JPH063117A - Optical rain gage - Google Patents

Optical rain gage

Info

Publication number
JPH063117A
JPH063117A JP15770592A JP15770592A JPH063117A JP H063117 A JPH063117 A JP H063117A JP 15770592 A JP15770592 A JP 15770592A JP 15770592 A JP15770592 A JP 15770592A JP H063117 A JPH063117 A JP H063117A
Authority
JP
Japan
Prior art keywords
raindrop
optical system
light
raindrops
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15770592A
Other languages
Japanese (ja)
Inventor
Kenichi Hayashi
健一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP15770592A priority Critical patent/JPH063117A/en
Publication of JPH063117A publication Critical patent/JPH063117A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical rain gage which can measure the radius of a rain drop and the amount of rainfall with high precision in a short time. CONSTITUTION:When distances of luminescent spots formed by a reflected light and a transmitted refracted light from a rain drop 1, from the center of the rain drop on a photosensor 6, are denoted by r1 and r2, angles of incidence of the reflected light and the transmitted refracted light on the rain drop 1 by theta1 and theta2, the magnification of an imaging optical system 5 by (m) and the radius of the rain drop 1 by R, an arithmetic device 8 determines R by an equation R=(r1+r2)/m.(sintheta1+sintheta2). When a distance between the object- side principal point of the imaging optical system 5 and the rain drop 1 is denoted by H, an angle formed by the optical axis of images of first luminescent spots in a pair and by a reference line by delta1 and an angle formed by the optical axis of images of second luminescent spots in a pair and by the reference line by delta2, the amount DELTAH of deviation of the rain drop 1 from a focal surface is computed from dimensions of these delta1 and delta2 and a corrective value R' of R is determined by an equation R'=RX(H+DELTAH)/H.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自然界の雨滴の粒径及
び降雨量を計測するための光雨量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light rain gauge for measuring the size of raindrops in nature and the amount of rainfall.

【0002】[0002]

【従来の技術】従来、大気中から地上に落下する雨の降
雨量を測定する雨量計のうちで、個々の雨滴について、
その径を測定することができ、雨滴径分布を求めること
のできる雨量計として、例えば、雨滴によって生じる光
のシンチレーションを用い光伝搬路上の平均降水量と粒
径分布とを逆算する光雨量計が知られている(村山信
彦,“これからの気象観測”,p44,東京堂出版(1
983年)参照)。この光雨量計では、数mWのHe−
Neレーザビームを遮って雨滴によって生じるシンチレ
ーションパターンの落下速度を、光風速計と同様の方法
で求めている。
2. Description of the Related Art Conventionally, among rain gauges that measure the amount of rain falling from the atmosphere to the ground,
As a rain gauge that can measure its diameter and can determine the raindrop diameter distribution, for example, a light rain gauge that calculates back the average precipitation amount on the light propagation path and the particle size distribution using scintillation of light generated by raindrops Known (Nobuhiko Murayama, “Meteorological Observations in the Future”, p44, Tokyodo Publishing (1
983))). With this light rain gauge, He- of several mW
The falling velocity of the scintillation pattern generated by raindrops by blocking the Ne laser beam is obtained by the same method as that of the optical anemometer.

【0003】上述の光雨量計では、地上付近の雨滴の大
きさと終速度の関係から、伝搬路上の平均降水量と粒径
分布を逆算することが可能である。また、雨滴による光
強度変化から同様に雨滴径を求めることが可能である。
In the above-described light rain gauge, it is possible to back-calculate the average precipitation amount and the particle size distribution on the propagation path from the relationship between the size of the raindrops near the ground and the final velocity. Further, it is possible to similarly obtain the raindrop diameter from the change in light intensity due to the raindrop.

【0004】ところが、一般に、光強度変化で雨滴径を
求める場合には、アナログ量で計測しているから高精度
の検出ができず、さらに、長期にわたる雨滴計測におい
ては、システム全体の安定性(アンプ等のゲインの変動
を少なくする)が要求され、高価なシステムになる欠点
がある。
However, in general, when the raindrop diameter is obtained by the change in light intensity, the measurement is performed with an analog amount, so that highly accurate detection cannot be performed. Further, in the raindrop measurement over a long period, the stability of the entire system ( There is a drawback that an expensive system is required because it is required to reduce the fluctuation of the gain of the amplifier or the like.

