JPH0630917A - Pigment dilution curve measuring apparatus - Google Patents

Pigment dilution curve measuring apparatus

Info

Publication number
JPH0630917A
JPH0630917A JP4065655A JP6565592A JPH0630917A JP H0630917 A JPH0630917 A JP H0630917A JP 4065655 A JP4065655 A JP 4065655A JP 6565592 A JP6565592 A JP 6565592A JP H0630917 A JPH0630917 A JP H0630917A
Authority
JP
Japan
Prior art keywords
calculating
light
calculated
variable
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4065655A
Other languages
Japanese (ja)
Other versions
JP2608831B2 (en
Inventor
Takuo Aoyanagi
卓雄 青柳
Masayoshi Fuse
政好 布施
Michio Kanemoto
理夫 金本
Shiyoutai Shiya
承泰 謝
Hideyuki Tomita
英行 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP4065655A priority Critical patent/JP2608831B2/en
Publication of JPH0630917A publication Critical patent/JPH0630917A/en
Application granted granted Critical
Publication of JP2608831B2 publication Critical patent/JP2608831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus which achieves measurement of a pigment dilution curve in a non-invasion manner and accurately by determining first and second variables from a changing rate of extinction after light with first and second wavelengths transmits through tissue. CONSTITUTION:Light generated with a light source apparatus 1 transmits through at tissue 102 and converted into an electric signal with a photosensor 21 to be amplified with an amplifier 22. An output signal of the amplifier is sorted into signals corresponding to light with wavelengths lambda1 and lambda2 with a multiplexer 31 to calculate changes A1 and A2 in extinction with a changes detection circuits 36 and 37 and DELTAA1/DELTAA2=PHI0 is calculated with extinction changing rate calculator 4. {X=X0} is determined to satisfy PHI0={C1+f1(X)/{C2+ f2(X)} with respect to the ratio PHI0 with an independent variable calculator 6 and a correction item calculator 7 and f1 (X0) and f2 (X0) are calculated based on the results. When a pigment is injected into blood of a person to be inspected, a changeover switch 5 is changed over to the position of a relative density calculator 8 for pigments in blood and the Cd' is calculated to satisfy PHI0={f10(Cd')+f1(X0)}/{f20(Cd')+f2-(X0)}.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、循環器系に色素を注入
した場合の、循環器系の一点の血中色素濃度の時間的変
化、いわゆる色素希釈曲線を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring a so-called dye dilution curve of a blood dye concentration at one point in the circulatory system when a dye is injected into the circulatory system.

【0002】色素希釈曲線は循環器系の診断に大変有効
なものであって、心拍出量、循環血液量、肝臓異物排泄
能、シャント、心臓弁における逆流等の測定に利用され
る。
The dye dilution curve is very effective for diagnosing the circulatory system and is used for measuring cardiac output, circulating blood volume, hepatic foreign body excretion ability, shunt, regurgitation in heart valves, and the like.

【0003】[0003]

【従来の技術】色素希釈曲線の測定は、初期には血液を
連続的に吸引してキュベットを通過させ、血液透過光を
測定することによっていた。これは観血的であり、血液
を消費するので体内血液量の小なる場合は特に侵襲が
大、などの不都合があった。その後、色素希釈曲線を無
侵襲的に測定する装置として、耳朶の透過光の連続測定
による装置など、いくつかの装置が考案され、実用され
た。
2. Description of the Related Art Initially, the measurement of a dye dilution curve was carried out by continuously sucking blood and letting it pass through a cuvette, and measuring the blood transmitted light. This is invasive and consumes blood, which is disadvantageous in that it is particularly invasive when the amount of blood in the body is small. After that, several devices were devised and put into practical use as a device for non-invasively measuring the dye dilution curve, such as a device for continuous measurement of transmitted light from the earlobe.

【0004】[0004]

【発明が解決しようとする課題】.しかし、従来のこの
種の装置は操作の厄介なこと、精度がわるいこと、など
の欠点により、臨床に充分活用されるに至っていない。
本発明はこの状況に対しなされたもので、その目的は色
素希釈曲線を無侵襲的にかつ精度よく測定する装置を提
供することである。
[Problems to be Solved by the Invention]. However, conventional devices of this type have not been fully utilized clinically due to the drawbacks such as troublesome operation and poor accuracy.
The present invention has been made in view of this situation, and an object thereof is to provide an apparatus for noninvasively and accurately measuring a dye dilution curve.

