JPH0631193A - Method for controlling closed-circuit crushing system - Google Patents

Method for controlling closed-circuit crushing system

Info

Publication number
JPH0631193A
JPH0631193A JP18421992A JP18421992A JPH0631193A JP H0631193 A JPH0631193 A JP H0631193A JP 18421992 A JP18421992 A JP 18421992A JP 18421992 A JP18421992 A JP 18421992A JP H0631193 A JPH0631193 A JP H0631193A
Authority
JP
Japan
Prior art keywords
amount
crusher
crushing
powder
model formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18421992A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ito
光弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP18421992A priority Critical patent/JPH0631193A/en
Publication of JPH0631193A publication Critical patent/JPH0631193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To crush a material with the highest energy efficiency at all times by easily detecting the optimum crushing condition and controlling a closed-circuit crushing system according to the condition. CONSTITUTION:A closed-circuit crushing system 1 is provided with a crusher 4 and a classifier 6. The amt. (p) of product powder and the grain size distribution P are obtained for each amt. (f) of the crushed powder in each crusher according to the given product grain size specification SP from a crushing model formula and a classification model formula. The amt. (f) in which the amt. (p) of product powder is the highest is taken as the optimum value, and the amt. fN of a fresh feed is controlled to maintain the optimum value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、セメントなどの各種
粉末を精製するための閉回路粉砕システムの制御方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a closed circuit grinding system for refining various powders such as cement.

【0002】従来のセメント等の閉回路粉砕システムに
おいて最適な状態、即ち、エネルギ効率が最大な状態、
にするためには粉砕機と分級機の性能を最大にすると共
に閉回路粉砕システムとして最適な状態になっていなけ
ればならない。そのためには粉砕機への新装入物質量と
分級機からの分級粗粉との合計、即ち、粉砕機内砕料通
過量が最適値となっている必要がある。
In a conventional closed-circuit crushing system for cement or the like, the optimum state, that is, the state where the energy efficiency is maximized,
In order to achieve this, the performance of the crusher and classifier must be maximized and the closed-circuit crushing system must be in an optimal state. For that purpose, it is necessary that the total amount of the newly charged substance into the crusher and the classified coarse powder from the classifier, that is, the amount of the crushed material passing through the crusher becomes an optimum value.

【0003】一般に、前記通過量が増加すると、粉砕機
の粉砕効率は上昇するが、分級機の分級効率は低下す
る。従って、閉回路粉砕システムでは粉砕効率と分級効
率とが合わさった形において前記通過量の最適値が存在
する。
Generally, when the passing amount increases, the pulverizing efficiency of the pulverizer increases, but the classification efficiency of the classifier decreases. Therefore, in the closed circuit grinding system, the optimum value of the passing amount exists in the form in which the grinding efficiency and the classification efficiency are combined.

【0004】従来のセメントなどの閉回路粉砕システム
では、次の様な制御方法が用いられている。 (1)粉体の輸送量によって定まる、粉砕機出口の粉体
輸送機の負荷の最適値を現場実験によって求め、その最
適値を維持できるように新装入物質量をコントロールす
る方法。 (2)粉砕機内砕量通過量によって定まる、粉砕機内の
音圧レベルの最適値を現場実験によって求め、その最適
値を維持できるように新装入物質量をコントロールする
方法。
In a conventional closed circuit crushing system for cement or the like, the following control method is used. (1) A method of determining the optimum value of the load of the powder transporter at the crusher outlet, which is determined by the amount of powder transported, through field experiments, and controlling the amount of newly charged substances so that the optimum value can be maintained. (2) A method in which the optimum value of the sound pressure level in the crusher, which is determined by the amount of crushed material passing through the crusher, is determined by field experiments and the amount of newly charged substances is controlled so that the optimum value can be maintained.