【0005】上述の欠点を解決するための雨滴測定装置
として、特願平1−134544号明細書、特願平
1−139218号明細書及び特願平2−22663
8号明細書に記載の雨滴測定装置がある。これらの雨滴
測定装置では、雨滴に光を照射した時に、雨滴により散
乱される反射光と該雨滴を透過する屈折光との2つの輝
点の間の距離を検出して幾何光学的な計算により雨滴径
を求めている。
As a raindrop measuring device for solving the above-mentioned drawbacks, Japanese Patent Application No. 1-134544, Japanese Patent Application No. 1-139218 and Japanese Patent Application No. 2-22663.
There is a raindrop measuring device described in the specification of No. 8. In these raindrop measuring devices, when a raindrop is irradiated with light, the distance between two bright points of reflected light scattered by the raindrop and refracted light passing through the raindrop is detected and geometrical-optical calculation is performed. We are looking for raindrop size.

【0006】ここで、第3図を参照して、上述の雨滴測
定装置について具体的に説明する。この雨滴測定装置
は、各雨滴1に平行光線2を照射することによって得ら
れる反射光3及び透過屈折光4がそれぞれ雨滴1から出
射することを利用したものである。ここで、各雨滴1か
ら得られる反射光3及び透過屈折光4の雨滴1の中心か
らの距離はそれぞれR1 及びR2 とすると、両輝点間の
距離は、(R1 +R2 )となる。
The above-mentioned raindrop measuring device will be described in detail with reference to FIG. This raindrop measuring device utilizes the fact that reflected light 3 and transmitted refracted light 4 obtained by irradiating each raindrop 1 with a parallel light beam 2 are emitted from each raindrop 1. Here, if the distances of the reflected light 3 and the transmitted refracted light 4 obtained from each raindrop 1 from the center of the raindrop 1 are R 1 and R 2 , respectively, the distance between both bright points is (R 1 + R 2 ). Become.

【0007】一方、両輝点位置は雨滴1の屈折率及び入
射光の雨滴1に対する入射角によって、一義的に定まる
から、距離(R1 +R2 )から雨滴1の径を求めること
ができる。実際には、雨滴1からの反射光3及び透過屈
折光4は、結像光学系5により一次元の光センサ6の上
に結像にされる。
On the other hand, since the positions of both bright spots are uniquely determined by the refractive index of the raindrop 1 and the incident angle of the incident light with respect to the raindrop 1, the diameter of the raindrop 1 can be obtained from the distance (R 1 + R 2 ). Actually, the reflected light 3 and the transmitted refracted light 4 from the raindrop 1 are imaged on the one-dimensional optical sensor 6 by the imaging optical system 5.

【0008】光センサ6上の反射光3及び透過屈折光4
の輝点の雨滴中心からの距離r1 ,r2 は、反射光3及
び透過屈折光4のそれぞれの入射角θ1 ,θ2 及び結像
光学系5の倍率mとから得られ、雨滴1の半径Rは、次
の数1により算出される。
Reflected light 3 and transmitted refracted light 4 on the optical sensor 6
The distances r 1 and r 2 of the bright spots from the raindrop center are obtained from the incident angles θ 1 and θ 2 of the reflected light 3 and the transmitted refracted light 4 and the magnification m of the imaging optical system 5, respectively. The radius R of is calculated by the following equation 1.

【0009】[0009]

【数1】 [Equation 1]

【0010】(r1 +r2 )は、光センサ6からの信号
で得られるので、真球とみなした時の雨滴1の半径Rを
数1から求めることができる。また、個々の雨滴1の半
径Riが得られれば、雨滴の全体の体積Vは、V=(4
/3)・πΣ(Ri)3 として求めることができる。
Since (r 1 + r 2 ) is obtained from the signal from the optical sensor 6, the radius R of the raindrop 1 when it is regarded as a true sphere can be obtained from the equation 1. If the radius Ri of each raindrop 1 is obtained, the total volume V of raindrops is V = (4
It can be obtained as / 3) · πΣ (Ri) 3 .

【0011】この上述の検出方式では、前述の光雨量計
と異なり、輝点間距離を求めている。つまり、散乱光量
や光強度変化というアナログ量を用いていないから、高
精度な検出が可能となる。
In the above-mentioned detection method, unlike the above-described light rain gauge, the distance between bright spots is obtained. In other words, since an analog quantity such as scattered light quantity or light intensity change is not used, highly accurate detection is possible.

