasing strength, reducing friction coefficient, imparting characteristics such as scratch resistance, ease of work,
It has been devised variously for the purpose of preventing damage at the time of shipping and improving productivity such as maintaining dimensional accuracy.

【0003】これらコーティング材料としてはアクリル
樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、シリコ
ーン樹脂等が使用され、コーティング方法としてはデッ
ピング、刷毛塗り、スプレー、フィルム等、及び成膜方
法として溶剤揮散型、加熱反応型、水分反応型、放射線
照射型等があり、これらの組み合わせとなると数知れな
い。
Acrylic resins, urethane resins, unsaturated polyester resins, silicone resins and the like are used as these coating materials, and the coating method includes depping, brush coating, spraying, film, etc., and the solvent vaporization type and heating as film forming methods. There are a reaction type, a water reaction type, a radiation irradiation type and the like, and it is innumerable to combine them.

【0004】又、化学蒸着による薄膜コーティングとし
てポリパラキシリレンの気相蒸着重合皮膜のコーティン
グ等も幅広い分野で活用されている。
Further, as a thin film coating by chemical vapor deposition, coating of a vapor deposition polymer film of polyparaxylylene has been utilized in a wide range of fields.

【0005】[0005]

【発明が解決しようとする課題】しかし、これら幾種類
ものコーティング材料にもそれぞれの欠点がある。例え
ば、アクリル樹脂は表面硬度が低く、比較的材料強度や
耐熱性に劣る。ウレタン樹脂は加水分解され易く、酸、
アルカリに比較的弱く、熱や光の作用によって黄変して
しまう。不飽和ポリエステル樹脂は耐アルカリ、耐沸水
性に劣るのをはじめ、本来硬くて脆いため、何らかの形
で強化しなければならない。シリコーン樹脂は強酸、強
アルカリにより劣化分解するが、微量の酸、アルカリの
存在下でも熱水により壊れてしまう他、基材に対する密
着性が乏しい上にそれ自体の凝集力も弱く、気体遮断性
が著しく小さい。
However, these various types of coating materials have their respective drawbacks. For example, acrylic resin has a low surface hardness and is relatively inferior in material strength and heat resistance. Urethane resin is easily hydrolyzed, acid,
It is relatively weak against alkali and turns yellow by the action of heat and light. Unsaturated polyester resins have poor alkali resistance and boiling water resistance, and are inherently hard and brittle, so they must be reinforced in some way. Silicone resin deteriorates and decomposes with strong acids and strong alkalis, but is destroyed by hot water even in the presence of trace amounts of acids and alkalis.It also has poor adhesion to the base material and its weak cohesive power, which results in gas barrier properties. Remarkably small.

【0006】又、エポキシ樹脂は電気絶縁性、耐薬品
性、耐久性等の点では優れているので、広くコーティン
グ材料として利用されている。一般にエポキシ樹脂によ
るコーティングは、有機溶剤に希釈し低粘度の液状にし
てスプレー、デッピング、刷毛塗り等の方法でコーティ
ングする。しかし、基材がプラスチックの場合、例えば
ポリカーボネート樹脂、スチレン樹脂、アクリル樹脂は
有機溶剤に溶解するので、溶剤希釈したエポキシ樹脂で
コーティング出来ない。
Epoxy resin is widely used as a coating material because it is excellent in electrical insulation, chemical resistance and durability. Generally, the coating with an epoxy resin is performed by diluting it with an organic solvent to form a low-viscosity liquid and spraying, depping, brushing or the like. However, when the base material is plastic, for example, polycarbonate resin, styrene resin, and acrylic resin are dissolved in an organic solvent, and therefore cannot be coated with an epoxy resin diluted with a solvent.