【0005】[0005]

【発明が解決しようとする課題】前記(1)(2)の方
法において、負荷や音圧レベルの最適値は、絶対値が存
在するわけではなく、砕料の被粉砕性、粉砕機内の粉砕
媒体条件、例えば、媒体の大きさや量、並びに製品粉末
の粒度スペックなどにより変化する。
In the methods (1) and (2) described above, the optimum values of load and sound pressure level do not have absolute values, but the crushability of the crushed material, the crushing in the crusher, and the like. It varies depending on the medium conditions such as the size and amount of the medium and the particle size specification of the product powder.

【0006】従来例では、都度実験によって最適値を確
認しているが、この実験は当然のことながら実操業の中
で行われる。ところが、この実験は労務費がかかると共
に実験中の粉砕エネルギロスは無視しがたい状況にあ
る。また、実操業中の実験なので実験誤差が生じ、最適
値が得られない。そのため、最適値でないのにもかかわ
らず最適値と判断して操業を継続し、大きなエネルギロ
スを生じていることが多い。
In the conventional example, the optimum value is confirmed by an experiment each time, but this experiment is naturally performed in the actual operation. However, this experiment requires labor costs and the loss of crushing energy during the experiment cannot be ignored. In addition, since it is an experiment during actual operation, an experimental error occurs and an optimum value cannot be obtained. Therefore, even though it is not the optimum value, it is judged to be the optimum value and the operation is continued, which often causes a large energy loss.

【0007】この発明は、前記事情に鑑み、閉回路粉砕
システムにおいて砕料の硬さ即ち被粉砕性、粉砕媒体条
件即ち媒体の大きさや量、並びに製品粉末の粒度スペッ
ク、に変更が生じたときに容易に最適粉砕条件を見い出
し、それに従って閉回路粉砕システムを制御することに
より、常に最高のエネルギ効率で粉砕を行えるようにす
ることを目的とする。
In view of the above circumstances, the present invention is directed to a closed circuit crushing system in which the hardness of the crushed material, that is, the crushability, the condition of the crushing medium, that is, the size and amount of the medium, and the particle size specification of the product powder are changed. The objective is to always find the optimum grinding conditions and control the closed-circuit grinding system accordingly, so that grinding can always be carried out with maximum energy efficiency.

【0008】[0008]

【課題を解決するための手段】本発明者はセメント用大
型連続閉回路粉砕システムにおいて、公知のアリヤブデ
ィン(Alyavdin)−中条式(以下粉砕モデル式
という)が成立すると共に該粉砕モデル式に用いられて
いる2つの粉砕速度パラメータk、nは互いに対応関係
にあることを実験により確認した。
Means for Solving the Problems In the large continuous closed circuit crushing system for cement, the present inventor established a well-known Aryavdin-Midaka-jou formula (hereinafter referred to as crushing model formula) and used it for the crushing model formula. It was confirmed by an experiment that the two crushing speed parameters k and n that are provided correspond to each other.

【0009】そして、この粉砕モデル式と公知の部分分
級効率曲線のモレラス式(Molerus)の修正式
(以下分級モデル式という)からは、従来閉回路粉砕の
解析解を数学的に得ることができないと言われていた
が、本発明者は公知のロックド−サイクル法(Lock
ed−cycle)を適用することにより分級効率をも
考慮した閉回路粉砕シミュレイションが極めて容易に出
来ることを知った。
An analytical solution for conventional closed-circuit crushing cannot be obtained mathematically from this crushing model formula and a modified formula (hereinafter referred to as classification model formula) of the known partial classification efficiency curve Mollerus formula (Molerus). However, the inventor of the present invention has known the Locked-Cycle method (Lock).
It has been found that the closed circuit crushing simulation in which the classification efficiency is also taken into consideration can be very easily applied by applying the ed-cycle).

【0010】この発明は、上記知見に基ずきなさたもの
で、粉砕機内の粉砕現象を極めて簡単な形でモデル化
し、分級モデルを兼用することにより最適な「粉砕機内
砕料通過量」を計算して制御するものであり、次のよう
に構成されている。
The present invention has been made based on the above findings. The crushing phenomenon in the crusher is modeled in an extremely simple form, and the optimum "amount of crushed material passing through the crusher" is calculated by also using the classification model. It is controlled by the following. It is configured as follows.