【0012】[0012]

【発明が解決しようとする課題】しかし、上述の光雨量
計においては、雨滴の半径Rは数1に示されるように光
学結像系の倍率mに依存するため、雨滴が光学結像系の
焦点面より外れた時には、結像された雨滴の大きさが変
化することがある。これを避けて高精度な測定を可能と
すべく、工学結像系の焦点面近傍に雨滴を導く雨滴落下
穴を設ける場合がある。また、雨滴落下穴を設けた場合
には、穴部以外の雨滴が受け止められてしまうことにな
るので、測定対象の雨滴数が結果的に少なくなり、高精
度な測定には長時間を要するという場合がある。
However, in the above-described optical rain gauge, since the radius R of the raindrop depends on the magnification m of the optical image forming system as shown in the equation 1, the raindrop does not correspond to the optical image forming system. When out of focus, the size of the imaged raindrop may change. In order to avoid this and to enable highly accurate measurement, a raindrop drop hole for guiding raindrops may be provided near the focal plane of the engineering imaging system. In addition, when the raindrop drop hole is provided, raindrops other than the hole portion will be received, so the number of raindrops to be measured will eventually decrease, and it will take a long time for highly accurate measurement. There are cases.

【0013】本発明の課題は、雨滴の径および降雨量を
短時間で高精度に測定することができる光雨量計を提供
することにある。
An object of the present invention is to provide a light rain gauge capable of highly accurately measuring the diameter of a raindrop and the amount of rainfall in a short time.

【0014】[0014]

【課題を解決するための手段】本発明によれば、落下す
る雨滴に雨滴の径より大きいビ−ム幅を有する平行な光
線を照射する照明手段と、前記光線を受けた雨滴により
散乱される反射光と該雨滴を透過する透過屈折光とが形
成する2対の輝点における第1の1対の輝点を第1の光
学系で第1の位置に結像し、かつ、前記2対の輝点にお
ける第2の1対の輝点を第2の光学系で第2の位置に結
像する結像光学系と、この結像光学系からの像を受ける
光センサと、この光センサからの検出信号に基いて前記
雨滴の半径および降雨量を演算する演算手段とを具備し
てなり、前記演算手段は、前記反射光および透過屈折光
が形成する輝点の前記光センサ上における雨滴の中心か
らの距離をr1 ,r2 とし、前記反射光および透過屈折
光の雨滴に対する入射角をθ1 ,θ2 とし、前記結像光
学系の倍率をmとし、雨滴の半径をRとした場合に、R
=(r1 +r2 )/m・(sinθ1 +sinθ2 )と
いう式によりRを求め、前記結像光学系の物体側主点と
雨滴との距離をHとし、前記第1の1対の輝点の像の光
軸と基準線との角度をδ1 とし、前記第2の1対の輝点
の像の光軸と基準線との角度をδ2 とした場合に、これ
らのδ1 とδ2 の大小により雨滴の落下位置および焦点
面からのずれ量ΔHを計算し、Rの補正値R′をR′=
R×(H+ΔH)/Hという式で求め、かつ、このR´
を用いて雨滴の体積を求めることにより降雨量を演算す
ることを特徴とする光雨量計が得られる。
According to the present invention, illuminating means for irradiating falling raindrops with parallel rays having a beam width larger than the diameter of the raindrops, and scattering by the raindrops receiving the rays. The first pair of bright spots of the two pairs of bright spots formed by the reflected light and the transmitted refracted light that passes through the raindrops are imaged at the first position by the first optical system, and the two pairs of bright spots are formed. Of the second pair of bright spots of the image forming optical system at the second position by the second optical system at the second position, an optical sensor for receiving an image from the image forming optical system, and the optical sensor. And a calculation means for calculating the radius and the rainfall amount of the raindrop based on the detection signal from the raindrop on the optical sensor of the bright spot formed by the reflected light and the transmitted refracted light. the distance from the center and r 1, r 2, and for the raindrops of the reflected light and transmitted refracted light 1 elevation angle theta, and theta 2, the magnification of the imaging optical system and m, the radius of the raindrop when the R, R
= (R 1 + r 2 ) / m · (sin θ 1 + sin θ 2 ), R is obtained, the distance between the object-side principal point of the imaging optical system and the raindrop is set to H, and the first pair of bright If the angle between the optical axis of the point image and the reference line is δ 1 and the angle between the optical axis of the second pair of bright spot images and the reference line is δ 2 , then these δ 1 The amount of deviation ΔH from the raindrop drop position and the focal plane is calculated according to the magnitude of δ 2 , and the correction value R ′ of R is R ′ =
It is calculated by the formula R × (H + ΔH) / H, and R ′
A light rain gauge is obtained which is characterized in that the amount of rainfall is calculated by calculating the volume of raindrops.

