JPH06310160A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06310160A
JPH06310160A JP5103190A JP10319093A JPH06310160A JP H06310160 A JPH06310160 A JP H06310160A JP 5103190 A JP5103190 A JP 5103190A JP 10319093 A JP10319093 A JP 10319093A JP H06310160 A JPH06310160 A JP H06310160A
Authority
JP
Japan
Prior art keywords
fuel cell
reaction gas
cathode electrode
cathode
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5103190A
Other languages
Japanese (ja)
Inventor
Taiji Kogami
泰司 小上
Sanji Ueno
三司 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5103190A priority Critical patent/JPH06310160A/en
Publication of JPH06310160A publication Critical patent/JPH06310160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a fuel cell with an excellent durability and safety by preventing a electrolytic corrosion of the reaction gas feeding parts and the exhaust parts of the oxidizer gas flowing grooves of a cathode. CONSTITUTION:An anode 8 and a cathode 9 to be a pair of electrodes are provided by placing a matrix layer 10 impregnating an electrolyte at the center. On the back surfaces of the electrodes, reaction gas flowing grooves 11 and 12 are formed. The cathode 9 is formed by providing a water repelling treatment to the gas feeding parts and the gas exhaust parts 12a of the reaction gas flowing grooves 12 and near the parts 12a by the PTFE and the like beforehand. As a result, the impregnation and the infiltration of the electrolyte to the water repelling treatment parts 13 are not generated, and an electrolytic corrosion can be prevented. Consequently, a fuel cell with an excellent durability and safety can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池に係り、特に発
電スタックにおけるカソード電極の電食を防止すること
により、燃料電池の耐久性を向上するための技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a technique for improving the durability of a fuel cell by preventing electrolytic corrosion of a cathode electrode in a power generation stack.

【0002】[0002]

【従来の技術】燃料電池は、化学エネルギーを有する燃
料を、電気化学プロセスで酸化させることにより、酸化
反応に伴って放出されるエネルギーを直接電気エネルギ
ーに変換する装置である。この燃料電池発電システム
は、比較的小さな規模でも発電の熱効率が40〜50%
にも達する、という特徴があるため、新鋭火力発電シス
テムをはるかにしのぐ高効率の発電システムとして期待
されている。また、近年大きな社会問題になっている公
害要因であるSOx、NOxの排出が極めて少ない、発
電装置内に燃焼サイクルを含まないので大量の冷却水を
必要としない、振動が小さい等の特徴があることから、
騒音・排ガス等の環境問題が少ないという利点もある。
さらに、負荷変動に対して応答性が良い、原理的に高い
変換効率が期待できると共に、発電と同時に熱も利用す
るコジェネシステムに向いている等の優れた特徴がある
ため、その研究開発には期待と関心が寄せられ、実用化
は目前に迫っている。
2. Description of the Related Art A fuel cell is a device that directly oxidizes a fuel having chemical energy by an electrochemical process to directly convert the energy released by the oxidation reaction into electrical energy. This fuel cell power generation system has a thermal efficiency of 40-50% for power generation even on a relatively small scale.
It is expected to be a high-efficiency power generation system that far surpasses new thermal power generation systems because it has the feature of reaching the maximum. Further, there are features such as very little emission of SOx and NOx, which are pollution factors which have become a big social problem in recent years, a large amount of cooling water is not required because a power generation device does not include a combustion cycle, and vibration is small. From that,
There is also an advantage that there are few environmental problems such as noise and exhaust gas.
Furthermore, it has excellent characteristics such as good responsiveness to load fluctuation, theoretically high conversion efficiency, and suitable for cogeneration system that uses heat at the same time as power generation. Expectations and interest have been attracted, and practical application is imminent.