【0011】粉砕機と分級機とを備えた閉回路粉砕シス
テムにおいて、粉砕モデル式と分級モデル式により、与
えられた製品粒度スペックに対し各粉砕機内砕料通過量
ごとに製品粉末量と粒度分布とを求め、該製品粉末量が
最も高い粉砕機内砕料通過量を最適値と定め、該最適値
を維持できるように新装入物質量を制御することを特徴
とする閉回路粉砕システムの制御方法
In a closed-circuit crushing system equipped with a crusher and a classifier, the product powder amount and the particle size distribution are determined by the crushing model formula and the classification model formula for each given product particle size specification for each crusher passing amount in each crusher. The control of the closed circuit crushing system is characterized in that the amount of pulverized material passing through the crusher having the highest amount of the product powder is determined as the optimum value, and the amount of newly charged substances is controlled so that the optimum value can be maintained. Method

【0012】[0012]

【作用】粉砕モデル式と分級モデル式にその粉砕系に適
したモデル定数k、n、β、sを与えることにより、与
えられた製品粒度スペックに対し各粉砕機内砕料通過量
ごとに製品粉末量と粒度分布とを求める。そして、該製
品粉末量が最も高い粉砕機内砕料通過量を最適値と定
め、該最適値を維持できるように新装入物質量を制御す
る。
By giving model constants k, n, β and s suitable for the crushing system to the crushing model formula and the classification model formula, the product powder for each crusher passing amount in each crusher for a given product particle size specification. Determine the quantity and particle size distribution. Then, the amount of crushed material passing through the pulverizer having the highest amount of the product powder is determined as the optimum value, and the amount of newly charged substance is controlled so that the optimum value can be maintained.

【0013】[0013]

【実施例】この発明の実施例を添付図面により説明する
が、まず最初に閉回路粉砕システムを簡単に説明する。
図1に示すように、セメント用大型連続閉回路粉砕シス
テム1では、セメントクリンカ等の新装入物質2をフィ
−ダ3によりチューブミル4に送り、そこで粉砕する。
そして、該粉末をミル4からバッケトエレベ−タ5を介
して分級機6に運び、そこで細粉(製品)7と粗粉8と
に分級する。細粉7はバグフィルタ10に送られ、粗粉
8は新装入物質2と共にチューブミル4に送られ再び粉
砕される。以下同様して粉砕が繰り返される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the accompanying drawings. First, a closed circuit grinding system will be briefly described.
As shown in FIG. 1, in a large continuous closed circuit crushing system 1 for cement, a new charge substance 2 such as a cement clinker is sent to a tube mill 4 by a feeder 3 and crushed therein.
Then, the powder is conveyed from the mill 4 through the bucket elevator 5 to the classifier 6, where it is classified into fine powder (product) 7 and coarse powder 8. The fine powder 7 is sent to the bag filter 10, and the coarse powder 8 is sent to the tube mill 4 together with the newly charged substance 2 and is ground again. The crushing is repeated in the same manner thereafter.

【0014】次に、前記システム1の制御方法について
説明する。粉砕現象として粉砕モデル式を用い、分級現
象として分級モデル式を用いコンピュ−タ11にて閉回
路粉砕のシミュレ−ションを行う。
Next, a method of controlling the system 1 will be described. A crushing model equation is used as the crushing phenomenon, and a classification model equation is used as the classification phenomenon. The computer 11 simulates closed circuit crushing.

【0015】粉砕モデル式として公知のアリヤブディン
−中条式(Alyavdin.V.V.. U.S.S.R Cypro
cement(1933),中条「化学工学と化学機械」7,1(19
49)参照)を用いる。この式は、 R(X,t)/R(X,0)=exp(−ktXn ) で表される。この式において、R(X,0)は、粉砕機
入口の砕料の粒度、即ち時間t=0の時のXμm以上の
粒子重量割合であり、また、R(X,t)は、粉砕機出
口の砕料の粒度、即ち時間t=tの時のXμm以上の粒
子重量割合である。
Alyavdin-V.V.U.S.S.R Cypro known as a crushing model formula
cement (1933), Nakajo "Chemical engineering and chemical machinery" 7, 1 (19
See 49)). This equation is represented by R (X, t) / R (X, 0) = exp (-ktX n). In this formula, R (X, 0) is the particle size of the pulverized material at the pulverizer inlet, that is, the particle weight ratio of X μm or more at the time t = 0, and R (X, t) is the pulverizer. The particle size of the crushed material at the outlet, that is, the particle weight ratio of X μm or more at the time t = t.

