JPH06310440A - Silicon carbide semiconductor and film formation method thereof - Google Patents

Silicon carbide semiconductor and film formation method thereof

Info

Publication number
JPH06310440A
JPH06310440A JP9823293A JP9823293A JPH06310440A JP H06310440 A JPH06310440 A JP H06310440A JP 9823293 A JP9823293 A JP 9823293A JP 9823293 A JP9823293 A JP 9823293A JP H06310440 A JPH06310440 A JP H06310440A
Authority
JP
Japan
Prior art keywords
sic
silicon carbide
germanium
hydride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9823293A
Other languages
Japanese (ja)
Inventor
Shinji Ogino
慎次 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9823293A priority Critical patent/JPH06310440A/en
Publication of JPH06310440A publication Critical patent/JPH06310440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a high-resistance semiconductor made of silicon carbide(SiC) with fewer crystal defects by carrying out epitaxial growth on a crystalline silicon carbide substrate using a mixture of hydrogen, silicon hydride, carbon hydride and germanium hydride. CONSTITUTION:A substrate 2 made of silicon carbide(SiC) is put on a susceptor 4, and the susceptor 4 is mounted on a reaction tube 3. The air in the reaction tube 3 is removed into a vacuum state, and HCl gas is supplied to remove an oxide film on an SiC substrate 2. After that, nonosilane, propane and hydrogen gases, and germanium hydride as a raw-material gas for adding a germanium element are supplied from a gas inlet 6, an epitaxial growth step is carried out by heating the SiC substrate 2. A flow rate of germanium hydride is so shifted that an SiC epitaxial layer 1 contains germanium with a concentration of 0.1 to 10atom%. Consequently, an empty hole of the crystal, which functions otherwise as a donnor, is filled with a germanium atom, and thereby high- resistance SiC semiconductor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子への利用が
注目されている炭化珪素 (以下SiCと記す)半導体およ
びその成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide (hereinafter referred to as SiC) semiconductor, which is attracting attention for use in a semiconductor device, and a film forming method thereof.

【0002】[0002]

【従来の技術】2.2〜3.3eVの広いバンドギャップを有
するSiCは、代表的な半導体材料であるSiに比べて、バ
ンドギャップが広いだけでなく、高い熱伝導率、絶縁破
壊電界および電子の飽和ドリフト速度を有する。このSi
Cの優れた性質を利用することにより、青色発光素子の
みならず、高温動作デバイスや高パワーデバイスへの応
用が期待されている。半導体材料としてのSiC膜の成膜
方法として、アチソン法やレーリー法により得られた6
H−SiCの結晶基板を (0001) 面に対し〔1120〕方向に
5°傾けて研磨した結晶面上に、Siの原料ガスとしてシ
ランガス、Cの原料ガスとしてメタンまたはプロパンガ
スを使用して約1500℃の成長温度で常圧CVD法により
エピタキシャル成長を行うという、松波らによりExt. A
bstr.19thConf. Solid State Devices and Materials.
Tokyo (1987)p.227に発表されている方法が一般的であ
る。
2. Description of the Related Art SiC having a wide band gap of 2.2 to 3.3 eV is not only wider in band gap than Si, which is a typical semiconductor material, but also has high thermal conductivity, dielectric breakdown field and It has a saturated drift velocity of electrons. This Si
By utilizing the excellent property of C, it is expected to be applied not only to blue light emitting elements but also to high temperature operating devices and high power devices. 6 was obtained by the Acheson method or Rayleigh method as a method for forming a SiC film as a semiconductor material.
Using a silane gas as a Si source gas and a methane or propane gas as a C source gas on a crystal plane obtained by polishing an H-SiC crystal substrate by tilting 5 ° in the [1120] direction with respect to the (0001) plane According to Matsunami et al., Ext. A, that epitaxial growth is performed by the atmospheric pressure CVD method at a growth temperature of 1500 ° C.
bstr.19thConf. Solid State Devices and Materials.
The method disclosed in Tokyo (1987) p.227 is general.

