JPH06310766A - Thermionic material and production thereof - Google Patents

Thermionic material and production thereof

Info

Publication number
JPH06310766A
JPH06310766A JP5120781A JP12078193A JPH06310766A JP H06310766 A JPH06310766 A JP H06310766A JP 5120781 A JP5120781 A JP 5120781A JP 12078193 A JP12078193 A JP 12078193A JP H06310766 A JPH06310766 A JP H06310766A
Authority
JP
Japan
Prior art keywords
thin film
thermoelectric
layer
single layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120781A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Yasushi Nakagiri
康司 中桐
Yoshiaki Yamamoto
義明 山本
Akiko Nakasuji
章子 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5120781A priority Critical patent/JPH06310766A/en
Publication of JPH06310766A publication Critical patent/JPH06310766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enhance the performance of thermionic material by employing a microstructure finer than a specific level in the arranging direction of at least second material among a plurality of materials having thermionic characteristics. CONSTITUTION:An FeMnSi2 layer 13 of single layer thin film and a layer 14 principally comprising SiO2 are laminated alternately, while being shifted laterally, on an inclining glass substrate 9 formed by evaporation substances entering through the end part of a slit. Consequently, a structure where the normal 15 of each single layer thin film is not aligned with the normal 16 of the laminated thin film, i.e., a structure inclining against the surface of the substrate, is brought about. In this regard, at least one of the single layer thin films 13, 14 has thickness of 1000Angstrom or below. In the filming method where the film part is shifted sequentially, thickness of the single layer films 13, 14 can be controlled relatively accurately by regulating the filming time while ensuring the compositional steepness of the interface between the single layer films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度測定、ヒートポン
プ、発電機のなどの基本構成材料として利用される熱電
材料およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material used as a basic constituent material for temperature measurement, heat pumps, generators and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】熱電材料の性能を表すパラメ−タとし
て、ゼ−ベック係数S、電導度σおよび熱伝導度λより
導かれる性能指数Zがある(Z=S2σ/λ)。半導体
の古典的な熱電現象理論によると、ゼ−ベック係数Sと
電導度σの対数とは逆相関関係にあるので、性能指数Z
の大きい材料、即ちゼ−ベック係数Sも大きく、しかも
電導度σも大きい材料は得ることが難しかった。その結
果、従来で最も大きな性能指数を呈する熱電材料として
Bi−Te系でZが3×10-3/Kにとどまっていた。
2. Description of the Related Art As a parameter representing the performance of a thermoelectric material, there is a performance index Z derived from the Zeebeck coefficient S, the electrical conductivity σ and the thermal conductivity λ (Z = S 2 σ / λ). According to the classical theory of thermoelectric phenomena of semiconductors, there is an inverse correlation between the Zeebeck coefficient S and the logarithm of the conductivity σ.
It was difficult to obtain a material having a large value, that is, a material having a large Zeebeck coefficient S and a large electric conductivity σ. As a result, Z was 3 × 10 −3 / K in the Bi—Te system as the thermoelectric material exhibiting the largest performance index in the past.

【0003】一方、熱振動を量子化したフォノンや電荷
キャリア−の平均自由行程と同程度の大きさの微細構造
(均質でない構造)が熱電材料中に存在すると、熱電現
象などの輸送現象は、通常の熱電現象理論では扱えず、
高い性能指数の材料を得られる可能性がある。このよう
な考え方に沿って、熱電材料からなる微粒子(〜100
nm)を別のマトリックス材料中に分散した構造や、ま
た逆に窒化ホウ素などの微粒子を半導体中に分散させた
構成によって、ゼ−ベック係数と電導度がともに大きな
熱電材料が得られることが報告されている。そのような
微細構造にするための手段として、イオンクラスタ−ビ
−ム(ICB)などのイオン工学的手法などが提案され
ている。また、10オングストロ−ムから1μmオ−ダ
−の微細構造を制御性よく得る方法としては、超格子作
製に用いる薄膜積層法などがある。
On the other hand, when a fine structure (non-homogeneous structure) having a size approximately equal to the mean free path of phonons or charge carriers quantized by thermal vibration exists in the thermoelectric material, transport phenomena such as thermoelectric phenomenon occur. It cannot be handled by the usual thermoelectric phenomenon theory,
It is possible to obtain materials with a high figure of merit. In line with such an idea, fine particles (up to 100
(nm) is dispersed in another matrix material, and conversely, a structure in which fine particles such as boron nitride are dispersed in a semiconductor can provide a thermoelectric material having a large Zebeck coefficient and conductivity. Has been done. Ion engineering techniques such as ion cluster beam (ICB) have been proposed as means for achieving such a fine structure. Further, as a method for obtaining a fine structure of 10 angstrom to 1 μm order with good controllability, there is a thin film laminating method used for superlattice fabrication.