【0005】[0005]

【課題を解決するための手段】請求項1の構成は、第1
および第2の波長それぞれの光を発生する光発生手段
と、この光発生手段から発生した光を生体組織を介して
受光しその透過光を電気信号に変換する光検出手段と、
この光検出手段が検出した前記第1および第2の波長の
透過光の変化から前記生体組織の減光度の変化ΔA1
ΔA2 を検出する変化検出手段と、この変化検出手段が
検出したΔA1 とΔA2 の比Φを算出する変化比算出手
段と、この変化比算出手段が算出したΦが与えられたと
き、Φ={C1 +f1 (X)}/{C2 +f2 (X)}
(C1 ,C2 :定数、f1 (X),f2 (X):Xを独
立変数とする関数)を満足するX=X0 を算出する第1
の変数算出手段と、この第1の変数算出手段が算出した
0 に基づいてf1 (X0 ),f2 (X0 )の値をそれぞ
れ算出して記憶する関数値算出手段と、前記変化比算出
手段が算出したΦが与えられたとき、Φ={f10(Cd
′)+f1 (X0 )}/{f20(Cd ′)+f2 (X
0 )}(f10(Cd ′),f20(Cd ′):Cd ′を独
立変数とする関数、f1 (X0 ),f2 (X0 ):前記
関数値算出手段が算出した関数値)を満足するCd ′を
算出する第2の変数算出手段と、前記変化比算出手段が
算出したΦを前記第1の変数算出手段へ与えるか前記第
2の変数算出手段へ与えるかの切換えを行なう切換え手
段と、を具備するものである。
The structure of claim 1 is the first
And light generating means for generating light of each of the second wavelengths, and light detecting means for receiving the light generated from the light generating means through the living tissue and converting the transmitted light into an electric signal.
From the change in the transmitted light of the first and second wavelengths detected by the light detecting means, the change in the extinction degree of the living tissue ΔA 1 ,
A change detecting means for detecting a .DELTA.A 2, a change ratio calculating means for calculating a ratio of .DELTA.A 1 and .DELTA.A 2 of this change detecting means detects [Phi, when [Phi this change ratio calculating means has calculated is given, [Phi = {C 1 + f 1 (X)} / {C 2 + f 2 (X)}
The first calculation of X = X 0 that satisfies (C 1 , C 2 : constants, f 1 (X), f 2 (X): a function having X as an independent variable)
Variable calculation means, function value calculation means for calculating and storing the values of f 1 (X 0 ), f 2 (X 0 ) based on X 0 calculated by the first variable calculation means, respectively. When Φ calculated by the change ratio calculating means is given, Φ = {f 10 (Cd
′) + F 1 (X 0 )} / {f 20 (Cd ′) + f 2 (X
0 )} (f 10 (Cd ′), f 20 (Cd ′): a function having Cd ′ as an independent variable, f 1 (X 0 ), f 2 (X 0 ): the function calculated by the function value calculating means A second variable calculating means for calculating Cd ′ satisfying a value) and switching of Φ calculated by the change ratio calculating means to the first variable calculating means or the second variable calculating means. And a switching means for performing.

【0006】請求項2の構成は上記構成に更に、ヘモグ
ロビン濃度Hb を記憶するヘモグロビン濃度記憶手段
と、前記第2の変数算出手段が算出したCd ′と前記ヘ
モグロビン濃度記憶手段が記憶したHb とによりCd ′
・Hb を算出して色素濃度Cdを求める色素濃度算出手
段が付加されたものである。
According to a second aspect of the present invention, in addition to the above configuration, a hemoglobin concentration storage means for storing the hemoglobin concentration Hb, Cd 'calculated by the second variable calculation means, and Hb stored by the hemoglobin concentration storage means. Cd '
A dye concentration calculating means for calculating Hb to obtain the dye concentration Cd is added.