【0003】[0003]

【発明が解決しようとする課題】上記の方法で成膜され
た、意図的にドーピングしないSiCエピタキシャル成長
膜はn形を示す。このようなSiCエピタキシャル膜のフ
ォトルミネッセンス等の研究から3種類の不純物準位が
あることが明らかになっている。n形SiCの不純物準位
のドナーの起源として考えられるのは、空気中から混入
したり、原料ガス中の不純物として存在する窒素ガスに
基づく窒素である。しかし、窒素ガスの混入を防ぐだけ
では高抵抗のSiCを得ることは容易でなく、せいぜいキ
ャリア濃度2×1015/cm3 程度のSiC膜が得られるにす
ぎない。
The intentionally undoped SiC epitaxial growth film formed by the above method exhibits n-type. It has been clarified that there are three kinds of impurity levels from the study of photoluminescence of the SiC epitaxial film. The source of the donor of the impurity level of n-type SiC is considered to be nitrogen based on nitrogen gas mixed from the air or present as an impurity in the source gas. However, it is not easy to obtain SiC having high resistance only by preventing the mixture of nitrogen gas, and at most a SiC film having a carrier concentration of about 2 × 10 15 / cm 3 can be obtained.

【0004】窒素以外のドナーの起源として考えられる
のは結晶欠陥である。例えば、代表的なIIVI化合物半導
体であるZnSeは、意図的にドーピングしなかった場合に
は結晶中のSeの空孔がドナーとなり、n形を示すことが
明らかになっており、結晶欠陥を低減することによりZn
Seの高抵抗化が図られている。さらに、代表的なIIIV族
化合物半導体であるGaAsを分子線エピタキシャル法で低
温で成長しようとすると、成長表面でGa原子が十分に拡
散することができずに結晶欠陥が増大するという欠点が
あったが、これに低温でも表面での拡散速度が速いInを
添加することにより結晶欠陥が低減することが明らかに
なっている。このようにIIVI族化合物半導体やIIIV族化
合物半導体では結晶欠陥を低減し、高抵抗の半導体エピ
タキシャル成長膜が得られているが、IVIV族化合物半導
体でこのような手法は用いて、結晶欠陥を低減しようと
する試みはなされていない。
A possible source of donors other than nitrogen is crystal defects. For example, ZnSe, which is a typical IIVI compound semiconductor, has been clarified to have an n-type because the vacancies of Se in the crystal serve as donors when not intentionally doped, thus reducing crystal defects. By doing Zn
Higher resistance of Se is attempted. Furthermore, when trying to grow GaAs, which is a typical group IIIV compound semiconductor, at low temperature by molecular beam epitaxy, there is a drawback that Ga atoms cannot sufficiently diffuse on the growth surface and crystal defects increase. However, it has been clarified that crystal defects are reduced by adding In, which has a high diffusion rate on the surface even at a low temperature. Although crystal defects have been reduced in IIVI group compound semiconductors and IIIV group compound semiconductors in this way, high resistance semiconductor epitaxial growth films have been obtained, but such methods should be used in IVIV group compound semiconductors to reduce crystal defects. No attempt has been made to

【0005】本発明の目的は、上述の問題を解決し、結
晶欠陥が低減された高抵抗のSiC半導体およびその成膜
方法を提供することにある。
An object of the present invention is to solve the above problems and provide a high resistance SiC semiconductor with reduced crystal defects and a film forming method thereof.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のSiC半導体は、ゲルマニウム (Ge) を0.
1〜10原子%を含むSiCからなるものとする。そして、
そのようなSiC膜の成膜方法は、SiCおよびGeそれぞれ
の水素化物および水素の混合ガスを原料ガスとして用
い、SiC結晶基板上にエピタキシャル成長させるものと
する。その場合、Cの水素化物がメタン (CH4 ) ある
いはプロパン (C3 8 ) であり、Geの水素化物がGeH
4 あるいはGe2 6 であることが有効である。
In order to achieve the above object, the SiC semiconductor of the present invention contains germanium (Ge) of 0.
It is made of SiC containing 1 to 10 atomic%. And
In such a method for forming a SiC film, a mixed gas of hydrides of SiC and Ge and hydrogen is used as a source gas, and epitaxial growth is performed on a SiC crystal substrate. In that case, the hydride of C is methane (CH 4 ) or propane (C 3 H 8 ), and the hydride of Ge is GeH.
4 or Ge 2 H 6 is effective.