【0007】ポリパラキシレンの気相蒸着重合皮膜は耐
薬品性に優れた均一な皮膜が得られるので、電子部品や
回路基板等の保護コーティングとして利用される。しか
し、ポリパラキシレンの気相蒸着重合皮膜は機械的強度
や塗膜硬度が低いので、摺動面や接合部等の機械的強度
が必要な箇所のコーティングには適さない。
A vapor-deposited polymerized film of polyparaxylene can be used as a protective coating for electronic parts, circuit boards, etc., because a uniform film excellent in chemical resistance can be obtained. However, the vapor-deposited polymer film of polyparaxylene has low mechanical strength and coating hardness, and therefore is not suitable for coating a portion such as a sliding surface or a joint where mechanical strength is required.

【0008】従って、これら幾種類のコーティング材料
においても、ある特定の材料のみによって強度、電気絶
縁性、耐熱性、耐湿性、耐薬品性、気体遮断性等あらゆ
る特性を満足することは極めて困難である。
Therefore, it is extremely difficult to satisfy all the properties such as strength, electric insulation, heat resistance, moisture resistance, chemical resistance, gas barrier property, etc. by using only one specific material among these various kinds of coating materials. is there.

【0009】具体的には、各種モーター類のコイル芯に
シリコーン樹脂をコーティングした場合、耐水性、耐寒
性に優れるが、機械強度の耐久性が劣ったり、コイル芯
とシリコーン樹脂皮膜との間に浸透した水が溜り、腐食
を起こす原因となる問題がある。
Specifically, when a silicone resin is coated on the coil core of various motors, it is excellent in water resistance and cold resistance, but inferior in mechanical strength durability, or between the coil core and the silicone resin film. There is a problem that the water that has penetrated accumulates and causes corrosion.

【0010】溶剤希釈のエポキシ樹脂でコーティングし
た場合、塗装むらやピンホールが発生し、コイル芯を完
全に絶縁コーティング出来ないという問題がある。
When coated with a solvent-diluted epoxy resin, there is a problem in that coating unevenness and pinholes occur and the coil core cannot be completely insulation-coated.

【0011】又、ポリパラキシリレンの気相蒸着重合皮
膜では、潤滑性があるので銅線を捲き易くなるが、塗膜
が柔らかいので捲線の締め付け圧力により経時的に徐徐
に変形し、コイル芯と捲線との間に空隙が発生し、磁力
の低下や捲線の弛みが発生する欠点がある。
Further, in the vapor-phase vapor deposition polymerized film of polyparaxylylene, the copper wire can be easily wound because of its lubricity, but since the coating film is soft, it is gradually deformed by the tightening pressure of the winding wire, and the coil core is gradually deformed. There is a defect that a void is generated between the winding and the winding, and the magnetic force is lowered and the winding is loosened.

【0012】本発明は上述の各種の問題を解決して、良
好なコーティング皮膜を形成する方法を提供することを
課題とする。
An object of the present invention is to solve the above-mentioned various problems and provide a method for forming a good coating film.

【0013】[0013]

【課題を解決するための手段】上述の課題を解決するた
めに、基材に0.1〜100μmの膜厚でポリパラキシ
リレンの気相蒸着重合皮膜を設けた後、膜厚1〜100
0μmでエポキシ樹脂を塗布するものである。
In order to solve the above-mentioned problems, a vapor-deposited polymerized film of polyparaxylylene having a film thickness of 0.1 to 100 μm is provided on a substrate, and then the film thickness is 1 to 100.
The epoxy resin is applied with a thickness of 0 μm.

【0014】[0014]

【作用】上述のように、ポリパラキシリレンの皮膜の欠
点をエポキシ樹脂膜で補強すると共に、エポキシ樹脂の
溶液を塗布する場合に、基材が溶剤に溶解することを防
止し、あらゆる基材にエポキシ樹脂溶液を塗布すること
が可能となる。
As described above, the defect of the polyparaxylylene film is reinforced by the epoxy resin film, and when the solution of the epoxy resin is applied, the base material is prevented from being dissolved in the solvent and any base material is prevented. It becomes possible to apply an epoxy resin solution to the.