【0007】請求項3の構成は上記請求項1の構成にお
いて第1の変数算出手段はf2 (X)=K・f1 (X)
(K:定数)の関係を用いて計算することを特徴として
いる。
According to the structure of claim 3, in the structure of claim 1, the first variable calculating means is f 2 (X) = K · f 1 (X)
The feature is that calculation is performed using the relationship of (K: constant).

【0008】[0008]

【作用】請求項1の構成において、まず切換え手段は変
化比算出手段が算出したΦを第1の変数算出手段へ与え
るようにする。次に操作者は光発生手段と光検出手段と
の間隙に測定の対象となる生体組織を挿入する。光検出
手段は光発生手段からの光であってこの生体組織を透過
した光を受光して電気信号に変換する。変化検出手段は
第1および第2の波長の透過光の減光度の変化ΔA1
ΔA2 を検出する。変化比算出手段はこのΔA1 とΔA
2 の比Φを算出する。第1の変数算出手段は変化比算出
手段が算出したΦを用いてΦ={C1 +f1 (X)}/
{C2 +f2 (X)}を満足するX=X0 を算出する。
関数値算出手段は第1の変数算出手段が算出したX0
基づいてf1 (X0 ),f2 (X0 )の値をそれぞれ算
出して記憶する。
According to the first aspect of the invention, the switching means first applies the Φ calculated by the change ratio calculating means to the first variable calculating means. Next, the operator inserts the living tissue to be measured into the gap between the light generating means and the light detecting means. The light detecting means receives the light from the light generating means which has passed through the living tissue and converts it into an electric signal. The change detection means changes the extinction degree of the transmitted light of the first and second wavelengths ΔA 1 ,
Detect ΔA 2 . The change ratio calculation means uses the ΔA 1 and ΔA
Calculate the ratio Φ of 2 . The first variable calculation means uses Φ calculated by the change ratio calculation means, and Φ = {C 1 + f 1 (X)} /
X = X 0 that satisfies {C 2 + f 2 (X)} is calculated.
The function value calculation means calculates and stores the values of f 1 (X 0 ) and f 2 (X 0 ) based on X 0 calculated by the first variable calculation means.

【0009】次に切換え手段により変化比算出手段が算
出したΦを第2の変数算出手段へ与えるようにする。光
検出手段、変化検出手段および変化比算出手段は上記と
同様の動作を行ない変化比算出手段はΦを算出する。こ
のΦは第2の変数算出手段へ与えられる。第2の変数算
出手段はこのΦと、関数値算出手段が記憶したf1 (X
0 ),f2 (X0 )の値を用いてΦ={f10(Cd ′)
+f1 (X0 )}/{f20(Cd ′)+f2 (X0 )}
を満足するCd ′を算出する。
Next, the Φ calculated by the change ratio calculating means is applied to the second variable calculating means by the switching means. The light detecting means, the change detecting means and the change ratio calculating means perform the same operation as described above, and the change ratio calculating means calculates Φ. This Φ is given to the second variable calculation means. The second variable calculation means uses this Φ and f 1 (X
0 ), f 2 (X 0 ), Φ = {f 10 (Cd ′)
+ F 1 (X 0 )} / {f 20 (Cd ′) + f 2 (X 0 )}
Cd ′ satisfying the above condition is calculated.

【0010】請求項2の構成においてCd ′を算出する
までの作用は上記作用と同様であるが、本構成では更
に、色素濃度算出手段はこのCd ′とヘモグロビン濃度
記憶手段が記憶したHb とによりCd ′・Hb を算出し
て色素濃度Cd を求める。
In the structure of the second aspect, the operation until the calculation of Cd 'is the same as the above-mentioned operation, but in this structure, the dye concentration calculating means further uses this Cd' and Hb stored in the hemoglobin concentration storing means. Cd'.Hb is calculated to obtain the dye concentration Cd.

【0011】上記2つの作用において、切換え手段がΦ
を第2の変数算出手段へ与えるように切換えを行なう時
期は、生体に色素を注入する直前、または注入と同時、
または遅くとも色素がその測定部位に到達する直前まで
が好適である。
In the above two operations, the switching means is Φ
Is applied to the second variable calculation means immediately before or at the same time as the injection of the dye into the living body.
Alternatively, it is preferable that it is at the latest just before the dye reaches the measurement site.