【0003】このような燃料電池について、図面に基づ
き具体的に説明する。図3は、一般的な燃料電池の燃料
電池本体の構造を示す斜視図、図4は同じく燃料電池本
体の構成部材である単位セルを模式的に示す斜視図であ
る。図3に示すように、発電のための単位セルとこの単
位セルで発生する熱を排出するための冷却板を多数積層
してなる積層体1、その積層体1を上下両側から締付け
る締付板2、積層体1と締付板2の間に挿入するスペー
サ3、反応ガスの供給・排出用のガスマニホールド4,
5として、アノードマニホールド4とカソードマニホー
ルド5、前記ガスマニホールド4,5と積層体1の間を
シールするシール材6とを備えている。
Such a fuel cell will be specifically described with reference to the drawings. FIG. 3 is a perspective view showing a structure of a fuel cell body of a general fuel cell, and FIG. 4 is a perspective view schematically showing a unit cell which is also a constituent member of the fuel cell body. As shown in FIG. 3, a laminated body 1 formed by laminating a plurality of unit cells for power generation and cooling plates for discharging heat generated in the unit cells, and a tightening plate for fastening the laminated body 1 from both upper and lower sides. 2, a spacer 3 inserted between the laminated body 1 and the tightening plate 2, a gas manifold 4 for supplying and discharging a reaction gas 4,
5 includes an anode manifold 4, a cathode manifold 5, and a sealing material 6 that seals between the gas manifolds 4, 5 and the laminated body 1.

【0004】単位セル7は、図4に示すように、一対の
電極であるアノード電極8とカソード電極9が、電解質
を含浸したマトリックス層10を挟んで配置されてい
る。このアノード電極8とカソード電極9は、いずれ
も、炭素質の多孔質性サブストレート、例えば薄い炭素
繊維からなるカーボンペーパー製のサブストレートが使
用され、このサブストレートのマトリックス層10に接
する面に、触媒層8a,9aが形成されている。このよ
うなアノード電極8とカソード電極9は、いずれもリブ
付きガス拡散電極(反応ガス流通溝付きガス拡散電極)
として、マトリックス層10と反対側の面(以下には背
面と称する)に、多数の反応ガス流通溝11,12が、
対向する一対のエッジ部8x,8x;9x,9x間を接
続する形で平行に形成されている。アノード電極8の反
応ガス流通溝11には水素等の燃料ガスが、またカソー
ド電極9の反応ガス流通溝12には酸素等の酸化剤ガス
が供給されて流通するように構成され、燃料ガス流通溝
11と酸化剤ガス流通溝12は、互いに直交するように
配置されている。
In the unit cell 7, as shown in FIG. 4, a pair of electrodes, an anode electrode 8 and a cathode electrode 9, are arranged with a matrix layer 10 impregnated with an electrolyte interposed therebetween. For both the anode electrode 8 and the cathode electrode 9, a carbonaceous porous substrate, for example, a substrate made of carbon paper made of thin carbon fiber is used, and the surface of the substrate in contact with the matrix layer 10 is The catalyst layers 8a and 9a are formed. Such an anode electrode 8 and a cathode electrode 9 are both gas diffusion electrodes with ribs (gas diffusion electrodes with reaction gas flow grooves)
As a result, a large number of reaction gas flow grooves 11 and 12 are formed on the surface opposite to the matrix layer 10 (hereinafter referred to as the back surface).
The pair of facing edge portions 8x, 8x; 9x, 9x are formed in parallel so as to be connected to each other. A fuel gas such as hydrogen is supplied to the reaction gas flow groove 11 of the anode electrode 8 and an oxidant gas such as oxygen is supplied to the reaction gas flow groove 12 of the cathode electrode 9 to flow therethrough. The groove 11 and the oxidant gas flow groove 12 are arranged so as to be orthogonal to each other.

【0005】燃料電池は、このような構成により起こる
電気化学的反応を利用して、上記電極間から電気エネル
ギーを出力させるものである。この場合、一対のアノー
ド電極とカソード電極からなる単位セルの出力電圧は、
通常の運転条件で0.7〜0.8Vと非常に低いため、
実用機では単位セルを直列に積層して燃料電池本体を構
成することで所定の出力電圧を得ている。
The fuel cell utilizes an electrochemical reaction caused by such a structure to output electric energy between the electrodes. In this case, the output voltage of the unit cell composed of a pair of anode electrode and cathode electrode is
Since it is very low at 0.7-0.8V under normal operating conditions,
In a practical machine, a predetermined output voltage is obtained by stacking unit cells in series to form a fuel cell body.