【0015】[0015]

【実施例】本発明に使用されるポリパラキシリレンの基
本的なものの構造、製造法、重合法等は公知であり、具
体的には図2の化学式(A)〜(F)(但し、nは50
00以上の整数)等で定義される。勿論単独で使用して
も、組み合わせて使用しても良い。
EXAMPLES The structure, production method, polymerization method, etc. of the basic polyparaxylylene used in the present invention are known, and specifically, the chemical formulas (A) to (F) of FIG. 2 (however, n is 50
00 or more) and the like. Of course, they may be used alone or in combination.

【0016】これらのポリパラキシリレンは気相蒸着重
合法によって形成されるが、その蒸着構造は3つの工程
よりなる。
These polyparaxylylenes are formed by a vapor phase vapor deposition polymerization method, and the vapor deposition structure is composed of three steps.

【0017】即ち、原料である固体二量体のジパラキシ
リレンの気化が起こる第一工程(図1の(A))、二量
体の熱分解によるジラジカルパラキシレンの発生が起こ
る第二工程(図1の(B))、基材へのジラジカルパラ
キシリレンの吸着と重合が同時に形成され、高分子量の
ポリパラキシリレンの皮膜形成が起こる第三工程(図1
の(C))よりなる。
That is, the first step ((A) in FIG. 1) in which vaporization of the raw material solid dimer diparaxylylene occurs, and the second step in which diradical paraxylene is generated by thermal decomposition of the dimer (FIG. 1). (B)), the third step in which the adsorption and polymerization of the diradical paraxylylene on the substrate are simultaneously formed, and the film formation of the high molecular weight polyparaxylylene occurs (Fig. 1).
(C)).

【0018】なお、図1は図2の(A)の化学式の場合
を例にした場合の工程図である。これら、気相蒸着重合
法によって得られたポリパラキシリレン皮膜は、基材に
対してコンフォーマルコーティング(同形コーティン
グ)が可能である他、コーティングは室温で行われるの
で、基材に対する熱履歴を与えない。
Note that FIG. 1 is a process diagram in the case of the case of the chemical formula of FIG. These polyparaxylylene films obtained by the vapor phase vapor deposition polymerization method can be conformally coated on the base material (conformal coating), and since the coating is performed at room temperature, heat history on the base material can be prevented. Do not give.

【0019】一方、本発明に使用されるエポキシ樹脂と
しては、ビスフェノールAとエピクロルヒドリンから誘
導されるジグリシジルエーテル、及びその誘導体、ビス
フェノールFとエピクロルヒドリンから誘導されるジグ
リシジルエーテル、及びその誘導体等の通称エピービス
型液状エポキシ樹脂、多価アルコールとエピクロルヒド
リンから誘導されるジクリシジルエーテル、多塩基酸と
エピクロルヒドリンから誘導されるグリシジルエステ
ル、及びその誘導体、水添ピスフェノールAとエピクロ
ルヒドリンから誘導されるグリシジルエーテル、3,4
−エポキシ−6−メチルシクロヘキシルメチル−3,4
−エポキシ−6メチルシクロヘキサンカルボキシレー
ト、ビニルシクロヘキセンオキサイド、ビス(3,4−
エポキシ−6−メチルシクロヘキシルメチル)アジペー
ト等の脂肪族環状エポキシ、及びその誘導体、5,5’
−ジメチルヒダントイン型エポキシ樹脂、トリグリシジ
ルイソシアヌレート、イソブチレンから誘導される置換
型エポキシ等がある。
On the other hand, as the epoxy resin used in the present invention, diglycidyl ether derived from bisphenol A and epichlorohydrin and its derivatives, diglycidyl ether derived from bisphenol F and epichlorohydrin, and its derivatives are commonly known. Epbis type liquid epoxy resin, diglycidyl ether derived from polyhydric alcohol and epichlorohydrin, glycidyl ester derived from polybasic acid and epichlorohydrin, and derivatives thereof, glycidyl ether derived from hydrogenated pisphenol A and epichlorohydrin, 3 , 4
-Epoxy-6-methylcyclohexylmethyl-3,4
-Epoxy-6 methylcyclohexanecarboxylate, vinylcyclohexene oxide, bis (3,4-
Epoxy-6-methylcyclohexylmethyl) adipate and other aliphatic cyclic epoxies, and derivatives thereof, 5,5 ′
-Dimethylhydantoin type epoxy resin, triglycidyl isocyanurate, and substituted epoxy derived from isobutylene.