【0016】k、nは、粉砕機の条件、即ち被粉砕物
種、粉砕媒体の大きさと量により決定される粉砕速度パ
ラメ−タである。前記粉砕モデル式において左辺R
(X,t)/R(X,0)および右辺のt及びXにチュ
−ブミル4の入口と出口間の実測値を代入し、最小二乗
法を用いてk、nを求めたところ、図2に示す様に一つ
の曲線となった。従って、k、又は、nの何れか一方を
求めれば他方も求まることになる。図2では、k=0.
0392×28.6-nとなり、被粉砕物種、粉砕媒体の
大きさと量により、その値を予め定めておくことによ
り、前記粉砕モデル式を用いて粉砕の現象を予測するこ
とができる。
K and n are crushing speed parameters determined by the conditions of the crusher, that is, the kind of the object to be crushed and the size and amount of the crushing medium. In the crushing model formula, the left side R
(X, t) / R (X, 0) and t and X on the right side were substituted with the measured values between the inlet and the outlet of the tube mill 4, and k and n were obtained using the least squares method. As shown in 2, it became one curve. Therefore, if either k or n is obtained, the other is also obtained. In FIG. 2, k = 0.
It becomes 0392 × 28.6 −n , and the phenomenon of crushing can be predicted by using the crushing model formula by previously determining the value according to the kind of the object to be crushed and the size and amount of the crushing medium.

【0017】粉砕速度パラメ−タk、nの値は、砕料の
種類と粉砕媒体の状況、即ち、その大きさと量、に変化
がなければ常に同じである。また、これらに変化が生じ
たときには、前記モデル式を用いると粉砕機入口と出口
の粒度分布を調べることにより大がかりな実験を行わず
に容易に新しいパラメ−タk、nを求めることが出来
る。
The values of the crushing speed parameters k and n are always the same unless the kind of the crushing material and the condition of the crushing medium, that is, the size and the amount thereof are changed. When these changes occur, new model parameters k and n can be easily obtained without conducting a large-scale experiment by examining the particle size distribution at the inlet and outlet of the crusher by using the model formula.

【0018】分級モデルは図3の様に図示でき、そのモ
デル式としてモレラス(Molerus)の式に分割β
を考慮した次の式が用いられる(Molerus et al.:Chem.
Ing.Tech., 41(5/6), 340(1969),Onuma,E.:J.Chem.Eng.
Japan,6,527(1973) 参照)。 Φ(X)=(1−β)(Xc/X)2 exp〔s{1−(X/Xc)2 }〕/ [1+(Xc/X)2 exp〔s{1−(X/Xc)2 }〕] この式において、Xは粒径(μm)、Xcは分級点、を
示す。
The classification model can be illustrated as shown in FIG. 3, and its model formula is divided into Mollerus formulas β
The following equation is used in consideration of (Molerus et al .: Chem.
Ing.Tech., 41 (5/6), 340 (1969), Onuma, E .: J. Chem. Eng.
See Japan, 6,527 (1973)). Φ (X) = (1-β) (Xc / X) 2 exp [s {1- (X / Xc) 2 }] / [1+ (Xc / X) 2 exp [s {1- (X / Xc) 2 }]] In this formula, X represents a particle size (μm) and Xc represents a classification point.