【0006】[0006]

【発明が解決しようとする課題】ところで、以上のよう
な従来の燃料電池においては、その運転時に、電解質の
一部が蒸発して反応ガス内に混入し、反応ガス流通溝内
を反応ガスと共に流れて電池外部へ持ち出されるという
現象を生じ、マトリックス層内の電解質の量が運転時間
の経過と共に低下する。このような電解質の損失は、燃
料電池の寿命に大きく影響するものである。このため、
電解質の損失補償の手段として、電解質蓄積層を設け、
各電極8,9のサブストレートと触媒層を電解質供給ル
ートとしてマトリックス層10に供給する方法が提案さ
れている。
By the way, in the conventional fuel cell as described above, at the time of its operation, a part of the electrolyte is vaporized and mixed into the reaction gas, and the reaction gas flows in the reaction gas flow groove together with the reaction gas. The phenomenon of flowing and being taken out of the battery occurs, and the amount of electrolyte in the matrix layer decreases with the lapse of operating time. Such electrolyte loss greatly affects the life of the fuel cell. For this reason,
As a means of compensating for the loss of the electrolyte, an electrolyte storage layer is provided,
A method has been proposed in which the substrate of each of the electrodes 8 and 9 and the catalyst layer are supplied to the matrix layer 10 as an electrolyte supply route.

【0007】しかしながら、電解質はリン酸等の酸性溶
液が使用されるため、腐食性(電食性)の強いものであ
る。このような腐食性の強い電解質が各電極に含浸・浸
透することについて、電極への影響を調べたところ、ア
ノード電極8の反応ガス流通溝11を挟む両側の一対の
エッジ部8yと対抗するカソード電極9部分、すなわち
酸化剤ガス流通溝12の両端部及びそのエッジ部9yの
シール材6,6間となる反応ガス供給部及び排出部12
aで、カソード電極9のサブストレートが電食により軟
化することが判明した。
However, since the electrolyte is an acidic solution such as phosphoric acid, it is highly corrosive (electrolytic). When the influence of such a highly corrosive electrolyte impregnating and permeating into each electrode was examined, the effect on the electrode was examined. The electrode 9 portion, that is, the reaction gas supply portion and the discharge portion 12 between the seal materials 6 and 6 at both ends of the oxidant gas flow groove 12 and the edge portion 9y thereof.
In a, it was found that the substrate of the cathode electrode 9 was softened by electrolytic corrosion.

【0008】このような燃料電池の運転を長時間行う
と、カソード電極9の強度が極端に低下し、場合によっ
ては、局部的に反応ガス流通溝12が潰れて反応ガスの
流通を妨げることにもなる。したがって、カソード電極
9の反応ガス流通溝12の破壊や、酸化剤ガスと燃料ガ
スのクロスオーバーの発生等により、燃料電池としての
運転の継続が不可能となることがあった。
When such a fuel cell is operated for a long time, the strength of the cathode electrode 9 is extremely lowered, and in some cases, the reaction gas flow groove 12 is locally crushed to hinder the flow of the reaction gas. Also becomes. Therefore, it may be impossible to continue the operation of the fuel cell due to the destruction of the reaction gas flow groove 12 of the cathode electrode 9 or the occurrence of crossover between the oxidant gas and the fuel gas.

【0009】本発明は、上記の従来技術における課題を
解決するためになされたものであり、その目的は、カソ
ード電極の酸化剤ガス流通溝の反応ガス供給部及び排出
部の電食を防止することにより、耐久性及び安全性の優
れた燃料電池を提供することである。
The present invention has been made to solve the above-mentioned problems in the prior art, and an object thereof is to prevent electrolytic corrosion in the reaction gas supply portion and the discharge portion of the oxidant gas flow groove of the cathode electrode. This is to provide a fuel cell having excellent durability and safety.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、燃料ガスが供給されるアノード電極
と、酸化剤ガスが供給されるカソード電極を電解質層を
挟んで配置して単位セルを形成し、この単位セルを複数
積層してなる燃料電池において、カソード電極の反応ガ
ス供給部及び排出部に撥水処理がなされていることを特
徴とする。
In order to achieve the above object, in the present invention, an anode electrode to which a fuel gas is supplied and a cathode electrode to which an oxidant gas is supplied are arranged with an electrolyte layer interposed therebetween. A fuel cell in which cells are formed and a plurality of the unit cells are laminated is characterized in that the reaction gas supply portion and the discharge portion of the cathode electrode are subjected to water repellent treatment.

