JPH06310146A - Insulating coated electrode - Google Patents

Insulating coated electrode

Info

Publication number
JPH06310146A
JPH06310146A JP5096210A JP9621093A JPH06310146A JP H06310146 A JPH06310146 A JP H06310146A JP 5096210 A JP5096210 A JP 5096210A JP 9621093 A JP9621093 A JP 9621093A JP H06310146 A JPH06310146 A JP H06310146A
Authority
JP
Japan
Prior art keywords
electrode
organic material
nickel
film
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5096210A
Other languages
Japanese (ja)
Inventor
Noritake Shimanoe
憲剛 島ノ江
Masao Sakashita
雅雄 坂下
Masao Kurosaki
将夫 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5096210A priority Critical patent/JPH06310146A/en
Publication of JPH06310146A publication Critical patent/JPH06310146A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To avoid a short circuit depending on a deposition by the charge and discharge, and to obtain an electrode having a high charge and discharge cycle, by providing an insulating coating membrane with good adhesion and durability, to the outer side of a collector. CONSTITUTION:In an electrode used for an alkaline battery, the outer surface of a metallic holder to cover the active material is covered by an organic material with the thickness more than 0.1mum and less than 2mum to form an electrode 3. The feature of the metallic holder is that it is formed of either one sort of copper, nickel, iron, and lead, or a complex of some of them. The feature of the organic material is to be a fluorine compound. And the feature of the coating method of the organic material is to be a plasma polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ電池の電極に関
する。詳しくはニッケル−カドミウム電池、ニッケル−
鉄電池、ニッケル−亜鉛電池等に使用する絶縁被覆電極
に係るものである。
FIELD OF THE INVENTION The present invention relates to electrodes for alkaline batteries. For details, nickel-cadmium battery, nickel-
The present invention relates to an insulating coated electrode used in iron batteries, nickel-zinc batteries, and the like.

【0002】[0002]

【従来の技術】アルカリ電池の電極は一般的に電流を取
り出すための集電体に活物質を充填して用いている。例
えばポケット式と呼ばれる電極は金属板と金属網により
活物質を包接し用いられている。この電極はセパレータ
ーを介して他方電極と接しているが、放電によって活物
質が電解液に溶解し充電によって電極に析出する場合、
しばしば集電体の外部に析出しセパレーターを破壊して
短絡が生じる。
2. Description of the Related Art Generally, an electrode of an alkaline battery is used by filling a current collector for taking out an electric current with an active material. For example, an electrode called a pocket type is used by including an active material with a metal plate and a metal net. This electrode is in contact with the other electrode through the separator, but when the active material is dissolved in the electrolytic solution by discharge and deposited on the electrode by charging,
Often, it deposits on the outside of the current collector, destroys the separator, and causes a short circuit.

【0003】また、この析出を避けるために集電体外部
を有機材料によって電気的に絶縁することが考えられ
る。この処理に用いられる樹脂としては、エポキシ樹
脂、シリコン樹脂、シーリングワックス等があるが、樹
脂の塗布による絶縁処理ではピンホールをなくすために
1mm以上の膜厚にしなければならず、このため電極とセ
パレーター間に空隙が生じ活物質のもれが生じる恐れが
ある。また、これらの樹脂は電解液中で長時間安定な密
着性を示すものはほとんどないのが現状である。
In order to avoid this precipitation, it is possible to electrically insulate the outside of the current collector with an organic material. Resins used for this treatment include epoxy resin, silicone resin, sealing wax, etc., but the insulation treatment by coating the resin requires a film thickness of 1 mm or more to eliminate pinholes. Voids may occur between the separators, and the active material may leak. At present, most of these resins do not exhibit stable adhesion for a long time in an electrolytic solution.

【0004】一方、表面を改質するための公知の技術と
してプラズマ重合法があり、表面の濡れ性の改質、表面
の接着性の改善等への応用が図られてきた(特開昭60
−229932号公報、特開昭62−240542号公
報)。基板表面の疎水性化については、含フッ素プラズ
マによる処理が有効であることが知られている(特開昭
55−99932号公報)。しかし、これらのプラズマ
重合膜は、ほとんどが高分子表面の改質に限られてい
た。
On the other hand, there is a plasma polymerization method as a known technique for modifying the surface, which has been applied to modification of surface wettability, improvement of surface adhesiveness, etc.
No. 229932, JP-A No. 62-240542). It is known that treatment with fluorine-containing plasma is effective for making the substrate surface hydrophobic (Japanese Patent Laid-Open No. 55-99932). However, most of these plasma-polymerized films were limited to modification of the polymer surface.