【0015】[0015]

【実施例】次に、図を参照して本発明の実施例について
説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0016】図1に示すように、光源7は、雨滴1の径
より大きいビ−ム幅を有する平行光線2を雨滴1に対し
て照射している。雨滴1からの散乱光は、あらゆる方向
に散乱される。これらのうちで、結像光学系5の光軸A
に沿ったものと光軸Bに沿ったものが、一次元の光セン
サ6上の異なる位置に結像されて、2つの輝点対(合計
4つの輝点)を生じる。一次元の光センサ6は、結像光
学系5からの散乱光の強度を電気信号に変換して演算装
置8に送る。演算装置8は、後述する算出方法で雨滴1
の径およびその分布、体積、単位時間当りの降雨量等を
計算して表示装置9に表示させる。
As shown in FIG. 1, the light source 7 irradiates the raindrop 1 with parallel rays 2 having a beam width larger than the diameter of the raindrop 1. The scattered light from the raindrop 1 is scattered in all directions. Of these, the optical axis A of the imaging optical system 5
Along the optical axis B and those along the optical axis B are imaged at different positions on the one-dimensional photosensor 6 to generate two bright spot pairs (four bright spots in total). The one-dimensional optical sensor 6 converts the intensity of scattered light from the imaging optical system 5 into an electric signal and sends it to the arithmetic unit 8. The computing device 8 uses the calculation method described later to determine the raindrop 1
The diameter and distribution, volume, and rainfall per unit time are calculated and displayed on the display device 9.

【0017】2つ以上の光軸を合わせて連結する結像光
学系5は種々のもの構成することができる。図2に示す
結像光学系5は、プリズム5aの2つの面を用いて光軸
A,Bを有する光学系で構成したものである。
The image forming optical system 5 for connecting two or more optical axes together can be constructed in various ways. The imaging optical system 5 shown in FIG. 2 is an optical system having optical axes A and B using the two surfaces of the prism 5a.

【0018】光軸を2つ以上にすることにより、雨滴1
上の輝点の像は、それぞれの光軸に対応して生じること
になる。この時、一次元の光センサ6の輝点位置から光
軸A,Bと基準線との角度δ1 ,δ2 の値を得ることが
できるる。そしてδ1 ,δ2の大小により、雨滴1が焦
点面からずれた場合に雨滴の落下位置およびそのずれ量
を具体的に計算する方法を図4を用いて述べる。
Raindrops 1 can be obtained by using two or more optical axes.
The image of the upper bright spot will be generated corresponding to each optical axis. At this time, the values of the angles δ 1 and δ 2 between the optical axes A and B and the reference line can be obtained from the one-dimensional bright spot position of the optical sensor 6. Then, a method of concretely calculating the falling position of the raindrop and the amount of deviation thereof when the raindrop 1 deviates from the focal plane depending on the magnitudes of δ 1 and δ 2 will be described with reference to FIG.

【0019】焦点面Oにある雨滴1がP,Qにずれた場
合を考える。焦点面Oから雨滴1が光センサ6側に近づ
いた時(P点)には、Oの像は位置AからA′に、また
位置BからB′に移動する。逆に遠ざかる時(Q点)に
は、Oの像は位置AからA″に、また位置BからB″に
移動する。
Consider a case where the raindrop 1 on the focal plane O is deviated to P and Q. When the raindrop 1 approaches the optical sensor 6 side from the focal plane O (point P), the image of O moves from position A to A ′ and from position B to B ′. Conversely, when moving away (point Q), the O image moves from position A to A ″ and from position B to B ″.