【0011】[0011]

【作用】本発明の燃料電池においては、酸化剤ガスの供
給される電極(カソード電極)の反応ガス供給部及び排
出部に撥水処理がなされていることにより、その部分が
燃料電池の運転によって電食することを防止することが
できる。これにより、燃料電池の運転を長時間行った場
合でも、電極の破壊等は発生せず、耐久性及び安全性が
向上される。
In the fuel cell of the present invention, since the reaction gas supply part and the discharge part of the electrode (cathode electrode) to which the oxidant gas is supplied are subjected to the water repellent treatment, that part is operated by the fuel cell. It is possible to prevent electrolytic corrosion. As a result, even when the fuel cell is operated for a long time, the electrode is not broken and the durability and safety are improved.

【0012】[0012]

【実施例】以下に、本発明による燃料電池の一実施例
を、図面に基づき説明する。ここで、図1は燃料電池の
カソード電極を模式的に示し、(a)は背面図、(b)
はガス流通溝の供給部または排出部側の側面図である。
また、図2は図1のカソード電極を備えた単位セルを模
式的に示す斜視図である。なお、従来技術のガス遮断器
と同一機能を有する部材については、同一の符号を付し
説明は省略する。
An embodiment of the fuel cell according to the present invention will be described below with reference to the drawings. Here, FIG. 1 schematically shows the cathode electrode of the fuel cell, (a) is a rear view, and (b) is
FIG. 3 is a side view of the gas distribution groove on the side of a supply unit or a discharge unit.
2 is a perspective view schematically showing a unit cell including the cathode electrode of FIG. The members having the same functions as those of the conventional gas circuit breaker are designated by the same reference numerals and the description thereof will be omitted.

【0013】図1に示すように、本実施例では、カソー
ド電極9の背面に設けられた反応ガス流通溝12には、
ガス供給部及び排出部12aとその近傍に、撥水処理
(撥水処理部分13−ハッチング部分)がなされてい
る。このようなカソード電極9は、リブ付きガス拡散電
極の反応ガス流通溝12の両端部及びそのエッジ部9y
のシール材6,6間となる反応ガス供給部及び排出部1
2aに、PTFEのディスパージョン(例えば、三井フ
ロロケミカル製、固形分60%)を含浸・乾燥した後、
触媒層9aを形成し、360℃で熱処理を行うことによ
り形成される。これにより、反応ガス流通溝12のガス
供給部及び排出部12aとその近傍に撥水処理部分13
が予め設けられた状態でカソード電極9は形成されるこ
とになる。この後、単位セル形成時には、前記撥水処理
がなされたカソード電極9に電解質を含浸・浸透させ
る。このように形成されたカソード電極9を使用して、
図2に示すような単位セル7を形成する。
As shown in FIG. 1, in this embodiment, the reaction gas flow groove 12 provided on the back surface of the cathode electrode 9 has
Water repellent treatment (water repellent treatment portion 13-hatched portion) is performed on the gas supply portion and the discharge portion 12a and their vicinity. Such a cathode electrode 9 has both end portions of the reaction gas flow groove 12 of the gas diffusion electrode with ribs and its edge portion 9y.
Reaction gas supply section and discharge section 1 between the sealing materials 6 and 6
2a is impregnated with PTFE dispersion (for example, Mitsui Fluorochemical, solid content 60%) and dried,
It is formed by forming the catalyst layer 9a and performing heat treatment at 360 ° C. As a result, the water-repellent portion 13 is provided in the gas supply portion and the discharge portion 12a of the reaction gas flow groove 12 and in the vicinity thereof.
The cathode electrode 9 is formed in a state in which is previously provided. After that, at the time of forming the unit cell, the electrolyte is impregnated and permeated into the cathode electrode 9 which has been subjected to the water repellent treatment. Using the cathode electrode 9 thus formed,
A unit cell 7 as shown in FIG. 2 is formed.