【0019】β、sは分級機の分級特性値であるが、β
は分割、即ち、無条件で粗粉となる分、sは立ち具合
(鋭さ)を示す。この分割βと立ち具合sとは、分級機
の種類によって異なるが、この実施例においては次の式
から求められる。 β=1−exp(−0.036×Qf/Qa) s=7×(0.8exp(−0.094×Qf/Q
a))-3.6 この式において、Qfは分級機入口の砕料の量(kg/
h)、Qaは分級機入口の空気の量(m3 /h)をそれ
ぞれ示す。
Β and s are classification characteristic values of the classifier, but β
Indicates division, that is, the amount of coarse powder unconditionally, and s indicates the standing condition (sharpness). The division β and the standing condition s differ depending on the type of classifier, but in this embodiment, they are obtained from the following equation. β = 1-exp (−0.036 × Qf / Qa) s = 7 × (0.8exp (−0.094 × Qf / Q
a)) -3.6 In this formula, Qf is the amount of crushed material at the classifier inlet (kg /
h) and Qa represent the amount of air (m 3 / h) at the inlet of the classifier.

【0020】本実施例における分割βと立ち具合sの例
をを図示すると、図3の通りである。この図において7
pは細粉、即ち製品側、8pは粗粉側、Aは理想分級
線、Bは実際の部分分級効率曲線、Cは分割βによる補
正を行った実際の部分分級効率曲線、をそれぞれ示す。
An example of the division β and the standing condition s in this embodiment is shown in FIG. 7 in this figure
p is a fine powder, that is, the product side, 8p is a coarse powder side, A is an ideal classification line, B is an actual partial classification efficiency curve, and C is an actual partial classification efficiency curve corrected by division β.

【0021】次に、上記粉砕モデル式と分級モデル式に
対してロックド−サイクル(Locked−cycl
e)法[Gumtz,G.D. and D.W.Fue
rstenau:Trans.AIME,247,330(197
0)参照]を適用し、分級効率をも考慮した閉回路粉砕シ
ミュレ−ションを行う。このロックド−サイクル(Lo
cked−cycle)法を図4により説明する。
Next, a locked-cycle (Locked-cycle) is applied to the crushing model formula and the classification model formula.
e) method [Gumtz, G .; D. and D.D. W. Fue
rstenau: Trans. Aime, 247, 330 (197
[See 0)] is applied, and closed circuit crushing simulation is performed in consideration of classification efficiency. This locked-cycle (Lo
The cked-cycle) method will be described with reference to FIG.

【0022】第1手順G1:粉砕機内砕料通過量f、そ
の粒度分布FNを設定する。 この通過量は、例えば、5
00t/hに設定され、その粒度分布が設定される。 第2手順G2:粉砕機入口の砕料をすべて新装入物資と
仮定しその量をf、粒度分布をFoとする。 第3手順G3:粉砕モデル式に従って粉砕機出口の砕量
fと粒度分布Fとを計算する。
First procedure G1: The amount f of crushed material passing through the crusher and its particle size distribution F N are set. This passing amount is, for example, 5
The particle size distribution is set to 00t / h. Second procedure G2: Assuming that all the crushed material at the entrance of the crusher is a newly charged material, the amount is f, and the particle size distribution is Fo. Third procedure G3: Calculate the crushing amount f and the particle size distribution F at the crusher outlet according to the crushing model formula.

【0023】第4手順G4:粉砕機出口の粉量fと粒度
分布Fとに対し、分級モデル式を用いて分級後の細粉、
粗粉それぞれの量p、rおよび粒度分布P、Rを計算す
る。このとき、分級モデル式には想定している分級機の
分級特性値即ち分割β、立ち具合sがそれぞれ代入され
るが、本実施例では前記β、sの式が用いられる。又、
分級モデル式の分級点Xcは任意の初期値、例えば、5
0μが代入される。
Fourth procedure G4: Fine powder after classification using a classification model formula for the powder quantity f and the particle size distribution F at the crusher outlet,
The amounts p, r and the particle size distributions P, R of each coarse powder are calculated. At this time, the classification characteristic value of the assumed classifier, that is, the division β and the standing condition s are respectively substituted into the classification model formula, but in the present embodiment, the formulas β and s are used. or,
The classification point Xc of the classification model formula is an arbitrary initial value, for example, 5
0 μ is substituted.