【0020】更に、これらエポキシ樹脂の硬化剤として
は、ジエチレントリアミン、トリエチレンテトラアミ
ン、テトラエチレンペンタアミン、メタフェニレンジア
ミン、ジアミンジフェニルメタン、トリエタノールアミ
ン等をはじめとした脂肪族、芳香族、脂環式等、及びこ
れらの変成アミン化合物の他、芳香族酸、及びその酸無
水物、ハロゲン化酸、及びその酸無水物、ジシアンジア
ミド、及びその誘導体、ハロゲン化硼素錯体、有機金属
錯体、ケチミン類、イミダゾール、及びその誘導体、芳
香族オニウム塩、メタロセン化合物等を適宜使用するこ
とが出来る。
Further, as a curing agent for these epoxy resins, aliphatic, aromatic and alicyclic compounds such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, metaphenylenediamine, diaminediphenylmethane and triethanolamine can be used. Etc. and these modified amine compounds, aromatic acids, and their acid anhydrides, halogenated acids, their acid anhydrides, dicyandiamide, and their derivatives, boron halide complexes, organometallic complexes, ketimines, imidazoles. , And their derivatives, aromatic onium salts, metallocene compounds and the like can be used as appropriate.

【0021】これらのエポキシ樹脂の硬化方法は加熱に
よるものが主であるが、硬化剤の選択によっては放射線
照射により硬化物を得ることも可能であり、硬化構造も
選択する硬化剤の種類によって付加重合、カチオン重
合、アニオン重合と様々である。
The curing method of these epoxy resins is mainly by heating, but it is also possible to obtain a cured product by irradiation with radiation depending on the selection of the curing agent, and the cured structure is also added depending on the type of curing agent selected. Polymerization, cationic polymerization, anionic polymerization are various.

【0022】本発明に使用されるエポキシ樹脂には、上
述のベースポリマーとその硬化剤の他に、従来エポキシ
樹脂の添加剤として使用されているクロロプロピルトリ
メトキシシラン、γ−グリピルトリ(ドデシルベンゼン
スルフォニル)チタネート等のカップリング剤、アルミ
ナ、カーボンブラック、タルク、金属酸化物等の無機充
填剤、チオール類、アルコール類、カルボキシル化合物
等の可撓性付与剤等を適宜添加して使用することが出来
る。
The epoxy resin used in the present invention includes, in addition to the above-mentioned base polymer and its curing agent, chloropropyltrimethoxysilane and γ-glypyrtri (dodecylbenzenesulfonyl) which have been conventionally used as additives for epoxy resins. ) A coupling agent such as titanate, an inorganic filler such as alumina, carbon black, talc, and a metal oxide, a flexibility-imparting agent such as thiols, alcohols, and carboxyl compounds can be appropriately added and used. .

【0023】実験例1 エポキシ樹脂としてエピコート828(油化シェルエポ
キシ社製)、硬化剤としてアンカー1040(AC1ジ
ャパンリミテッド社製)を使用し、エポキシ樹脂:硬化
剤=100:7(重量比)として攪拌した。
EXPERIMENTAL EXAMPLE 1 Epicoat 828 (produced by Yuka Shell Epoxy Co., Ltd.) was used as an epoxy resin, Anchor 1040 (produced by AC1 Japan Ltd.) was used as a curing agent, and epoxy resin: curing agent = 100: 7 (weight ratio) was used. It was stirred.