【0005】[0005]

【発明が解決しようとする課題】本発明は集電体外部に
密着性及び耐久性の良い絶縁被覆膜を施し、充放電によ
る析出に基づく短絡を回避し、高い充放電サイクルをも
つ電極を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an electrode having a high charge / discharge cycle by providing an insulating coating film having good adhesion and durability on the outside of a current collector to avoid a short circuit due to deposition due to charge / discharge. It is provided.

【0006】[0006]

【課題を解決するための手段】本発明はアルカリ電池に
用いられる電極において、活物質を包接する金属支持体
の外面を厚さ0.1μm以上2μm以下の有機材料で被
覆した電極である。図1に本発明の絶縁被覆電極の一例
を断面で示した。図中1は絶縁皮膜、2は金属支持体、
3は活性物質である。この時用いる金属支持体は銅、ニ
ッケル、鉄、鉛のいずれか、もしくは複合物である。ま
た、有機材料としてはアルカリ電解液中で安定なもので
あれば何でも良いが、膜の緻密性と耐久性の点を考慮す
るとフッ素化合物が好ましい。さらに、この有機材料は
0.1μm以上2μm以下の厚さである。膜厚が0.1
μmより小さいと電気絶縁性に乏しく、2μmより大き
いと膜内の応力により剥離する可能性がある。
The present invention relates to an electrode used in an alkaline battery, in which an outer surface of a metal support for enclosing an active material is coated with an organic material having a thickness of 0.1 μm or more and 2 μm or less. FIG. 1 shows a cross section of an example of the insulating coated electrode of the present invention. In the figure, 1 is an insulating film, 2 is a metal support,
3 is an active substance. The metal support used at this time is any of copper, nickel, iron, lead, or a composite material. Any organic material may be used as long as it is stable in an alkaline electrolyte, but a fluorine compound is preferable in consideration of the denseness and durability of the film. Further, this organic material has a thickness of 0.1 μm or more and 2 μm or less. Film thickness is 0.1
If it is less than μm, the electrical insulation is poor, and if it is more than 2 μm, it may peel due to the stress in the film.

【0007】この有機材料被覆電極の作製方法としては
プラズマ重合があげられ、モノマーをプラズマ化させ、
その中の活性種を用いて金属支持体に有機膜を形成させ
る方法である。モノマーをプラズマ化させる方法には、
モノマーに直接電場を作用させる方法とプラズマ化させ
た非重合気体をモノマーに接触させる間接的な方法とが
あり、モノマーとしては、全ての炭化水素化合物を利用
できる。また、間接的方法で用いる非重合気体として
は、アルゴン、ヘリウム等の不活性気体を用いる。プラ
ズマ化する方法には、コイルに高周波電圧をかける誘導
結合方式、対向した平行平板間に高周波をかける容量結
合方式があり、いずれも用いることができる。プラズマ
重合法は、気体流量が非重合気体もモノマーもともに
0.1〜10.0cc/min(アルゴン換算)、全圧力0.
01〜1.0Torrの範囲で、電源周波数10kHz 以下、
及び13.56MHz ,27.12MHz ,2.48GHz ,
5.8GHz ,22.125GHz 、出力10〜200Wの
条件下で行うが、プラズマ発生装置や金属支持体の形
状、及び処理表面の広さ等により変化するのでその都度
最適値を求める必要がある。
As a method for producing the organic material-coated electrode, plasma polymerization can be mentioned.
It is a method of forming an organic film on a metal support using active species therein. In the method of converting the monomer into plasma,
There are a method of directly applying an electric field to the monomer and an indirect method of bringing a non-polymerized gas made into a plasma into contact with the monomer, and all hydrocarbon compounds can be used as the monomer. Further, as the non-polymerization gas used in the indirect method, an inert gas such as argon or helium is used. There are two methods of plasma conversion, an inductive coupling method in which a high frequency voltage is applied to the coil, and a capacitive coupling method in which a high frequency is applied between opposed parallel plates, and either method can be used. In the plasma polymerization method, the gas flow rate is 0.1 to 10.0 cc / min (argon conversion) for both the non-polymerized gas and the monomer, and the total pressure is 0.
In the range of 01 to 1.0 Torr, the power supply frequency is 10kHz or less,
And 13.56MHz, 27.12MHz, 2.48GHz,
It is carried out under the conditions of 5.8 GHz, 22.125 GHz and an output of 10 to 200 W, but since it changes depending on the shape of the plasma generator and the metal support, the size of the treated surface, etc., it is necessary to obtain the optimum value each time.