【0004】[0004]

【発明が解決しようとする課題】従来の薄膜積層法で
は、基板面と平行な単層薄膜の積層構造しか得られない
ので、熱電材料として用いるときの電流方向もしくは熱
流方向を基板面に対して垂直の方向にすることはできな
い。また、微粒子が別の材料中に分散した微細構造で
は、微細構造の定量的制御、例えば微粒子の大きさ、微
粒子間距離などの制御が困難であった。さらに、微粒子
の生成時や分散プロセス時に微粒子の結晶性が変化する
など、理想的な熱電材料を構成する製造法が見出されて
いなかった。
Since the conventional thin film laminating method can obtain only a laminated structure of a single-layer thin film parallel to the substrate surface, the direction of current or heat flow when used as a thermoelectric material is set to the substrate surface. It cannot be vertical. Further, in a fine structure in which fine particles are dispersed in another material, it is difficult to quantitatively control the fine structure, such as the size of fine particles and the distance between fine particles. Furthermore, a manufacturing method for forming an ideal thermoelectric material has not been found, such as the crystallinity of the particles changing during the generation of the particles or the dispersion process.

【0005】そこで、本発明は、さらなる高性能化が実
現できる微細構造を有する熱電材料を提供することを目
的とする。また、本発明は、より定量的に大きさが制御
可能な微細構造を有する熱電材料の製造法を提供するこ
とを目的とする。さらに、本発明は、各単層薄膜が基板
に対して傾いている積層薄膜よりなる熱電材料およびそ
の製造法を提供するものである。
Therefore, an object of the present invention is to provide a thermoelectric material having a fine structure capable of realizing higher performance. Another object of the present invention is to provide a method for producing a thermoelectric material having a fine structure whose size can be controlled quantitatively. Further, the present invention provides a thermoelectric material composed of laminated thin films in which each single-layer thin film is inclined with respect to the substrate, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の熱電材料は、熱
電特性を有する第1の材料と第1の材料とは熱電特性の
異なる第2の材料とを含む複数種の材料を周期性を有し
て順に一方向に配列して構成したもので、少なくとも前
記第2の材料は、その配列方向の個々の大きさが100
0オングストロ−ム以下の微細構造を有するものであ
る。また、上記の熱電材料を得る製造法の一つは、熱電
効果を有する単一の材料よりなる薄膜に、高い運動エネ
ルギーを有するイオンを縞状に照射して、薄膜を熱電特
性の異なる微細部分を含む縞状に改質する方法である。
The thermoelectric material of the present invention has a periodicity of a plurality of types of materials including a first material having thermoelectric properties and a second material having thermoelectric properties different from those of the first materials. And having at least the second material having an individual size of 100 in the arrangement direction.
It has a fine structure of 0 angstrom or less. In addition, one of the manufacturing methods for obtaining the above thermoelectric material is to irradiate a thin film made of a single material having a thermoelectric effect with stripes of ions having a high kinetic energy to form a thin film having fine parts with different thermoelectric properties. It is a method of reforming into a striped pattern including.