【0024】第5手順G5:分級後の製品粒度分布P
が、予め与えられている製品粒度分布スペックSPを満
足しているか否かを判断する。該スペックSPを満たし
ておれば(YES)、次の第6手順G6に進む。また、
それが満たされていない場合には(NO)、分級モデル
式の分級点Xcを変更し、例えば、Xc=30μにし、
第4手順G4に戻り、前記スペックSPを満足するまで
これを繰り返す。
Fifth procedure G5: Product particle size distribution P after classification
Determines whether or not the product particle size distribution specification SP given in advance is satisfied. If the spec SP is satisfied (YES), the process proceeds to the next sixth procedure G6. Also,
If it is not satisfied (NO), the classification point Xc of the classification model formula is changed to, for example, Xc = 30 μ,
Returning to the fourth procedure G4, this is repeated until the spec SP is satisfied.

【0025】第6手順G6:分級後の製品量pが新装入
物質の量fN に等しければこの計算を終わり、製品粉末
の量及び粒度分布はその時のp及びPになる。もしPが
Nに等しくない場合は第7手順G7を行ない、第3手
順G3に戻り、PがfN に等しくなるまで第6手順G6
までの各手順を繰り返す。なお上記手順における計算は
コンピュータ11により行なわれる。
Sixth procedure G6: If the amount p of the product after classification is equal to the amount f N of the newly charged substance, this calculation is ended, and the amount of the product powder and the particle size distribution become p and P at that time. If P is not equal to f N , the seventh procedure G7 is carried out, the procedure returns to the third procedure G3, and the sixth procedure G6 is performed until P is equal to f N.
Repeat each procedure up to. The calculation in the above procedure is performed by the computer 11.

【0026】第7手順G7:新装入物質の量fN を、粉
砕機内砕料通過量fと分級後の粗粉量rとの差、即ち、
N=f−r に変更し、分級機からの戻り粗粉量をrと
して、その合計の粒度分布を計算し、これを改めてFo
とする。粉体の合計量はもちろんfである。この状態で
第3手順G3に戻り、粉砕モデル式によって粉砕機出口
のfとFを計算する。
Seventh procedure G7: The amount f N of newly charged substance is defined as the difference between the amount f of crushed material passing through the crusher and the amount r of coarse powder after classification, that is,
f N = f−r was changed, the amount of coarse powder returned from the classifier was set to r, and the total particle size distribution was calculated.
And Of course, the total amount of powder is f. In this state, the procedure returns to the third procedure G3, and f and F at the crusher outlet are calculated by the crushing model formula.

【0027】図5に示すように、予め粉体輸送機である
バッケトエレベ−タ5の負荷電流値と粉砕機内砕料通過
量の検量線を求めておき、そのデ−タを前記コンピュ−
タ11に入力しておく。そうすると、最適値の前記通過
量fに対応する負荷電流値が自動的に設定され、例え
ば、f=500t/hの場合には90Aの負荷電流値が
最適値として選ばれる。
As shown in FIG. 5, a calibration curve of the load current value of the bucket elevator 5 which is a powder transporter and the amount of crushed material passing through the crusher is obtained in advance, and the data is used as the above-mentioned computer.
Input it into the data 11. Then, the load current value corresponding to the optimum value of the passage amount f is automatically set. For example, when f = 500 t / h, the load current value of 90 A is selected as the optimum value.

【0028】そして、該システム1運転中、バケットエ
レベ−タ5の負荷電流値は電流計20により常時測定さ
れ、その測定値はコンピュ−タ11に入力される。この
測定負荷電流値が前記設定値と異なるときにはコンピュ
−タ11からフィ−ダ3にコントロ−ル信号が送られ、
前記通過量fは常に一定に保たれる。
During operation of the system 1, the load current value of the bucket elevator 5 is constantly measured by the ammeter 20 and the measured value is input to the computer 11. When the measured load current value is different from the set value, a control signal is sent from the computer 11 to the feeder 3,
The passing amount f is always kept constant.