【0020】一般的に雨滴1の径は、結像光学系5の物
体側主点(薄肉レンズではレンズ中心と考えてよい)と
物体側焦点との距離Hに対し、1/100以下となるこ
とが多いので、雨滴1の中心として2つの輝点の中央を
仮定しても、その誤差は極めて小さい。そこで位置A,
A′,A″は雨滴1からの2つの輝点の中央を求めた値
とする。なお、必要な場合は、図3に示すR1 ,R2
り中心を正確に求めることができる。
Generally, the diameter of the raindrop 1 is 1/100 or less with respect to the distance H between the object-side principal point of the imaging optical system 5 (which may be considered to be the lens center in a thin lens) and the object-side focus. In many cases, even if the center of two bright spots is assumed as the center of the raindrop 1, the error is extremely small. So position A,
A ′ and A ″ are values obtained by calculating the centers of the two bright spots from the raindrop 1. If necessary, the centers can be accurately calculated from R 1 and R 2 shown in FIG.

【0021】結像光学系の倍率mを用いると、OO′=
AA′/m、 OO″=AA″/mとなる。また、OP
は次の数2で与えられる。
Using the magnification m of the imaging optical system, OO '=
AA ′ / m and OO ″ = AA ″ / m. Also OP
Is given by the following equation 2.

【0022】[0022]

【数2】 [Equation 2]

【0023】また、OQは次の数3で与えられる。OQ is given by the following equation 3.

【0024】[0024]

【数3】 [Equation 3]

【0025】数2及び数3における近似は計算の簡単の
ために採用する場合もあるが、δ1′,δ2 ″をそのま
ま用いてもよい。この方法は三角測量として一般的に用
いられており、距離計などにも使われている。
The approximations in the equations 2 and 3 may be adopted for simplification of calculation, but δ 1 ′ and δ 2 ″ may be used as they are. This method is generally used as triangulation. It is also used in rangefinders.

【0026】以上の説明は、雨滴1が一次元の光センサ
6の光軸上にある場合について行なったが、光軸から外
れた場合にも、δ1 ,δ2 の値をもとに雨滴1の落下位
置を計算し、焦点面からのずれの量を求めることができ
ることは明らかである。
Although the above description has been made for the case where the raindrop 1 is on the optical axis of the one-dimensional optical sensor 6, even when the raindrop 1 deviates from the optical axis, the raindrop is based on the values of δ 1 and δ 2. It is obvious that the drop position of 1 can be calculated and the amount of deviation from the focal plane can be obtained.

【0027】ここで、焦点面からのずれをΔHとし、結
像光学系5の物体側主点(薄肉レンズではレンズ中心と
考えてよ)と雨滴1との距離をHとすると、雨滴1の大
きさは(H×ΔH)/Hだけ変化する。すなわち、像
は、焦点面から雨滴1が一次元の光センサ6側に近づい
た時(ΔH=−OP)には大きく、逆方向(ΔH=O
Q)では小さく見えることになる。
Here, if the deviation from the focal plane is ΔH and the distance between the object-side principal point of the imaging optical system 5 (think of it as the lens center in a thin lens) and the raindrop 1 is H, the raindrop 1 The size changes by (H × ΔH) / H. That is, the image is large when the raindrop 1 approaches the one-dimensional optical sensor 6 side from the focal plane (ΔH = −OP), and the opposite direction (ΔH = O).
It looks small in Q).

【0028】したがって(1)式で得られたRに(H+
ΔH)/Hをかけて補正することにより、補正値R´
[R´=R×(H+ΔH)/H]を求めることができ
る。この補正値Rを用いて雨滴1の体積を求めることに
より、正確な降雨量を演算することができる。
Therefore, R obtained by the equation (1) is (H +
By correcting by multiplying by ΔH) / H, the correction value R ′
[R ′ = R × (H + ΔH) / H] can be obtained. By calculating the volume of the raindrop 1 using this correction value R, it is possible to calculate an accurate rainfall amount.

【0029】以上の計算はすべて演算装置8で行われ
る。上記説明では輝点位置が見る角度により変化しない
という記述を行なったが、δ1 ,δ2 がθに比較して小
さい(すなわち、Hに対し、Rが小さい)ので、上記は
近似的に正しい計算を行なっていることが理解される。
All of the above calculations are performed by the arithmetic unit 8. In the above description, it was described that the bright spot position does not change depending on the viewing angle, but since δ 1 and δ 2 are smaller than θ (that is, R is smaller than H), the above is approximately correct. It is understood that the calculation is performed.

【0030】なお、前記結像光学系5は、図5に示すよ
うに、3つの光軸A,B,Cを有するプリズムで構成し
てもよい。
The image forming optical system 5 may be composed of a prism having three optical axes A, B and C as shown in FIG.