【0007】さらに、本発明の熱電材料は、熱電特性を
有する第1の材料の薄膜と第1の材料とは熱電特性の異
なる第2の材料の薄膜とを含む複数の単層薄膜を累積し
た積層薄膜で構成し、かつ各単層薄膜はその法線が積層
薄膜の法線と一致しないように形成したものである。ま
た、この積層薄膜よりなる熱電材料を製造する方法は、
薄膜形成時に、それぞれの単層薄膜の形成部位を基板面
に平行にかつ部分的に重なるように移動させて製造する
方法である。
Further, the thermoelectric material of the present invention has a plurality of single-layer thin films including a thin film of a first material having a thermoelectric property and a thin film of a second material having a thermoelectric property different from that of the first material. Each of the single-layer thin films is formed of a laminated thin film so that its normal line does not coincide with the normal line of the laminated thin film. Further, the method for producing a thermoelectric material comprising this laminated thin film is
This is a method of manufacturing by moving the formation site of each single-layer thin film so as to be parallel to and partially overlap with the substrate surface during thin film formation.

【0008】[0008]

【作用】ゼ−ベック効果は、導電性材料の2点間に温度
差が生じたときに、温度差に比例して起電力が発生する
現象である。そして、この起電力は、材料内での電荷キ
ャリア−の自由エネルギーを一定にすべく電荷キャリア
−が移動した結果生じる電荷キャリア−濃度の濃淡に起
因する起電力と、電荷キャリア−の散乱現象の温度依存
性による項、あるいは高温部から低温部への熱流、すな
わちフォノンの流れと電荷キャリア−が相互作用するこ
とによって生じる等がある。このうち電荷キャリア−の
散乱現象やフォノンとの相互作用に起因する因子は、構
成される熱電材料の大きさがそれらの平均自由行程と同
程度(数百〜1000オングストロ−ム)になってくる
と、その大きさに強く依存する。
The Zeebeck effect is a phenomenon in which an electromotive force is generated in proportion to the temperature difference when a temperature difference occurs between two points of the conductive material. Then, this electromotive force is due to the density of the charge carrier-concentration that occurs as a result of movement of the charge carrier in order to make the free energy of the charge carrier constant in the material, and the scattering phenomenon of the charge carrier. There is a term due to temperature dependence, or a heat flow from a high temperature portion to a low temperature portion, that is, generated by interaction of a phonon flow and a charge carrier. Among these factors, the factors resulting from the scattering phenomenon of charge carriers and the interaction with phonons are such that the size of the thermoelectric material to be constructed is about the same as their mean free path (several hundred to 1,000 angstroms). , And strongly depends on its size.

【0009】本発明は、この点に着目したもので、膜厚
や製膜部位の制御によって微細構造の大きさや質を、電
荷キャリア−などの散乱現象や相互作用が良好になるよ
うに構成することによって高い熱電特性を得るものであ
る。本発明は、上記のように高い熱電特性を可能とする
微細構造を有する材料とその製造法に関するものであ
り、基本的に、構成する熱電材料の種類については製膜
可能であるということを除いて限定するものではなく、
以下の実施例に示すFe−Si系材料の他、Sbをド−
プしたBi2Te3などこの分野でよく知られている材料
を広く用いることができる。
The present invention focuses on this point, and configures the size and quality of the fine structure by controlling the film thickness and the film forming portion so that the scattering phenomenon and interaction of charge carriers and the like become good. By doing so, high thermoelectric properties are obtained. The present invention relates to a material having a fine structure that enables high thermoelectric properties as described above and a manufacturing method thereof, and basically, except that the type of the thermoelectric material to be formed can be formed into a film. But not limited to
In addition to the Fe-Si-based materials shown in the following examples, Sb-
Well-known materials in this field, such as annealed Bi 2 Te 3, can be widely used.