【0014】以上の様に構成される単位セルと、図3に
示す従来の単位セルをそれぞれ25枚ずつ積層して試験
用燃料電池とする。それぞれの試験用燃料電池につい
て、通常の燃料電池の運転条件下で5000時間の連続
試験を行った。その結果、従来技術では、カソード電極
の反応ガス流通溝は電食により軟化していた。また、局
部的には、反応ガスの流通を妨げる状態まで溝が潰れて
いた。一方、本実施例では、反応ガス流通溝の軟化及び
潰れ等の以上は見られなかった。
A unit fuel cell having the above-mentioned structure and the conventional unit cell shown in FIG. 3 are laminated by 25 sheets to prepare a test fuel cell. Each test fuel cell was subjected to a continuous test for 5000 hours under normal fuel cell operating conditions. As a result, in the prior art, the reaction gas flow groove of the cathode electrode was softened by electrolytic corrosion. Further, locally, the groove was crushed to a state where the flow of the reaction gas was obstructed. On the other hand, in this example, the softening and crushing of the reaction gas flow groove were not observed.

【0015】以上のように本実施例の燃料電池では、カ
ソード電極8が反応ガス流通溝12の両端部であるガス
供給部及び排出部12aに撥水処理がなされて形成され
たことにより、その撥水処理部分13に電解液の含浸・
浸透することがなくなり、電食を防止することができ
る。これにより、本実施例の燃料電池は、運転を長時間
行った場合でも、カソード電極9の酸化剤ガス流通溝1
1の破壊や、酸化剤ガスと燃料ガスのクロスオーバーの
発生等は起こらず、高い耐久性及び安全性を得ることが
できる。
As described above, in the fuel cell of this embodiment, since the cathode electrode 8 is formed by the water repellent treatment at the gas supply portion and the discharge portion 12a which are both ends of the reaction gas flow groove 12, Impregnation of the water repellent treated part 13 with electrolyte solution
It will not penetrate, and electrolytic corrosion can be prevented. As a result, in the fuel cell of the present embodiment, even if the fuel cell is operated for a long time, the oxidant gas flow groove 1 of the cathode electrode 9
No destruction of No. 1 or generation of crossover between the oxidant gas and the fuel gas does not occur, and high durability and safety can be obtained.

【0016】なお、本発明は上述した実施例に限定され
るものではなく、カソード電極以外については、具体的
な構成は適宜変更可能である。また、本発明は、実施例
で使用した反応ガス流通溝が予め形成された電極に限定
されず、平板な電極に反応ガス流通路を設けたものの場
合も、同様に反応ガス流通路の両端部及びそれに接続す
る電極エッジ部となるガス供給部及び排出部を撥水処理
してカソード電極を形成することにより、前記の実施例
と同様の効果を得ることができる。
The present invention is not limited to the above-mentioned embodiments, but the specific constitution can be appropriately changed except for the cathode electrode. In addition, the present invention is not limited to the electrode in which the reaction gas flow groove used in the example is formed in advance, and also in the case where the reaction gas flow passage is provided in a flat electrode, both end portions of the reaction gas flow passage are similarly formed. Also, the same effect as in the above-described embodiment can be obtained by forming the cathode electrode by subjecting the gas supply portion and the discharge portion, which are the electrode edge portions connected thereto, to the water repellent treatment to form the cathode electrode.

【0017】[0017]

【発明の効果】以上のように本発明によれば、カソード
電極の反応ガス供給部及び排出部に撥水処理がなされた
ことにより、この部分への電解質の含浸及び浸透が起こ
らず、電食を防止することができる。これにより、耐久
性及び安全性の優れた燃料電池を提供することができ
る。
As described above, according to the present invention, since the reaction gas supply portion and the discharge portion of the cathode electrode are subjected to the water repellent treatment, impregnation and permeation of the electrolyte into this portion do not occur, and electrolytic corrosion is prevented. Can be prevented. As a result, a fuel cell having excellent durability and safety can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一実施例のカソード電極を
模式的を示し、(a)は背面図、(b)はガス流通溝の
供給部または排出部側の側面図。
FIG. 1 schematically shows a cathode electrode of an embodiment of a fuel cell of the present invention, (a) is a rear view, and (b) is a side view of a gas distribution groove on the side of a supply part or a discharge part.