【0024】これを使用して150℃×6時間の条件で
厚さ1000μmの硬化物を作成し、このエポキシ樹脂
硬化物の上に昇華温度150℃、分解温度690℃、系
内圧力18mTorrの条件でモノクロロパラキシリレ
ン(ユニオンカーバイド社製)を30μm成膜し、これ
の体積固有抵抗、誘電率(1kHz、1MHz)、誘電
正接(1kHz、1MHz)も測定した。この結果は表
1に示す。
Using this, a cured product having a thickness of 1000 μm was prepared under the conditions of 150 ° C. × 6 hours, and a sublimation temperature of 150 ° C., a decomposition temperature of 690 ° C., and a system pressure of 18 mTorr were applied on the cured epoxy resin product. Then, monochloroparaxylylene (manufactured by Union Carbide Co., Ltd.) was deposited to a thickness of 30 μm, and the volume resistivity, dielectric constant (1 kHz, 1 MHz), and dielectric loss tangent (1 kHz, 1 MHz) of the film were also measured. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】実験例2 100×100×20mmのセラミック板の上に、昇華
温度150℃、分解温度700℃、系内圧力14mTo
rrの条件でモノクロロパラキシリレンを10μm成膜
し、この上に更に一液性加熱硬化型エポキシ樹脂Thr
eeBond2221C(スリーボンド社製)を100
μm塗布した。
Experimental Example 2 On a 100 × 100 × 20 mm ceramic plate, sublimation temperature 150 ° C., decomposition temperature 700 ° C., system pressure 14 mTo.
Monochloroparaxylylene was formed into a film of 10 μm under the condition of rr, and one-component heat-curable epoxy resin Thr was further formed on the film.
eeBond2221C (manufactured by ThreeBond) is 100
μm was applied.

【0027】この未硬化のエポキシ樹脂の上に3.0×
1.5×0.5mmのセラミックチップを置き、120
℃×30分の条件でエポキシ樹脂を硬化させた。
3.0 × on top of this uncured epoxy resin
Place a ceramic chip of 1.5 x 0.5 mm, and
The epoxy resin was cured under the condition of 30 ° C for 30 minutes.

【0028】これを120℃の恒温槽中に10、20、
30日間放置し、室温に戻した後、セラミックチップに
テンションゲージの先端を30°の角度で押し込み、破
壊するポリパラキシリレン皮膜とエポキシ樹脂硬化物と
からなる皮膜の耐熱強度を測定した。
This was placed in a constant temperature bath at 120 ° C. for 10, 20,
After standing for 30 days and returning to room temperature, the tip of the tension gauge was pressed into the ceramic chip at an angle of 30 °, and the heat resistance strength of the film consisting of the polyparaxylylene film to be destroyed and the cured epoxy resin was measured.

【0029】なお、比較例として、セラミック板の上に
モノクロロパラキシリレン皮膜を10μm蒸着し、これ
を120℃の恒温槽中に10、20、30日間放置し、
室温に戻した後、一液性加熱硬化型エポキシ樹脂Thr
eeBond2221Cを100μm塗布し、この上に
セラミックチップを置いて120℃×30分の条件でエ
ポキシ樹脂を硬化させた試料についても、実験例1と同
様の手法でポリパラキシリレン皮膜のみの耐熱強度を測
定した。
As a comparative example, a monochloroparaxylylene film was vapor-deposited on a ceramic plate to a thickness of 10 μm, and the monochloroparaxylylene film was left to stand in a constant temperature bath at 120 ° C. for 10, 20 or 30 days.
After returning to room temperature, one-component thermosetting epoxy resin Thr
For a sample in which eeBond2221C was applied in a thickness of 100 μm, a ceramic chip was placed on the eeBond2221C, and the epoxy resin was cured under the condition of 120 ° C. for 30 minutes, the heat resistance strength of only the polyparaxylylene film was obtained by the same method as in Experimental Example 1. It was measured.