【0010】[0010]

【実施例】以下、本発明の実施例について詳細に説明す
る。 [実施例1]まず、Fe−Si系材料と熱膨張率がほぼ
一致する硬質ガラス基板上に、スパッタリング法によっ
てFe0.985Mn0.015Si2を厚さ1〜2μmに製膜し
た。タ−ゲトとしてFe0.985Mn0.015Si2の焼結体
を用い、基板温度は200℃とし、Arにて300Wで
30分間スパッタリングした。得られた薄膜のX線回折
の結果、アモルファス状態であることが確認されたの
で、Ar中500℃にて約1時間熱処理し結晶化した。
次に、通常の半導体作製プロセスにより最小幅1μmの
縞状マクスパタ−ンを形成し、化学エッチングにより縞
状部分を除去した。さらに、タ−ゲットをSiに変え、
スパッタリングガスとしてArに酸素を混入して反応ス
パッタリングを行い、主としてSiO2からなる縞状部
分を構成した。
EXAMPLES Examples of the present invention will be described in detail below. Example 1 First, Fe 0.985 Mn 0.015 Si 2 was formed into a film having a thickness of 1 to 2 μm by a sputtering method on a hard glass substrate having a thermal expansion coefficient substantially equal to that of the Fe—Si-based material. Using a sintered body of Fe 0.985 Mn 0.015 Si 2 as a target , the substrate temperature was 200 ° C., and sputtering was performed with Ar at 300 W for 30 minutes. As a result of X-ray diffraction of the obtained thin film, it was confirmed that the thin film was in an amorphous state.
Next, a striped mask pattern with a minimum width of 1 μm was formed by a normal semiconductor manufacturing process, and the striped portion was removed by chemical etching. Furthermore, change the target to Si,
Oxygen was mixed into Ar as a sputtering gas to carry out reactive sputtering to form a striped portion mainly composed of SiO 2 .

【0011】図1に得られた薄膜の断面の模式図を示し
た。1は熱電材料であるFe0.985Mn0.015Si2
層、2は熱電特性の異なるSiO2を主成分とする層で
あり、これらがガラス基板3上に交互に配列されてい
る。層2の上部の幅は1μmである。次に、この薄膜の
縞状構造を横切る方向の熱電特性を測定した結果を図2
に曲線Aで示す。本発明による熱電材料は、曲線Bで示
すFe0.985Mn0.015Si2のみの薄膜に比べて導電率
はやや低下しているが、ゼ−ベック係数は大きく増加し
ている。導電率があまり低下しなかったのは、図1に示
すように、薄膜深部においては縞状の層1間の距離が1
μmよりも接近していたためと考えられる。しかしなが
ら、エッチング時間を長くしたり、SiO2の幅をあま
り大きくすると、膜の導電性は極端に低下し、ゼ−ベッ
ク係数も減少した。
FIG. 1 shows a schematic view of a cross section of the obtained thin film. Reference numeral 1 is a layer of Fe 0.985 Mn 0.015 Si 2 which is a thermoelectric material, and 2 is a layer whose main component is SiO 2 having different thermoelectric properties, which are alternately arranged on the glass substrate 3. The width of the top of layer 2 is 1 μm. Next, the results of measurement of thermoelectric properties in the direction crossing the striped structure of this thin film are shown in FIG.
Is shown by the curve A. The thermoelectric material according to the present invention has slightly lower conductivity than the thin film of Fe 0.985 Mn 0.015 Si 2 shown by curve B, but the Zeebeck coefficient is greatly increased. As shown in FIG. 1, the conductivity did not decrease so much that the distance between the striped layers 1 was 1 in the deep portion of the thin film.
It is thought that it was closer than μm. However, when the etching time was lengthened or the width of SiO 2 was increased too much, the conductivity of the film was extremely lowered and the Zeebeck coefficient was also decreased.