【0008】プラズマ重合法では、金属支持体表面にイ
オン化あるいは励起した不活性気体が衝突するため表面
に活性点が生じ、これらが膜原子と結合し密着性が向上
する。また、プラズマ重合法で得られた膜は三次元的な
架橋構造をとるためにピンホールのない緻密な膜であ
る。さらに、有機膜であるので絶縁性が高く、モノマー
としてフッ素化合物を用いると生成した重合膜は疎水性
の膜となり、膜中に電解液を含みにくくし絶縁性を向上
させる。これらフッ素系のモノマーとしては、ヘキサフ
ルオロベンゼン、ヘキサフルオロ−n−ヘキサン、テト
ラデカフルオロ−2−メチルペンタン等があるが、フッ
素系のモノマーであれば製膜速度が異なるだけで同様な
疎水性の効果が得られる。また、非フッ素化合物とフッ
素化合物を混合して用いることもでき、非フッ素化合物
としては、エチレン、アセチレン、ベンゼン等を用いる
ことができる。以下に実施例を示す。
In the plasma polymerization method, an ionized or excited inert gas collides with the surface of the metal support to generate active points on the surface, which are bonded to the film atoms to improve the adhesion. The film obtained by the plasma polymerization method is a dense film having no pinhole because it has a three-dimensional crosslinked structure. Furthermore, since it is an organic film, it has a high insulating property, and when a fluorine compound is used as a monomer, the polymerized film produced becomes a hydrophobic film, making it difficult to contain an electrolytic solution in the film and improving the insulating property. Hexafluorobenzene, hexafluoro-n-hexane, and tetradecafluoro-2-methylpentane are examples of these fluorine-based monomers. However, fluorine-based monomers are similar in hydrophobicity except that the film-forming speed is different. The effect of is obtained. Further, a non-fluorine compound and a fluorine compound may be mixed and used, and as the non-fluorine compound, ethylene, acetylene, benzene or the like may be used. Examples will be shown below.

【0009】[0009]

【実施例】【Example】

(実施例)プラズマ重合として、誘導結合型アフターグ
ロー方式を用い、まず密着性を向上させるために数分
間、表面に小孔をもつニッケル支持体(30mm×30mm
×0.1mm)の表面をアルゴンプラズマに曝して(アル
ゴン流量4.0cc/min、圧力0.2Torr、出力30W、
電源周波数13.56MHz)、表面を洗浄し、次にモノマ
ーを反応管中に導入してプラズマを発生させ、30分
間、反応管の中に置いた支持体の外面に重合膜を生成さ
せた。重合時の気体の流量は、アルゴン、モノマーとも
に4.0cc/min(アルゴン換算)、全圧力は0.2Tor
r、また出力は30Wで行った。モノマーとしては、疎
水性の膜を生成するヘキサフルオロベンゼンを用いた。
次に94wt%の酸化亜鉛と4wt%のテフロンと2wt%の
酸化鉛の混合物を水を用いて混合し、このニッケル支持
体で包接し、乾燥を400℃で30分加熱処理して負極
とした。また、この負極と電荷量が同じである水酸化ニ
ッケル(II)の負極を同様に作製し、正極とした。この
正負極を30%水酸化カリウム水溶液中にセルロース系
を主成分とするセパレーターと一緒に配置し、0.2C
で5時間の充放電を200回繰り返した。このとき電極
外面における活物質の析出は見られず、短絡は生じなか
った。
(Example) As a plasma polymerization, an inductively coupled afterglow method is used. First, a nickel support (30 mm x 30 mm) having small holes on the surface is used for several minutes to improve adhesion.
The surface of (× 0.1 mm) is exposed to argon plasma (argon flow rate 4.0 cc / min, pressure 0.2 Torr, output 30 W,
The surface was washed at a power supply frequency of 13.56 MHz), and then monomers were introduced into the reaction tube to generate plasma, and a polymerized film was formed on the outer surface of the support placed in the reaction tube for 30 minutes. The flow rate of gas during polymerization was 4.0 cc / min (argon conversion) for both argon and monomer, and total pressure was 0.2 Tor.
Also, the output was 30 W. Hexafluorobenzene, which forms a hydrophobic film, was used as the monomer.
Next, a mixture of 94 wt% zinc oxide, 4 wt% Teflon, and 2 wt% lead oxide was mixed with water, clathrated with this nickel support, and dried at 400 ° C. for 30 minutes to obtain a negative electrode. . Further, a nickel (II) hydroxide negative electrode having the same charge amount as this negative electrode was similarly prepared and used as a positive electrode. The positive and negative electrodes were placed in a 30% aqueous potassium hydroxide solution together with a separator containing cellulose as a main component, and 0.2 C
The charging / discharging for 5 hours was repeated 200 times. At this time, no deposition of the active material was observed on the outer surface of the electrode, and no short circuit occurred.