【0030】この時、セラミック板の上にモノクロロパ
ラキシリレンを成膜し、この上にさらにエポキシ樹脂を
100μm塗布してセラミックチップを置き、120℃
×30分の条件でエポキシ樹脂を硬化させたものの皮膜
強度を測定した。この結果は表2に示す。この表ではブ
ランクを100%とした時の各期間における皮膜強度で
示した。
At this time, a monochloroparaxylylene film was formed on a ceramic plate, an epoxy resin was further applied thereon by 100 μm, and a ceramic chip was placed at 120 ° C.
The film strength of the epoxy resin cured under the condition of 30 minutes was measured. The results are shown in Table 2. In this table, the film strength is shown in each period when the blank is 100%.

【0031】[0031]

【表2】 [Table 2]

【0032】実験例3 φ30×100mmの鉄心を脱脂洗浄後、これに紫外線
硬化型のエポキシ樹脂ThreeBond3102(ス
リーボンド社製)をコーティングして積算光量5000
mJ/cm2 で硬化させ、40μmのエポキシ樹脂硬化
物の皮膜を形成した。
Experimental Example 3 An iron core of φ30 × 100 mm was degreased and washed, and then an ultraviolet curable epoxy resin ThreeBond3102 (manufactured by ThreeBond Co., Ltd.) was coated on the iron core to give an integrated light intensity of 5000.
The film was cured at mJ / cm 2 to form a 40 μm cured epoxy resin film.

【0033】このエポキシ樹脂硬化物でコーティングさ
れた鉄心の上に、昇華温度150℃、分解温度700
℃、系内圧力20mTorrの条件でモノクロロパラキ
シリレンを10μm成膜し、得られたコーティング鉄心
に線径0.16mm、2−PEWの銅線を2050回、
荷重100g、及び170gの条件で巻き付けた。
On the iron core coated with the cured epoxy resin, a sublimation temperature of 150 ° C. and a decomposition temperature of 700
10 μm of monochloroparaxylylene was formed into a film at a temperature of 20 ° C. and a system pressure of 20 mTorr, and a coated iron core having a wire diameter of 0.16 mm and a 2-PEW copper wire 2050 times,
It was wound under the conditions of a load of 100 g and 170 g.

【0034】48時間後、銅線を鉄心から全て巻き取
り、コーティング材の変形状況を観察した。なお、比較
例としてモノクロロパラキシレン50μmの皮膜をコー
ティングしたのみの鉄心についても同様の実験を行っ
た。結果は表3に示す。
After 48 hours, the copper wire was entirely wound up from the iron core, and the state of deformation of the coating material was observed. As a comparative example, the same experiment was conducted on an iron core only coated with a monochloroparaxylene film of 50 μm. The results are shown in Table 3.

【0035】[0035]

【表3】 〇:コーティング材に変形なし △:コーティング材の変形が若干あった ×:コーティング材の変形が明瞭に現れた[Table 3] ◯: No deformation of coating material △: Some deformation of coating material ×: Deformation of coating material appeared clearly

【0036】実験例4 エポキシ樹脂ThreeBond2287(スリーボン
ド社製)50重量部に対して、トルエン50重量部で希
釈して粘度30cpsの液状の液状コーティング材を調
整した。この液状コーティング材をポリスチレン樹脂、
ポリカーボネート樹脂のテストピース板にポリパラキシ
リレンを10μm成膜し、上記ポリエステル樹脂コーテ
ィング材を300μm塗布し、風乾後、150℃×30
分間の条件で加熱硬化させた。
Experimental Example 4 50 parts by weight of an epoxy resin ThreeBond 2287 (manufactured by ThreeBond Co., Ltd.) was diluted with 50 parts by weight of toluene to prepare a liquid coating material having a viscosity of 30 cps. This liquid coating material is polystyrene resin,
Polyparaxylylene film having a thickness of 10 μm was formed on a test piece plate of polycarbonate resin, the above polyester resin coating material was applied to have a thickness of 300 μm, and after air drying, 150 ° C. × 30
It was heat-cured under the condition of 1 minute.