【図2】図1のカソード電極を備えた単位セルを模式的
に示す斜視図。
FIG. 2 is a perspective view schematically showing a unit cell including the cathode electrode of FIG.

【図3】従来技術の燃料電池の燃料電池本体の構造を示
す斜視図。
FIG. 3 is a perspective view showing a structure of a fuel cell body of a conventional fuel cell.

【図4】図4の構成部材である単位セルを模式的に示す
斜視図。
FIG. 4 is a perspective view schematically showing a unit cell which is a constituent member of FIG.

【符号の説明】[Explanation of symbols]

1 … 積層体 2 … 締付板 3 … スペーサ 4 … アノードマニホールド 5 … カソードマニホールド 6 … シール材 7 … 単位セル 8 … アノード電極 8a… 触媒層 9 … カソード電極 9a… 触媒層 10 … マトリックス層 11 … アノード電極の反応ガス流通溝 12 … カソード電極の反応ガス流通溝 12a… ガス供給部及び排出部 13 … 撥水処理部分 DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Clamping plate 3 ... Spacer 4 ... Anode manifold 5 ... Cathode manifold 6 ... Sealing material 7 ... Unit cell 8 ... Anode electrode 8a ... Catalyst layer 9 ... Cathode electrode 9a ... Catalyst layer 10 ... Matrix layer 11 ... Reaction gas flow groove 12 of anode electrode ... Reaction gas flow groove 12a of cathode electrode ... Gas supply part and discharge part 13 ... Water repellent treatment part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスが供給されるアノード電極と、
酸化剤ガスが供給されるカソード電極を電解質層を挟ん
で配置して単位セルを形成し、この単位セルを複数積層
してなる燃料電池において、 カソード電極の反応ガス供給部及び排出部に撥水処理が
なされていることを特徴とする燃料電池。
1. An anode electrode to which a fuel gas is supplied,
In a fuel cell in which a unit cell is formed by arranging cathode electrodes to which an oxidant gas is supplied with an electrolyte layer in between, and a plurality of unit cells are stacked, water repellency is applied to the reaction gas supply unit and discharge unit of the cathode electrode. A fuel cell characterized by being processed.
JP5103190A 1993-04-28 1993-04-28 Fuel cell Pending JPH06310160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103190A JPH06310160A (en) 1993-04-28 1993-04-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103190A JPH06310160A (en) 1993-04-28 1993-04-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPH06310160A true JPH06310160A (en) 1994-11-04

Family

ID=14347608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103190A Pending JPH06310160A (en) 1993-04-28 1993-04-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06310160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606978B1 (en) * 2004-04-09 2006-08-01 엘지전자 주식회사 Fuel Cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606978B1 (en) * 2004-04-09 2006-08-01 엘지전자 주식회사 Fuel Cell

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
CA2693522C (en) Fuel cell with non-uniform catalyst
JP2001357869A (en) Solid high-polymer type fuel cell stack
US20040157111A1 (en) Fuel cell
JPH06310160A (en) Fuel cell
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2000100454A (en) Fuel cell stack
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JP3350260B2 (en) Solid polymer electrolyte fuel cell
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JP2001351666A (en) Fuel cell system using phosphoric acid and stopping method of the same
JPH06150944A (en) Fuel cell electrode
JPH06333581A (en) Solid poly electrolyte fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
KR100792869B1 (en) Separating plate for fuel cell
JP2004349013A (en) Fuel cell stack
JP3351592B2 (en) Fuel cell
JP2003197240A (en) Fuel cell system
JP2004185904A (en) Fuel cell
JPH11312530A (en) Solid polymer electrolyte type fuel cell
JP2009048905A (en) Fuel cell
JP2005317421A (en) Fuel cell
JP3110902B2 (en) Fuel cell
US20080096081A1 (en) Fuel Cell