【0010】(比較例1)94wt%の酸化亜鉛と4wt%
のテフロンと2wt%の酸化鉛の混合物を水を用いて混合
し、表面に小孔をもつニッケル支持体(30mm×30mm
×0.1mm)で包接し、乾燥を400℃で30分加熱処
理して負極とした。また、この負極と電荷量が同じであ
る水酸化ニッケル(II)の負極を同様に作製し、正極と
した。この正負極を30%水酸化カリウム水溶液中にセ
ルロース系を主成分とするセパレーターと一緒に配置
し、0.2Cで5時間の充放電を200回繰り返した。
このとき負電極外面には、亜鉛が析出し約50回目近傍
から短絡を生じていた。
(Comparative Example 1) 94 wt% zinc oxide and 4 wt%
A mixture of Teflon and 2 wt% lead oxide was mixed with water, and a nickel support (30 mm x 30 mm) with small holes on the surface was mixed.
× 0.1 mm), and dried at 400 ° C. for 30 minutes to obtain a negative electrode. Further, a nickel (II) hydroxide negative electrode having the same charge amount as this negative electrode was similarly prepared and used as a positive electrode. The positive and negative electrodes were placed in a 30% aqueous potassium hydroxide solution together with a separator containing cellulose as a main component, and charging and discharging were repeated 200 times at 0.2 C for 5 hours.
At this time, zinc was deposited on the outer surface of the negative electrode, and a short circuit was generated from around the 50th time.

【0011】(比較例2)94wt%の酸化亜鉛と4wt%
のテフロンと2wt%の酸化鉛の混合物を水を用いて混合
し、表面に小孔をもつニッケル支持体(30mm×30mm
×0.1mm)で包接し、乾燥を400℃で30分加熱処
理し、支持体外面にエポキシ樹脂を被覆して負極とし
た。また、この負極と電荷量が同じである水酸化ニッケ
ル(II)の負極を同様に作製し、正極とした。この正負
極を30%水酸化カリウム水溶液中にセルロース系を主
成分とするセパレーターと一緒に配置し、0.2Cで5
時間の充放電を200回繰り返した。このとき負電極外
面には、局所的に亜鉛が析出し、またエポキシ樹脂の剥
離も見られた。さらに充放電の約100回目近傍から短
絡を生じていた。
(Comparative Example 2) 94 wt% zinc oxide and 4 wt%
A mixture of Teflon and 2 wt% lead oxide was mixed with water, and a nickel support (30 mm x 30 mm) with small holes on the surface was mixed.
× 0.1 mm) and dried at 400 ° C. for 30 minutes, and the outer surface of the support was coated with an epoxy resin to obtain a negative electrode. Further, a nickel (II) hydroxide negative electrode having the same charge amount as this negative electrode was similarly prepared and used as a positive electrode. The positive and negative electrodes were placed in a 30% aqueous solution of potassium hydroxide together with a separator containing cellulosic as a main component, and the positive and negative electrodes were heated to 5 at 0.2
The time charge / discharge was repeated 200 times. At this time, zinc was locally deposited on the outer surface of the negative electrode, and the epoxy resin was peeled off. Furthermore, a short circuit occurred around the 100th charge / discharge cycle.