【0007】[0007]

【作用】GeはSiやCとの結合エネルギーがSi−Cの結合
エネルギーよりも小さく、成膜中の表面でSiやCよりも
容易に拡散するので、IIVI族化合物やIIIV族化合物の成
膜法から類推して、Ge添加によりSiあるいはCの空孔等
による格子欠陥が低減され、高抵抗のSiCが得られるも
のと考えられる。そして、Geの濃度が10原子%を超える
と、SiC基板との格子不整合が顕著になって膜質が低下
し、0.1原子%未満ではGe添加の効果がない。
[Function] Ge has a bond energy with Si or C smaller than that of Si-C and diffuses more easily than Si or C on the surface during film formation. Therefore, film formation of IIVI group compound or IIIV compound film is performed. By analogy with the method, it is considered that by adding Ge, lattice defects due to Si or C vacancies are reduced, and SiC with high resistance can be obtained. When the Ge concentration exceeds 10 atomic%, lattice mismatch with the SiC substrate becomes remarkable and the film quality deteriorates. When it is less than 0.1 atomic%, the effect of Ge addition is not obtained.

【0008】[0008]

【実施例】本発明の実施例を図1および図2に示す。(0
001)面を〔1120〕方向に5°オフした6H−SiC結晶基
板2上にGeを含むSiCエピタキシャル層1を図1に示す
ように成膜した。この膜は図2に示すようにして成長さ
せた。つまり、予め高純度水素中でベイキングしておい
た、SiCで表面をコーティングしたサセプタ上にSiC基
板2を置き、石英製の反応管3の中央にサセプタ4を設
置し、次いで、反応管3を排気口7から真空に十分引い
て管内の残留窒素ガスを低減した後、HClガスを1slm
の流量で流し、高周波コイル5を使って1200℃で5分間
SiC基板2上の酸化膜を除去した。その後、モノシラ
ン、プロパンおよび水素ガスをそれぞれ0.3sccm、0.2
sccmおよび3slm の流量で、さらにGeを添加するために
原料ガスとして水素化ゲルマニウムGeH4 を0.01sccmの
流量でガス導入口6から流し、SiC基板2を1500℃に加
熱してエピタキシャルを行った。なお、モノシラン、プ
ロパンおよび水素化ゲルマニウムは予め水素希釈したガ
スを原料ガスとして使用した。このようにして成長した
エピタキシャル層1中のGeは分析の結果5原子%であっ
た。このエピタキシャル膜1のホール測定を実施したと
ころn形を示したものの、残留キャリア濃度として9x
1014/cm3 で、抵抗率は10kΩcmと高抵抗のエピタキシ
ャル膜を得ることができた。次に水素化ゲルマニウムと
してGe2 6を使用して同様の成長を行ったところ、残
留キャリア濃度として8x1014/cm3で、抵抗率は12k
Ωcmと高抵抗のエピタキシャル膜を得ることができた。
このようにして水素化ゲルマニウムの流量を変えて、種
々のエピタキシャル層1を成長したところ、エピタキシ
ャル層1の特性はGeH4 とGe2 6 の種類に依存せず、
GeのSiC中の濃度のみに依存することが明らかになっ
た。そして、Geの濃度が10原子%以上ではSiC基板2と
の格子不整合が顕著になって膜質の低下が顕著になっ
た。また、Geの濃度が0.1原子%以下ではGeの添加の効
果がなく、高抵抗のSiCのエピタキシャル層1を得るこ
とができなかった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIGS. (0
An SiC epitaxial layer 1 containing Ge was deposited on a 6H—SiC crystal substrate 2 with the (001) plane off by 5 ° in the [1120] direction, as shown in FIG. This film was grown as shown in FIG. That is, the SiC substrate 2 is placed on the susceptor whose surface is coated with SiC, which has been baked in high-purity hydrogen in advance, the susceptor 4 is placed in the center of the quartz reaction tube 3, and then the reaction tube 3 is placed. After vacuuming the exhaust port 7 sufficiently to reduce the residual nitrogen gas in the tube, add 1 slm of HCl gas.
Flow for 5 minutes at 1200 ℃ using high frequency coil 5
The oxide film on the SiC substrate 2 was removed. After that, monosilane, propane and hydrogen gas were added at 0.3 sccm and 0.2, respectively.
At a flow rate of sccm and 3 slm, germanium hydride GeH 4 was fed as a source gas at a flow rate of 0.01 sccm from the gas introduction port 6 to further add Ge, and the SiC substrate 2 was heated to 1500 ° C. for epitaxial growth. In addition, monosilane, propane, and germanium hydride were used as raw material gases preliminarily diluted with hydrogen. As a result of analysis, Ge in the epitaxial layer 1 thus grown was 5 atom%. When the hole measurement of this epitaxial film 1 was performed, it showed an n-type, but the residual carrier concentration was 9x.
At 10 14 / cm 3 , a high resistance epitaxial film having a resistivity of 10 kΩcm could be obtained. Next, the same growth was performed using Ge 2 H 6 as germanium hydride. The residual carrier concentration was 8 × 10 14 / cm 3 and the resistivity was 12 k.
We were able to obtain an epitaxial film with high resistance of Ωcm.
In this way, when various epitaxial layers 1 were grown by changing the flow rate of germanium hydride, the characteristics of the epitaxial layer 1 did not depend on the types of GeH 4 and Ge 2 H 6 ,
It became clear that it depends only on the concentration of Ge in SiC. Then, when the Ge concentration is 10 atomic% or more, the lattice mismatch with the SiC substrate 2 becomes remarkable, and the deterioration of the film quality becomes remarkable. Further, when the Ge concentration is 0.1 atomic% or less, the effect of the addition of Ge has no effect, and the high-resistance SiC epitaxial layer 1 cannot be obtained.