【0037】エポキシ樹脂コーティング材を塗布した状
態でのテストピースの状態を黙視観察し、更にエポキシ
樹脂が硬化後のテストピースの引張強度を測定した。
The state of the test piece coated with the epoxy resin coating material was visually observed, and the tensile strength of the test piece after the epoxy resin was cured was measured.

【0038】比較例として、ポリパラキシリレンを成膜
せずに上記エポキシ樹脂コーティング材のみを塗布し、
風乾後、同じ条件で加熱硬化させて同様の測定をした。
なお、引張強度のブランクとして、コーティング処理し
ない状態でのテストピースを測定した。測定結果は表4
に示す。
As a comparative example, only the above epoxy resin coating material was applied without forming a film of polyparaxylylene,
After air-drying, heat curing was performed under the same conditions and the same measurement was performed.
As a blank for tensile strength, a test piece without coating was measured. Table 4 shows the measurement results
Shown in.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】上述のように、本発明のポリパラキシリ
レンの気相蒸着重合皮膜の上に、エポキシ樹脂を塗布す
るコーティング方法では、ポリパラキシリレンの気相蒸
着重合皮膜がエポキシ樹脂の希釈溶剤に基材が溶解する
ことを防止する。よって、あらゆる基材に対してエポキ
シ樹脂コーティングが可能となり、基材に優れた塗膜硬
度、機械強度、耐薬品性、耐熱性、耐久性、電気絶縁特
性を付与することが出来る。
As described above, according to the coating method of applying the epoxy resin on the vapor-deposited polymer film of polyparaxylylene of the present invention, the vapor-deposited polymer film of polyparaxylylene is made of epoxy resin. Prevents the substrate from dissolving in the diluting solvent. Therefore, it becomes possible to coat any base material with an epoxy resin, and it is possible to impart excellent coating film hardness, mechanical strength, chemical resistance, heat resistance, durability, and electrical insulation characteristics to the base material.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリパラキシリレンの一種類の化学式の場合を
例にした場合の工程図で、(A)は固体二量体の気化が
起こる状態の第一工程図、(B)は二量体が熱分解した
状態の第二工程図、(C)は高分子量の成膜形成が起こ
る状態の第三工程図である。
FIG. 1 is a process chart in the case of using one kind of chemical formula of polyparaxylylene as an example, (A) is a first process chart in which vaporization of a solid dimer occurs, and (B) is a dimer. The second process diagram of the state in which the body is thermally decomposed, (C) is the third process diagram of the state in which a high molecular weight film is formed.

【図2】ポリパラキシリレンの基本的なものの化学式
で、(A)〜(F)(但し、nは5000以上の整数)
はそれぞれの種類の化学式である。
FIG. 2 is a chemical formula of basic polyparaxylylene (A) to (F) (where n is an integer of 5000 or more).
Are chemical formulas of each type.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材に0.1〜100μmの膜厚でポリ
パラキシリレンの気相蒸着重合皮膜を設けた後、膜厚1
〜1000μmでエポキシ樹脂を塗布することを特徴と
するコーティング方法。
1. After forming a vapor phase vapor deposition polymerized film of polyparaxylylene in a film thickness of 0.1 to 100 μm on a substrate, a film thickness of 1 is obtained.
A coating method, which comprises applying an epoxy resin at a thickness of up to 1000 μm.
JP10394393A 1993-04-30 1993-04-30 Coating method Pending JPH06312156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10394393A JPH06312156A (en) 1993-04-30 1993-04-30 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10394393A JPH06312156A (en) 1993-04-30 1993-04-30 Coating method

Publications (1)