【0012】請求項3の構成では、上記作用において第
1の変数算出手段はX0 を算出するにあたりf2 (X)
=K・f1 (X)の関係を用いる。
In the structure of claim 3, in the above operation, the first variable calculating means calculates f 0 (f 2 (X)) when calculating X 0.
= K · f 1 (X) is used.

【0013】[0013]

【実施例】まず本実施例の原理を説明する。Embodiment First, the principle of this embodiment will be described.

【0014】血液の減光については、シャスター(Sch
uster )の理論に基づく理論的検討と実験とから、もし
入射光が適切な散乱光であり、かつ入射窓径および透過
窓径が適切であれば、次式が成立することがわかってい
る。
Regarding the dimming of blood, Shaster (Sch
From theoretical studies and experiments based on the theory of Uster), it is known that if the incident light is an appropriate scattered light and the incident window diameter and the transmission window diameter are appropriate, the following equation holds.

【0015】 Zb =ΔAb /ΔDb ={(Eh Hb +Ed Cd )(Eh Hb +Ed Cd +FHb )}1/2 ={(Eh +Ed Cd /Hb)(Eh +Ed Cd /Hb +F)}1/2 ・Hb (1) Zb :血液の単位厚み当りの減光度。減光率と呼ぶこと
にする。 ΔAb :血液の減光度の変動分。 ΔDb :血液の厚みの変動分。 Eh :ヘモグロビンの吸光係数。 Ed :色素の吸光係数。 Cd :血中色素濃度。 Hb :血中ヘモグロビン濃度。 F:血液散乱係数。光波長に関わらない。
Zb = ΔAb / ΔDb = {(Eh Hb + Ed Cd) (Eh Hb + Ed Cd + FHb)} 1/2 = {(Eh + Ed Cd / Hb) (Eh + Ed Cd / Hb + F)} 1/2 · Hb (1) Zb: Extinction degree per unit thickness of blood. We will call it the dimming rate. ΔAb: Variation in blood extinction degree. ΔDb: Variation in blood thickness. Eh: extinction coefficient of hemoglobin. Ed: absorption coefficient of dye. Cd: Blood dye concentration. Hb: blood hemoglobin concentration. F: Blood scattering coefficient. Regardless of the wavelength of light.

【0016】生体組織の減光度の脈動分は、血液の脈動
によるものの他に、血液以外の組織(純組織と呼ぶこと
にする)の厚みの脈動などによる減光分が加わっている
ので、次式のようになる。
The pulsation component of the extinction degree of the living tissue is not only due to the pulsation of blood but also due to the pulsation of the thickness of tissues other than blood (referred to as pure tissue). It becomes like a formula.

【0017】 Zt =ΔAt /ΔDt ={(Eh +Ed Cd /Hb )(Eh +Ed Cd /Hb +F)}1/2 ・Hb+Zx (2) Zt :生体組織の単位厚み当りの減光度。 ΔAt :生体組織の減光度の脈動分。 ΔDt :生体組織の厚みの脈動分。 Zx :純組織の厚みの脈動などによる減光などを含む、
補正項(未知数)。
Zt = ΔAt / ΔDt = {(Eh + Ed Cd / Hb) (Eh + Ed Cd / Hb + F)} 1/2 · Hb + Zx (2) Zt: Extinction degree per unit thickness of living tissue. ΔAt: Pulsation amount of extinction of living tissue. ΔDt: Pulsation of the thickness of living tissue. Zx: Includes dimming due to pulsation of the thickness of pure tissue,
Correction term (unknown).

【0018】測定は2波長λ1 ,λ2 で行なうものとす
る。色素としては一例として、ICG(indocyanine-gr
een )を用いることとする。ICGの吸光は、λ1 =80
5nmで最大、λ2 =890nm でゼロである。光波長はサフ
ィックス1,2で示す。
The measurement is performed at two wavelengths λ 1 and λ 2 . As an example of the dye, ICG (indocyanine-gr
een). The absorption of ICG is λ 1 = 80
It is maximum at 5 nm and zero at λ 2 = 890 nm. Light wavelengths are indicated by suffixes 1 and 2.