【0012】[0012]

【発明の効果】本発明により、集電体外部に密着性及び
耐久性の良い絶縁被覆膜を施し、充放電による析出に基
づく短絡を回避し、高い充放電サイクルをもつ電極を提
供できた。
According to the present invention, it is possible to provide an electrode having a high charge / discharge cycle by providing an insulating coating film having good adhesion and durability on the outside of a current collector, avoiding a short circuit due to deposition due to charge / discharge. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁被覆電極の断面図である。FIG. 1 is a sectional view of an insulating coated electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁被覆有機膜 2 金属支持体 3 活物質 1 Insulation coated organic film 2 Metal support 3 Active material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ電池に用いられる電極におい
て、活物質を包接する金属支持体の外面を厚さ0.1μ
m以上2μm以下の有機材料で被覆したことを特徴とす
る絶縁被覆電極。
1. In an electrode used in an alkaline battery, the outer surface of a metal support for enclosing an active material has a thickness of 0.1 μm.
An insulating coated electrode, characterized by being coated with an organic material having a thickness of m or more and 2 μm or less.
【請求項2】 金属支持体が銅、ニッケル、鉄、鉛のい
ずれか、もしくは複合物である請求項1記載の絶縁被覆
電極。
2. The insulating coated electrode according to claim 1, wherein the metal support is any of copper, nickel, iron, lead, or a composite material.
【請求項3】 有機材料がフッ素化合物である請求項1
記載の絶縁被覆電極。
3. The organic material is a fluorine compound.
The insulation-coated electrode described.
【請求項4】 有機材料がプラズマ重合で被覆される請
求項1記載の絶縁被覆電極。
4. The insulating coated electrode according to claim 1, wherein the organic material is coated by plasma polymerization.
JP5096210A 1993-04-22 1993-04-22 Insulating coated electrode Withdrawn JPH06310146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5096210A JPH06310146A (en) 1993-04-22 1993-04-22 Insulating coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096210A JPH06310146A (en) 1993-04-22 1993-04-22 Insulating coated electrode

Publications (1)

Publication Number Publication Date
JPH06310146A true JPH06310146A (en) 1994-11-04

Family

ID=14158894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096210A Withdrawn JPH06310146A (en) 1993-04-22 1993-04-22 Insulating coated electrode

Country Status (1)

Country Link
JP (1) JPH06310146A (en)

Similar Documents

Publication Publication Date Title
US5434021A (en) Secondary electrolytic cell and electrolytic process
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
US5464453A (en) Method to fabricate a reliable electrical storage device and the device thereof
KR101224760B1 (en) Secondary-battery current collector foil and method of manufacturing the same
KR20180041086A (en) An anode for an lithium ion secondary battery and a method for manufacturing the same
US5821033A (en) Photolithographic production of microprotrusions for use as a space separator in an electrical storage device
WO2023197806A1 (en) Porous polymer coating copper electrode and preparation method therefor and application thereof
JPH10188951A (en) Electrode plate and manufacture thereof
ITMI951650A1 (en) PROCEDURE FOR THE PREPARATION OF A CURRENT COLLECTOR IN CONTACT WITH THE CATHODIC MATERIAL
WO2009125272A1 (en) Negative electrode element for lithium-ion secondary battery, lithium-ion secondary battery and method of manufacturing the same
JP4326162B2 (en) Method for manufacturing lithium secondary battery
JPH0888022A (en) Secondary battery and manufacture of secondary battery
KR100240743B1 (en) Lithium secondary battery using battery separators having conductive coating
JPH06260168A (en) Lithium secondary battery
JPH06310146A (en) Insulating coated electrode
KR20190029077A (en) Lithium metal electrode and method of manufacturing the same, and secondary battery including the same
KR20050093769A (en) Method for producing drawn coated metals and use of said metals in the form of a current differenciator for electrochemical components
JP3234251B2 (en) Rechargeable battery
JP2022187895A (en) Negative electrode of lithium-ion secondary battery, method for manufacturing the same and manufacturing apparatus, and lithium-ion secondary battery
JP2023513815A (en) Anode piece, battery and electronic device employing said electrode piece
JP5145794B2 (en) Electrode manufacturing method
JP2005166442A (en) Energy device and manufacturing method therefor
JPH0896795A (en) Negative electrode for nonaqueous electrolytic secondary battery, its manufacture, and nonaqueous electrolytic secondary battery
JPH06316766A (en) Production of improved silicon dioxide electret and said improved electret obtained
SU635540A1 (en) Method of manufacturing lead-acid storage battery lattice

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704