【0012】[実施例2]実施例1と同じようにスパッ
タリング法で得てβ相化したFe0.985Mn0.015Si2
薄膜にイオン注入装置を用いて縞状にホウ素イオン(B
3+)を注入した。1〜3MeVに加速したB3+イオンビ
−ムを直径3μm以下に絞り、10μm間隔の縞状に照
射した。ホウ素が注入された部分は導電率が相当低下し
たが、その熱電特性は、導電率はあまり低下せず、ゼ−
ベック係数が向上した。本実施例から、注入するイオン
種や加速エネルギーを最適化することによって、さらに
熱電特性を向上させることが可能と考えられる。なお、
イオンビ−ム照射はイオンビ−ム遮蔽性を有するスリッ
トを用いてもパタ−ンニングが可能である。
[Embodiment 2] Fe 0.985 Mn 0.015 Si 2 obtained by a sputtering method and β-phased in the same manner as in Embodiment 1
Stripe-shaped boron ions (B
3+ ) was injected. The B 3+ ion beam accelerated to 1 to 3 MeV was squeezed to a diameter of 3 μm or less and irradiated in stripes at intervals of 10 μm. The conductivity of the portion injected with boron was considerably reduced, but the thermoelectric property was such that the conductivity did not significantly decrease, and
Beck coefficient improved. From this example, it is considered that the thermoelectric characteristics can be further improved by optimizing the ion species to be injected and the acceleration energy. In addition,
The ion beam irradiation can be patterned by using a slit having an ion beam shielding property.

【0013】以上の実施例は、熱起電力の高い材料と電
導度の低い材料とを交互に直列に配列している微細構造
であるが、ゼ−ベック係数などの他の熱電特性の異なる
材料を周期性を有して一方向に直列に配列し、少なくと
も熱電特性の劣る材料の前記配列方向の大きさを微細構
造にすることによって、熱電特性を向上できることがわ
かった。熱電現象を引き起こす電荷キャリア−やフォノ
ンの平均自由行程は、温度にもよるが、長くともせいぜ
い数μmである。より高い熱電特性の材料としては、熱
流や電流方向にさらに微細な繰返し周期構造を有する方
が望ましいと考えられる。そこで、エッチングやイオン
ビ−ムを用いた手法より、さらに微細で構造制御性が高
い製膜手法を用いた実施例を以下に示す。
Although the above-mentioned embodiment has a fine structure in which a material having a high thermoelectromotive force and a material having a low electric conductivity are alternately arranged in series, other materials having different thermoelectric properties such as Zeebeck coefficient are used. It has been found that the thermoelectric properties can be improved by arranging in series in one direction with a periodicity and making the size of at least the material inferior in the thermoelectric properties in the arranging direction a fine structure. The mean free path of charge carriers and phonons that cause thermoelectric phenomena is several μm at the longest, although it depends on the temperature. As a material having higher thermoelectric properties, it is considered desirable to have a finer periodic structure in the direction of heat flow or current. Therefore, an example using a film forming method which is finer and has higher structure controllability than the method using etching or ion beam is shown below.

【0014】[実施例3]図3は製膜装置の概略構成を
示す。チャンバ−4内に2つのタ−ゲット5と6を配
し、その下方には、架台7上を前後にスライドできるよ
うに支持台8を設け、支持台上の基板9が両方のタ−ゲ
ット間を往復できるように構成してある。10は支持台
8上に設けたシャッタ−駆動装置であり、この装置によ
り基板9上のシャッタ−11が前後に移動する。シャッ
タ−11はステンレス鋼製で、幅10μmのスリット孔
12を50μm間隔で開けてある。タ−ゲット5として
Fe0.985Mn0.015Si2、タ−ゲット6としてSiを
用い、スパッタガスとしてArとAr+O2が導入でき
るようにした。
[Embodiment 3] FIG. 3 shows a schematic structure of a film forming apparatus. Two targets 5 and 6 are arranged in a chamber-4, and a support 8 is provided below the targets 5 so as to slide back and forth on a pedestal 7, and a substrate 9 on the support occupies both targets. It is configured so that it can travel back and forth. Reference numeral 10 denotes a shutter drive device provided on the support base 8, and this device moves the shutter 11 on the substrate 9 back and forth. The shutter 11 is made of stainless steel, and slit holes 12 having a width of 10 μm are opened at intervals of 50 μm. Fe 0.985 Mn 0.015 Si 2 was used as the target 5 and Si was used as the target 6, so that Ar and Ar + O 2 could be introduced as the sputtering gas.