【0009】[0009]

【発明の効果】本発明によれば、SiCにGeを添加するこ
とにより、ドナーとして働く結晶中の空孔をGe原子で埋
め、高抵抗のSiC半導体を得ることができた。このよう
なGeの添加は、CVDの原料ガスにGe水素化物を混合す
ることにより容易にできる。
According to the present invention, by adding Ge to SiC, it is possible to fill the holes in the crystal acting as the donor with Ge atoms and obtain a high resistance SiC semiconductor. Such addition of Ge can be easily performed by mixing Ge hydride with a CVD source gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で成膜されたSiC膜の断面図FIG. 1 is a cross-sectional view of a SiC film formed according to an embodiment of the present invention.

【図2】本発明の一実施例のSiCVD成膜装置の断面図FIG. 2 is a sectional view of a SiCVD film forming apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 SiCエピタキシャル層 2 SiC結晶基板 3 反応管 5 高周波コイル 6 ガス導入口 7 排気口 1 SiC epitaxial layer 2 SiC crystal substrate 3 reaction tube 5 high frequency coil 6 gas inlet 7 exhaust port

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ゲルマニウムを0.1〜10原子%含む炭化け
い素からなることを特徴とする炭化珪素半導体。
1. A silicon carbide semiconductor comprising silicon carbide containing 0.1 to 10 atomic% of germanium.
【請求項2】シリコン、炭素およびゲルマニウムをそれ
ぞれの水素化物および水素の混合ガスを原料ガスとして
用い、炭化珪素結晶基板上にエピタキシャル成長させる
ことを特徴とする請求項1記載の炭化珪素半導体の成膜
方法。
2. The film formation of a silicon carbide semiconductor according to claim 1, wherein silicon, carbon and germanium are epitaxially grown on a silicon carbide crystal substrate by using a mixed gas of hydride and hydrogen of each as a source gas. Method.
【請求項3】炭素の水素化物がメタンである請求項2記
載の炭化珪素半導体の成膜方法。
3. The method for forming a silicon carbide semiconductor according to claim 2, wherein the hydride of carbon is methane.
【請求項4】炭素の水素化物がプロパンである請求項2
記載の炭化珪素半導体の成膜方法。
4. The hydride of carbon is propane.
A method for forming a film of a silicon carbide semiconductor as described above.
【請求項5】ゲルマニウムの水素化物がGeH4 である請
求項2、3あるいは4記載の炭化珪素半導体の成膜方
法。
5. The method for forming a silicon carbide semiconductor film according to claim 2, 3 or 4, wherein the hydride of germanium is GeH 4 .
【請求項6】ゲルマニウムの水素化物がGe2 6 である
請求項2、3あるいは4記載の炭化珪素半導体の成膜方
法。
6. The method for forming a silicon carbide semiconductor according to claim 2, 3 or 4, wherein the hydride of germanium is Ge 2 H 6 .
JP9823293A 1993-04-26 1993-04-26 Silicon carbide semiconductor and film formation method thereof Pending JPH06310440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9823293A JPH06310440A (en) 1993-04-26 1993-04-26 Silicon carbide semiconductor and film formation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9823293A JPH06310440A (en) 1993-04-26 1993-04-26 Silicon carbide semiconductor and film formation method thereof