【0029】チュ−ブミル4に設けた音圧計30は該チ
ュ−ブミル4内の音圧を測定し、その測定値をコンピュ
−タ11に送出する。このコンピュ−タ11には、音圧
上限レベルと下限レベルが設定されており、前記通過量
fが各種外乱等により仮に該粉砕機の許容量を越えるよ
うになった場合にはコントロ−ル信号が該コンピュ−タ
11に送られると共に前記通過量fの調節が行われる。
即ち、バケットエレベータ5の負荷電流値による制御
は、前記音圧レベルが回復するまで一旦中断された後、
再開される様に構成されている。
The sound pressure gauge 30 provided in the tube mill 4 measures the sound pressure in the tube mill 4 and sends the measured value to the computer 11. A sound pressure upper limit level and a lower limit level are set in the computer 11, and when the passing amount f temporarily exceeds the allowable amount of the crusher due to various disturbances, etc., a control signal is given. Is sent to the computer 11 and the passing amount f is adjusted.
That is, the control by the load current value of the bucket elevator 5 is temporarily suspended until the sound pressure level is restored,
It is configured to restart.

【0030】[0030]

【発明の効果】この発明は、以上のように構成したの
で、従来例と異なり実操業中で実験をしなくても簡単
に、しかも、正確に粉砕機内砕料通過量の最適値を求め
ることが出来るとともに常に該最適値を維持しながら粉
砕を行うことができる。従って、常に最高のエネルギ効
率で閉回路粉砕システムを運転することができる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, unlike the conventional example, it is possible to easily and accurately obtain the optimum value of the amount of pulverized material passing through the crusher without conducting an experiment during actual operation. It is possible to carry out pulverization while always maintaining the optimum value. Therefore, the closed-circuit grinding system can always be operated with the highest energy efficiency.

【0031】因に、本発明と従来例との比較試験を行っ
たところ次の結果を得た。従来例では、A:製品粒度ス
ペック30μm残分19%の場合、製品粉末量101t
/h 電力原単位35.6kWh/t B:製品粒度ス
ペック30μm残分21%の場合、製品粉末量103t
/h 電力原単位35.0kWh/t、であった。これ
に対し、本発明では、前記B:製品粒度スペック30μ
m残分21%の場合には、製品粉末量105.5t/h
電力原単位34.1kWh/t、であった。
Incidentally, a comparative test between the present invention and the conventional example yielded the following results. In the conventional example, when A: product particle size specification is 30 μm and the residue is 19%, the product powder amount is 101 t
/ H Electric power consumption rate 35.6kWh / t B: Product particle size specification 30μm In case of 21% residue, product powder amount 103t
/ H The power consumption rate was 35.0 kWh / t. On the other hand, in the present invention, the above B: product grain size specification 30 μ
When the residual amount is 21%, the product powder amount is 105.5 t / h
The power consumption rate was 34.1 kWh / t.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すフロ−チャ−トである。FIG. 1 is a flow chart showing an embodiment of the present invention.

【図2】粉砕速度パラメ−タkおよびnの関係を示す図
である。
FIG. 2 is a diagram showing a relationship between grinding speed parameters k and n.

【図3】部分分級効率曲線を示す図である。FIG. 3 is a diagram showing a partial classification efficiency curve.

【図4】ロックド−サイクル法を示す図である。FIG. 4 is a diagram showing a locked-cycle method.

【図5】粉体輸送機の検量線を示す図である。FIG. 5 is a diagram showing a calibration curve of a powder transport machine.