【0015】こうしてFe0.985Mn0.015Si2タ−ゲ
ットのArガスによるスパッタリングをAモード、Si
タ−ゲットのAr+O2ガスによるスパッタリングをB
モードとし、AモードとBモードにて交互に5分間ずつ
の製膜を繰返し行った。その間シャッタ−駆動装置10
によってそれぞれのモードに同期させてステンレス鋼製
シャッタ−11を基板9に対し相対的に2μmずつ移動
させた。1条のスリットを通じての製膜部が隣のスリッ
トによる製膜部に完全に重なるまで全体で150分間製
膜した。
Thus, the sputtering of the Fe 0.985 Mn 0.015 Si 2 target with the Ar gas was performed in the A mode and Si.
Sputtering the target with Ar + O 2 gas B
Mode, the film formation was repeated for 5 minutes alternately in A mode and B mode. Meanwhile, the shutter drive device 10
The stainless steel shutter 11 was moved by 2 μm relative to the substrate 9 in synchronization with each mode. Film formation was performed for 150 minutes in total until the film formation part through one slit completely overlaps the film formation part by the adjacent slit.

【0016】この方法で製膜した薄膜の断面図を基板に
垂直な方向に引き延ばして模式的に示したのが図4であ
る。スリット端部からの蒸着物質の回り込みによって形
成された斜面に、単層薄膜であるFe0.985Mn0.015
2の層13とSiO2を主成分とする層14がガラス基
板9上に交互に積層しながら横方向にずれており、その
結果各単層薄膜の法線15が積層薄膜の法線16と一致
しない構造、すなわち基板面に対して傾いた構造をとっ
ている。各単層薄膜の膜厚は500〜1000オングス
トロ−ムであった。このような製膜部位を順に移動させ
ていく製膜方法によれば、1)製膜時間を調製すること
によって、各単層膜の膜厚は比較的正確に制御すること
ができる、2)単層膜と単層膜の界面の組成的急峻性が
確保できるなどの優れた特徴がある。図5にシャッター
の移動方向で測定したゼーベック係数と導電率を曲線a
で表した。曲線bはFe0.985Mn0.015Si2の単層膜
の特性を表す。本発明によると、導電率はほとんど変わ
らないが、ゼーベック係数が大幅に改善できることが確
認できた。
FIG. 4 schematically shows a cross-sectional view of a thin film formed by this method in a direction perpendicular to the substrate. Fe 0.985 Mn 0.015 S, which is a single-layer thin film, is formed on the slope formed by the wraparound of the vapor deposition material from the slit end.
The i 2 layer 13 and the SiO 2 -based layer 14 are laterally displaced while being alternately laminated on the glass substrate 9, so that the normal 15 of each single-layer thin film is the normal 16 of the laminated thin film. It has a structure that does not coincide with the above, that is, a structure that is inclined with respect to the substrate surface. The film thickness of each single layer thin film was 500 to 1000 angstroms. According to the film forming method in which the film forming parts are sequentially moved, 1) the film thickness of each single layer film can be controlled relatively accurately by adjusting the film forming time. 2) It has excellent characteristics such as ensuring compositional steepness at the interface between single layer films. The Seebeck coefficient and conductivity measured in the moving direction of the shutter are shown in FIG.
Expressed as Curve b represents the characteristics of a single layer film of Fe 0.985 Mn 0.015 Si 2 . According to the present invention, it was confirmed that the Seebeck coefficient can be significantly improved, although the conductivity is almost unchanged.

【0017】[0017]

【発明の効果】本発明によると、熱電材料の性能を向上
させることができ、熱電材料の有用性をさらに高めるこ
とができる。
According to the present invention, the performance of the thermoelectric material can be improved and the usefulness of the thermoelectric material can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による熱電材料の断面を示す
模式図である。
FIG. 1 is a schematic view showing a cross section of a thermoelectric material according to an embodiment of the present invention.

【図2】本発明の一実施例による熱電材料の特性を従来
例と比較して表した図である。
FIG. 2 is a diagram showing characteristics of a thermoelectric material according to an example of the present invention in comparison with a conventional example.