【0031】また、前記結像光学系5は、図7に示すよ
うに、2つの光軸A,Bを有する反射鏡の組み合わせで
構成してもよい。反射鏡を組み合わせた光学系では、プ
リズムで構成した光学系に対比すると、プリズムのよう
に光の波長による分散(いわゆるプリズムによる分光)
がないため、平行光線2としてHe−Neレ−ザのよう
な単色光を用いなくても、明瞭な像が得られるという利
点がある。
Further, the image forming optical system 5 may be constituted by a combination of reflecting mirrors having two optical axes A and B as shown in FIG. In an optical system that combines a reflecting mirror, when compared to an optical system that is configured with a prism, the dispersion due to the wavelength of light is similar to that of a prism (so-called spectral distribution by a prism).
Therefore, there is an advantage that a clear image can be obtained without using monochromatic light such as He-Ne laser as the parallel light beam 2.

【0032】図8に反射鏡を組み合わせた光学系を用い
てH=370の場合のΔHに対する補正を行った場合と
行わなかった場合の計測デ−タを示す。ここでは、標準
サイズで計測するため光学ガラス材(BK−7)で制作
した3mmφのボ−ルレンズを用いた。本発明により、
極めて高精度に測定することができることが示されてい
る。
FIG. 8 shows measurement data with and without correction of ΔH in the case of H = 370 using an optical system in which a reflecting mirror is combined. Here, a ball lens having a diameter of 3 mm and made of an optical glass material (BK-7) was used for measurement with a standard size. According to the invention,
It has been shown that the measurement can be performed with extremely high accuracy.

【0033】[0033]

【発明の効果】本発明は、雨滴の径および降雨量を短時
間で高精度に測定することができる。
According to the present invention, the diameter of raindrops and the amount of rainfall can be measured with high accuracy in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す正面図である。FIG. 1 is a front view showing an embodiment of the present invention.

【図2】本発明の1実施例における光学系を示す正面図
である。
FIG. 2 is a front view showing an optical system according to an embodiment of the present invention.

【図3】本発明の光学系を説明するための図である。FIG. 3 is a diagram for explaining an optical system of the present invention.

【図4】本発明の光学系の一部を説明するための図であ
る。
FIG. 4 is a diagram for explaining a part of an optical system of the present invention.

【図5】本発明における光学系による結像状態を示す図
である。
FIG. 5 is a diagram showing an image formation state by the optical system in the present invention.

【図6】本発明における光学系の他の実施例を示す正面
図である。
FIG. 6 is a front view showing another embodiment of the optical system according to the present invention.

【図7】本発明における光学系のさらに他の実施例を示
す正面図である。
FIG. 7 is a front view showing still another embodiment of the optical system according to the present invention.

【図8】本発明の光雨量計および従来の光雨量計による
計測値を説明するための図である。
FIG. 8 is a diagram for explaining measurement values obtained by the light rain gauge of the present invention and a conventional light rain gauge.

【符号の説明】[Explanation of symbols]