Publication Number Publication Date
JPH06312156A true JPH06312156A (en) 1994-11-08

Family

ID=14367531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10394393A Pending JPH06312156A (en) 1993-04-30 1993-04-30 Coating method

Country Status (1)

Country Link
JP (1) JPH06312156A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006307A1 (en) * 1998-07-30 2000-02-10 Aktsionernoe Obschestvo Zakritogo Tipa Method for preserving porous materials
WO2003027195A1 (en) * 2001-09-27 2003-04-03 Nexsol Technologies, Inc. Coating method by phase equilibrium
KR100446957B1 (en) * 2001-08-16 2004-09-01 전배혁 Preserving Method of Dry Flower by Polymer Coating
JP2006261486A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Organic thin film transistor and image display device employing it
JP2009527584A (en) * 2005-12-27 2009-07-30 スペシャルティ コーティング システムズ,インコーポレーテッド Fluorinated coating
JP2016092050A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Electronic component package board, motor, air conditioner, and manufacturing method of electronic component package board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006307A1 (en) * 1998-07-30 2000-02-10 Aktsionernoe Obschestvo Zakritogo Tipa Method for preserving porous materials
KR100446957B1 (en) * 2001-08-16 2004-09-01 전배혁 Preserving Method of Dry Flower by Polymer Coating
WO2003027195A1 (en) * 2001-09-27 2003-04-03 Nexsol Technologies, Inc. Coating method by phase equilibrium
JP2006261486A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Organic thin film transistor and image display device employing it
JP2009527584A (en) * 2005-12-27 2009-07-30 スペシャルティ コーティング システムズ,インコーポレーテッド Fluorinated coating
JP2016092050A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Electronic component package board, motor, air conditioner, and manufacturing method of electronic component package board
US10129981B2 (en) 2014-10-30 2018-11-13 Mitsubishi Electric Corporation Electronic component mounting substrate, motor, air-conditioning apparatus, and method for manufacturing the electronic component mounting substrate
EP3018706B1 (en) * 2014-10-30 2019-05-22 Mitsubishi Electric Corporation Method for manufacturing an electronic component mounting substrate

Similar Documents

Publication Publication Date Title
TWI496803B (en) Hardener composition for epoxy resins
US20140076198A1 (en) Epoxy resin composition for insulation, insulating film, prepreg, and printed circuit board
TWI613250B (en) Trimethyl borate in epoxy resins
TWI299352B (en)
US4428987A (en) Process for improving copper-epoxy adhesion
JP2008163330A (en) Polyamide resin-containing varnish
TW503246B (en) An epoxy resin composition and a process of producing a coated article use thereof
HUT70873A (en) Amine modified epoxide-resin
JPH07252345A (en) Elastic epoxy resin - curing agent system
JP4616771B2 (en) Flame retardant epoxy resin composition and cured product thereof
WO2013133041A1 (en) Halogen-free flame-retardant adhesive composition
EP2714763A1 (en) Epoxy resins with high thermal stability and toughness
JPH06312156A (en) Coating method
KR20100044166A (en) Catalyst for curing epoxides
TW200825159A (en) Halogen-free, thermal resistant composition
TW201035148A (en) Metal stabilizers for epoxy resins and advancement process
JPH07252346A (en) Elastic epoxy resin - curing agent system
TW513465B (en) Flame retardant epoxy resin composition for printed board, and prepreg and metal foil clad laminate using the same
KR101958764B1 (en) Laminate production method
JP2002105174A (en) Flame-retardant epoxy resin composition and its application
JPH11158251A (en) Epoxy resin composition for laminate and prepreg and laminate prepared by using the same
JP2001044338A (en) Resin-sealed electronic electrical component and manufacture thereof
US11414542B2 (en) Impregnation resin mixture
JPH03221537A (en) Prepreg for adhering metal
US3766296A (en) Adducts of triglycidyl isocyanurate with novolaks able to form cross links