【図3】本発明の一実施例に用いた熱電材料製造装置の
概略構成を示す断面図である。
FIG. 3 is a cross-sectional view showing a schematic configuration of a thermoelectric material manufacturing apparatus used in one example of the present invention.

【図4】本発明の一実施例により製膜した熱電材料の断
面図である。
FIG. 4 is a cross-sectional view of a thermoelectric material formed into a film according to an embodiment of the present invention.

【図5】本発明の一実施例により製膜した熱電材料の特
性を従来例と比較して表した図である。
FIG. 5 is a diagram showing characteristics of a thermoelectric material formed according to an example of the present invention in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 2 熱電特性を有する第1の材料の層 3 熱電特性の異なる第2の材料の層 5,6 ターゲット 8 基板支持台 9 基板 10 シャッター駆動装置 11 シャッター 12 スリット 13 熱電特性を有する第1の材料の薄膜 14 熱電特性の異なる第2の材料の薄膜 15 単層薄膜の法線 16 積層薄膜の法線 1 substrate 2 layer of first material having thermoelectric properties 3 layer of second material having different thermoelectric properties 5, 6 target 8 substrate support 9 substrate 10 shutter drive device 11 shutter 12 slit 13 first layer having thermoelectric properties Thin film of material 14 Thin film of second material with different thermoelectric properties 15 Normal line of single layer thin film 16 Normal line of laminated thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中筋 章子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiko Nakasuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱電特性を有する第1の材料と第1の材
料とは熱電特性の異なる第2の材料とを含む複数種の材
料を周期性を有して順に一方向に配列して構成され、少
なくとも前記第2の材料の前記配列方向の大きさが10
00オングストロ−ム以下の微細構造であることを特徴
とする熱電材料。
1. A plurality of types of materials including a first material having thermoelectric characteristics and a second material having different thermoelectric characteristics from the first material are arranged sequentially in one direction with periodicity. And the size of at least the second material in the arrangement direction is 10 or more.
A thermoelectric material having a fine structure of 00 angstroms or less.
【請求項2】 熱電効果を有する単一の材料よりなる薄
膜に高い運動エネルギーを有するイオンを縞状に照射し
て、薄膜を熱電特性の異なる微細部分を含む縞状に改質
することを特徴とする請求項1記載の熱電材料の製造
法。
2. A thin film made of a single material having a thermoelectric effect is irradiated with ions having a high kinetic energy in a striped pattern to modify the thin film into a striped pattern containing fine portions having different thermoelectric properties. The method for producing a thermoelectric material according to claim 1.
【請求項3】 熱電特性を有する第1の材料の薄膜と第
1の材料とは熱電特性の異なる第2の材料の薄膜とを含
む複数の単層薄膜が累積した積層薄膜で構成され、かつ
前記各単層薄膜はその法線が積層薄膜の法線と一致しな
いように形成されていることを特徴とする熱電材料。
3. A laminated thin film formed by accumulating a plurality of single-layer thin films including a thin film of a first material having thermoelectric properties and a thin film of a second material having different thermoelectric properties from the first material, and The thermoelectric material, wherein each of the single-layer thin films is formed so that its normal line does not coincide with the normal line of the laminated thin film.
【請求項4】 熱電特性を有する第1の材料の薄膜と第
1の材料とは熱電特性の異なる第2の材料の薄膜とを含
む複数の単層薄膜を累積した積層薄膜からなる熱電材料
の製造法であって、積層薄膜を構成する各単層薄膜の形
成時に、薄膜形成部位を基板面に平行に、かつそれぞれ
の単層薄膜が部分的に重なるように移動させることを特
徴とする請求項3記載の熱電材料の製造法。
4. A thermoelectric material comprising a laminated thin film obtained by accumulating a plurality of single-layer thin films including a thin film of a first material having thermoelectric properties and a thin film of a second material having different thermoelectric properties from the first material. A method of manufacturing, wherein when forming each of the single-layer thin films forming the laminated thin film, the thin-film forming portion is moved parallel to the substrate surface so that the respective single-layer thin films partially overlap. Item 4. A method for producing a thermoelectric material according to Item 3.
JP5120781A 1993-04-22 1993-04-22 Thermionic material and production thereof Pending JPH06310766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120781A JPH06310766A (en) 1993-04-22 1993-04-22 Thermionic material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120781A JPH06310766A (en) 1993-04-22 1993-04-22 Thermionic material and production thereof