1 雨滴 3 反射光 4 透過屈折光 5 結像光学系 6 光センサ 7 光源 8 演算装置 1 raindrop 3 reflected light 4 transmitted refracted light 5 imaging optical system 6 optical sensor 7 light source 8 arithmetic unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 落下する雨滴に雨滴の径より大きいビ−
ム幅を有する平行な光線を照射する照明手段と、前記光
線を受けた雨滴により散乱される反射光と該雨滴を透過
する透過屈折光とが形成する2対の輝点における第1の
1対の輝点を第1の光学系で第1の位置に結像し、か
つ、前記2対の輝点における第2の1対の輝点を第2の
光学系で第2の位置に結像する結像光学系と、この結像
光学系からの像を受ける光センサと、この光センサから
の検出信号に基いて前記雨滴の半径および降雨量を演算
する演算手段とを具備してなり、前記演算手段は、前記
反射光および透過屈折光が形成する輝点の前記光センサ
上における雨滴の中心からの距離をr1 ,r2 とし、前
記反射光および透過屈折光の雨滴に対する入射角を
θ1 ,θ2 とし、前記結像光学系の倍率をmとし、雨滴
の半径をRとした場合に、R=(r1 +r2 )/m・
(sinθ1 +sinθ2 )という式によりRを求め、
前記結像光学系の物体側主点と雨滴との距離をHとし、
前記第1の1対の輝点の像の光軸と基準線との角度をδ
1 とし、前記第2の1対の輝点の像の光軸と基準線との
角度をδ2 とした場合に、これらのδ1 とδ2 の大小に
より雨滴の落下位置および焦点面からのずれ量ΔHを計
算し、Rの補正値R′をR′=R×(H+ΔH)/Hと
いう式で求め、かつ、このR´を用いて雨滴の体積を求
めることにより降雨量を演算することを特徴とする光雨
量計。
1. A beer larger than a diameter of a raindrop is included in a falling raindrop.
First pair at two bright spots formed by illumination means for irradiating parallel light rays having a beam width, reflected light scattered by raindrops that have received the light rays, and transmitted refracted light transmitted through the raindrops. Image of the luminescent spot of the second optical system at the first position with the first optical system, and the second pair of bright points of the two luminescent spots of the second optical system at the second position. And an optical sensor that receives an image from the imaging optical system, and an arithmetic unit that calculates the radius and the amount of rainfall of the raindrop based on a detection signal from the optical sensor. The calculation means sets the distances of the bright spots formed by the reflected light and the transmitted refracted light from the center of the raindrop on the photosensor to r 1 and r 2, and determines the incident angles of the reflected light and the transmitted refracted light with respect to the raindrop. theta 1, and theta 2, the magnification of the imaging optical system and m, the radius of the raindrop when the R, = (R 1 + r 2) / m ·
R is calculated by the equation (sin θ 1 + sin θ 2 ),
The distance between the object-side principal point of the imaging optical system and the raindrop is H,
The angle between the optical axis of the image of the first pair of bright spots and the reference line is δ
1, and the angle between the optical axis and the reference line of the image of the bright spot of the second pair when the [delta] 2, from falling position and the focal plane of the raindrops by these [delta] 1 and [delta] 2 of the large and small The amount of deviation ΔH is calculated, the correction value R ′ of R is calculated by the formula R ′ = R × (H + ΔH) / H, and the volume of raindrops is calculated using this R ′ to calculate the amount of rainfall. A light rain gauge.
JP15770592A 1992-06-17 1992-06-17 Optical rain gage Withdrawn JPH063117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15770592A JPH063117A (en) 1992-06-17 1992-06-17 Optical rain gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15770592A JPH063117A (en) 1992-06-17 1992-06-17 Optical rain gage

Publications (1)

Publication Number Publication Date
JPH063117A true JPH063117A (en) 1994-01-11

Family

ID=15655576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15770592A Withdrawn JPH063117A (en) 1992-06-17 1992-06-17 Optical rain gage

Country Status (1)

Country Link
JP (1) JPH063117A (en)

Similar Documents

Publication Publication Date Title
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
US4902902A (en) Apparatus for determining the thickness of material
JPS6379003A (en) Light probe for measuring shape
JPH0374763B2 (en)
US7873488B2 (en) On-site calibration method and object for chromatic point sensors
US4168126A (en) Electro-optical measuring system using precision light translator
EP0047250A1 (en) Dimension measuring apparatus.
CN104568389A (en) Bilateral dislocation differential confocal element parameter measuring method
US6411372B1 (en) Geodetic instrument with laser arrangement
CN103791860A (en) Tiny angle measuring device and method based on vision detecting technology
JPS63241336A (en) Particle size measuring apparatus
CN101922932A (en) Compensating device of pyramid prism coordinate measuring error
EP0611947B1 (en) System for measuring the characteristic attitude angles of the wheels of an automobile frame, and relative measurement means
Nikolaev et al. Methods of calibrating prisms with faces that have no reflective coating, using a dynamic goniometer
US11656344B2 (en) Light-based position measurement device with atmospheric correction
CN108646047A (en) Based on tachogenerator of the Doppler effect with correcting principle and calibration and measurement method
JPH063117A (en) Optical rain gage
JP2681829B2 (en) Raindrop particle size distribution measuring device
RU2769305C1 (en) Autocollimator
CN109141294A (en) A kind of angle measuring sensor and its scaling method and measurement method
RU2461797C1 (en) Device to measure bend of artillery barrel
US20220179202A1 (en) Compensation of pupil aberration of a lens objective
US6081333A (en) Bi-lateral shearing interferometer with beam convergence/divergence indication
JP2906081B2 (en) Light rain gauge
JP2962947B2 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831