【符号の説明】[Explanation of symbols]

1 閉回路粉砕システム 4 チュ−ブミル 5 バッケトエレベ−タ 6 分級機 20 電流計 30 音圧計 1 Closed circuit crushing system 4 Tube mill 5 Bucket elevator 6 Classifier 20 Ammeter 30 Sound pressure meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉砕機と分級機とを備えた閉回路粉砕シス
テムにおいて、粉砕モデル式と分級モデル式により、与
えられた製品粒度スペックに対し各粉砕機内砕料通過量
ごとに製品粉末量と粒度分布とを求め、該製品粉末量が
最も高い粉砕機内砕粉通過量を最適値と定め、該最適値
を維持できるように新装入物質量を制御することを特徴
とする閉回路粉砕システムの制御方法
1. In a closed circuit crushing system equipped with a crusher and a classifier, the product powder amount for each crusher passing amount in each crusher is given to a given product particle size specification by a crushing model formula and a classification model formula. A closed circuit crushing system characterized in that the particle size distribution is obtained, the amount of crushed powder passing through the crusher with the highest amount of the product powder is determined as an optimum value, and the amount of newly charged substance is controlled so that the optimum value can be maintained. Control method
【請求項2】粉砕機が、音圧測定手段を備えていること
を特徴とする請求項1記載の閉回路粉砕システムの制御
方法
2. The control method for a closed circuit crushing system according to claim 1, wherein the crusher is provided with a sound pressure measuring means.
JP18421992A 1992-07-10 1992-07-10 Method for controlling closed-circuit crushing system Pending JPH0631193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18421992A JPH0631193A (en) 1992-07-10 1992-07-10 Method for controlling closed-circuit crushing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18421992A JPH0631193A (en) 1992-07-10 1992-07-10 Method for controlling closed-circuit crushing system

Publications (1)

Publication Number Publication Date
JPH0631193A true JPH0631193A (en) 1994-02-08

Family

ID=16149454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18421992A Pending JPH0631193A (en) 1992-07-10 1992-07-10 Method for controlling closed-circuit crushing system

Country Status (1)

Country Link
JP (1) JPH0631193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932307A (en) * 2015-06-01 2015-09-23 遵义市立新机械有限责任公司 Real-time optimization control method for crusher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932307A (en) * 2015-06-01 2015-09-23 遵义市立新机械有限责任公司 Real-time optimization control method for crusher
CN104932307B (en) * 2015-06-01 2017-11-21 遵义市立新机械有限责任公司 A kind of disintegrating machine method for real-time optimization control

Similar Documents

Publication Publication Date Title
Jankovic et al. Cement grinding optimisation
Austin et al. The effect of ball size on mill performance
US4784333A (en) Process for producing toner powder
AU2011297864B2 (en) Method for controlling a mill system having at least one mill, in particular an ore mill or cement mill
Toprak et al. The effects of grinding aids on modelling of air classification of cement
Dundar et al. Simulation assisted capacity improvement of cement grinding circuit: case study cement plant
JPS645942B2 (en)
Benzer Modeling and simulation of a fully air swept ball mill in a raw material grinding circuit
JP2007070143A (en) Crushed sand production device and crushed sand production method
CN107899733A (en) Crusher and its control method, device and system, computer-readable recording medium
JPH0631193A (en) Method for controlling closed-circuit crushing system
Craig Grinding mill modeling and control: past, present and future
Le Roux et al. Reducing the number of size classes in a cumulative rates model used for process control of a grinding mill circuit
Genç Optimization of an industrial scale open circuit three-compartment cement grinding ball mill with the aid of simulation
JPH08507465A (en) Control method for closed circuit dry crusher
JPH10296117A (en) Sand making method and sand making device
Wegehaupt et al. Preliminary studies on modelling the drying process in product classification and separation path in an electromagnetic mill installation
Genç et al. Analysis of specific discharge rate functions in industrial scale cement grinding multi-compartment ball mills to assist ball mill modeling
Osipova Investigation of the possibility of obtaining concentrate production targets based on a mathematical model of an ferrum ore processing site
Costea et al. Approach of PID controller tuning for ball mill
Reimers et al. Design specifications in the flowsheet simulation of complex solids processes
JP2500126B2 (en) Pulverizing device for multiple tube mills using vertical roller mill for pre-milling and control method thereof
Le Roux et al. State and parameter estimation for a grinding mill circuit from operational input-output data
CN115400866B (en) Ore grinding control method, device, equipment and medium based on ore block characteristics
JP2711682B2 (en) Automatic control method of crusher