Publications (1)

Publication Number Publication Date
JPH06310766A true JPH06310766A (en) 1994-11-04

Family

ID=14794847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120781A Pending JPH06310766A (en) 1993-04-22 1993-04-22 Thermionic material and production thereof

Country Status (1)

Country Link
JP (1) JPH06310766A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449628B2 (en) 2007-03-06 2008-11-11 Panasonic Corporation Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
US7560639B2 (en) 2006-11-30 2009-07-14 Panasonic Corporation Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
US7601909B2 (en) 2006-11-10 2009-10-13 Panasonic Corporation Power generation method using thermoelectric element, thermoelectric element and fabrication method thereof, and thermoelectric device
JP2017054975A (en) * 2015-09-10 2017-03-16 富士通株式会社 Nanostructured element and manufacturing method thereof, and thermoelectric converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601909B2 (en) 2006-11-10 2009-10-13 Panasonic Corporation Power generation method using thermoelectric element, thermoelectric element and fabrication method thereof, and thermoelectric device
US7560639B2 (en) 2006-11-30 2009-07-14 Panasonic Corporation Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
US7449628B2 (en) 2007-03-06 2008-11-11 Panasonic Corporation Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
JP2017054975A (en) * 2015-09-10 2017-03-16 富士通株式会社 Nanostructured element and manufacturing method thereof, and thermoelectric converter

Similar Documents

Publication Publication Date Title
Cho GaAs epitaxy by a molecular beam method: observations of surface structure on the (001) face
US7687705B2 (en) Efficient thermoelectric device
JP3559962B2 (en) Thermoelectric conversion material and method for producing the same
US7105118B2 (en) Methods of forming three-dimensional nanodot arrays in a matrix
EP0601692B1 (en) Electronic device incorporating artificial super lattice
US5935639A (en) Method of depositing multi-layer carbon-based coatings for field emission
WO2006057425A1 (en) Quantum dot array and production method therefor, and dot array element and production method thererfor
Gupta et al. Swift heavy ion irradiation induced modifications in structural, microstructural, electrical and magnetic properties of Mn doped SnO2 thin films
US8841539B2 (en) High efficiency thermoelectric device
WO2009107525A1 (en) Thin film of aluminum nitride and process for producing the thin film of aluminum nitride
JPH06310766A (en) Thermionic material and production thereof
JPH1032354A (en) Thermoelectric material
US20060266442A1 (en) Methods of forming three-dimensional nanodot arrays in a matrix
Olaya et al. Niobium-silicide junction technology for superconducting digital electronics
Sinduja et al. Investigations on morphology and thermoelectric transport properties of Cu+ ion implanted bismuth telluride thin film
US5679625A (en) Method of making an oxide superconducting thin film
KR20170003401A (en) Multifunctional oxide structures having dimensional variation in spatial distrirbution of dopants and method of controlling properties of oxides using the same
US20150020861A1 (en) Method for Production of High Figure of Merit Thermoelectric Materials
Wada et al. Mechanism of electron-beam doping in semiconductors
Hastas et al. Electrical properties of magnetron sputtered amorphous carbon films with sequential sp 3-rich/sp 2-rich layered structure
JPS62221102A (en) Manufacture of magnetic film
Murduck Superconductivity and structure of niobium-nitride/aluminum-nitride multilayers
Martins et al. Role of oxygen partial pressure on the properties of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques
JP2658185B2 (en) Perpendicular magnetic recording film
Budak et al. Surface modification of Si/Ge multi-layers by MeV Si ion bombardment