Publications (1)

Publication Number Publication Date
JPH06310440A true JPH06310440A (en) 1994-11-04

Family

ID=14214220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9823293A Pending JPH06310440A (en) 1993-04-26 1993-04-26 Silicon carbide semiconductor and film formation method thereof

Country Status (1)

Country Link
JP (1) JPH06310440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014619A1 (en) * 1999-08-24 2001-03-01 Aixtron Ag Method and device for depositing materials with a large electronic energy gap and high binding energy
DE102005049932A1 (en) * 2005-10-19 2007-04-26 Sicrystal Ag Growth of silicon carbide-germanium-volume mixed crystals, comprises producing silicon-, carbon- and germanium gas phase from two source materials containing silicon, carbon and germanium by sublimation and evaporation
JP2008034780A (en) * 2006-07-07 2008-02-14 Fuji Electric Holdings Co Ltd METHOD FOR MANUFACTURING SEMICONDUCTOR SiC SUBSTRATE WITH EPITAXIAL SiC FILM, AND ITS EPITAXIAL SiC FILM-FORMING DEVICE
US8338833B2 (en) 2004-04-01 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method of producing silicon carbide semiconductor substrate, silicon carbide semiconductor substrate obtained thereby and silicon carbide semiconductor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014619A1 (en) * 1999-08-24 2001-03-01 Aixtron Ag Method and device for depositing materials with a large electronic energy gap and high binding energy
US8338833B2 (en) 2004-04-01 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method of producing silicon carbide semiconductor substrate, silicon carbide semiconductor substrate obtained thereby and silicon carbide semiconductor using the same
DE102005049932A1 (en) * 2005-10-19 2007-04-26 Sicrystal Ag Growth of silicon carbide-germanium-volume mixed crystals, comprises producing silicon-, carbon- and germanium gas phase from two source materials containing silicon, carbon and germanium by sublimation and evaporation
JP2008034780A (en) * 2006-07-07 2008-02-14 Fuji Electric Holdings Co Ltd METHOD FOR MANUFACTURING SEMICONDUCTOR SiC SUBSTRATE WITH EPITAXIAL SiC FILM, AND ITS EPITAXIAL SiC FILM-FORMING DEVICE

Similar Documents

Publication Publication Date Title
Davis Thin films and devices of diamond, silicon carbide and gallium nitride
JP5081373B2 (en) Method for producing low impurity silicon carbide wafer
US5709745A (en) Compound semi-conductors and controlled doping thereof
KR101160930B1 (en) Methods of forming carbon-containing silicon epitaxial layers
US5759908A (en) Method for forming SiC-SOI structures
EP0390552B1 (en) Method of manufacturing compound semiconductor thin film
US3956032A (en) Process for fabricating SiC semiconductor devices
JP2002057109A (en) Silicon carbide-manufacturing method, silicon carbide, and semiconductor device
Davis Deposition, characterization, and device development in diamond, silicon carbide, and gallium nitride thin films
US5281831A (en) Optical semiconductor device
US8343854B2 (en) Method of reducing memory effects in semiconductor epitaxy
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
Takigawa et al. Hetero-Epitaxial Growth of Boron Monophosphide on Silicon Substrate Using B2H6-PH3-H2 System
Hirayama et al. High doping of phosphorus in Si using gas source molecular beam epitaxy
JPH0513342A (en) Semiconductur diamond
US3765960A (en) Method for minimizing autodoping in epitaxial deposition
US7504321B2 (en) MBE growth of an algan layer or AlGaN multilayer structure
JPH06310440A (en) Silicon carbide semiconductor and film formation method thereof
US11183385B2 (en) Method for passivating silicon carbide epitaxial layer
Kern et al. Deposition and doping of silicon carbide by gas-source molecular beam epitaxy
CN115074825A (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
CN113913931A (en) Epitaxial structure with P-type buffer layer and preparation method thereof
CN113913930A (en) Epitaxial structure with N-type buffer layer and preparation method thereof
JP2004533725A (en) Semiconductor layer growth method
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same