【0019】2波長で生体組織透過光を測定した場合
の、それぞれの減光度脈動分の比Φは、次式のようにな
る。
The ratio Φ of the pulsation of the extinction degree when the light transmitted through the living tissue is measured at two wavelengths is given by the following equation.

【0020】 Φ=ΔA1 /ΔA2 =[{( Eh 1 +Ed 1 Cd /Hb )(Eh 1 +Ed 1 Cd /Hb +F)}1/2 + Ex 1 ]/{Eh 2 (Eh 2 +F)+Ex 2 } (3) Ex 1 =Zx 1 /Hb ,Ex 2 =Zx 2 /Hb ;これも
補正項と呼ぶことにする。 ここでΔA1 =log I1t2 −log I1t1 (4) ΔA2 =log I2t2 −log I2t1 (5) I1t1 :時点t1 における波長λ1 の光の強度 I1t2 :時点t2 における波長λ1 の光の強度 I2t1 :時点t1 における波長λ2 の光の強度 I2t2 :時点t2 における波長λ2 の光の強度 色素注入前のΦをΦ0 とする。Φは次の様である。 Φ0 =ΔA1 /ΔA2 =[{Eh 1 (Eh 1 +F)}1/2 +Ex 1 ]/[{Eh 2 (Eh 2 +F)}1/2 +Ex 2 ] (6) ここで、Φ0 は実測値、Eh 1 ,Eh 2 ,Fは既知数、
Ex 1 ,Ex 2 は未知数である。Ex 2 =KEx 1 とす
る。便宜上、次の様にする。いずれも既知の値である。 Eb 1 ={Eh 1 (Eh 1 +F)}1/2 , Eb 2 ={Eh 2 ・(Eh 2 +F)}1/2 これにより Φ0 =(Eb 1 +Ex 1 )/(Eb 2 +KEx 1 ) (7) Eb 1 +Ex 1 =Φ0 (Eb 2 +KEx 1 ) Ex 1 (1−Φ0 K)=Φ0 Eb 2 −Eb 1 Ex 1 =(Φ0 Eb 2 −Eb 1 )/(1−Φ0 K) (8) Ex 2 =K(Φ0 Eb 2 −Eb 1 )/(1−Φ0 K) (9) 色素注入後のΦの式は次の様になる。 Φ=ΔA1 /ΔA2 =[{( Eh 1 +Ed 1 Cd ′)(Eh 1 +Ed 1 Cd ′+F)}1/2 +Ex 1 ] /[{Eh 2 (Eh 2 +F)}1/2 +KEx 1 ] (10) Cd ′=Cd /Hb (11);血中色素濃度Cd の、ヘモグ
ロビン濃度Hb に対する相対値。これにより {(Eh 1 +Ed 1 Cd ′)(Eh 1 +Ed 1 Cd ′+F)}1/2 =Φ(Eb 2 + KEx 1 )−Ex 1 (12) (Ed 1 Cd ′)2 +Ed 1 Cd ′(2Eh 1 +F)+Eb 1 2 −[Φ(Eb 2 +KEx 1 )−Ex 1 2 =0 Cd ′={−B+(B2 −4AC) 1/2}/2A (13) A=Ed 1 2 B=Ed 1 (2Eh 1 +F) C=Eb 1 2 −[Φ(Eb 2 +KEx 1 )−Ex 1 2 これにより、Cd ′を求めることができる。 次に、次式によって血中色素濃度Cd が算出される。 Cd =Cd ′・Hb (14)
Φ = ΔA 1 / ΔA 2 = [{(Eh 1 + Ed 1 Cd / Hb) (Eh 1 + Ed 1 Cd / Hb + F)} 1/2 + Ex 1 ] / {Eh 2 (Eh 2 + F) + Ex 2 } (3) Ex 1 = Zx 1 / Hb, Ex 2 = Zx 2 / Hb; this is also called a correction term. Where ΔA 1 = log I 1t2 −log I 1t1 (4) ΔA 2 = log I 2t2 −log I 2t1 (5) I 1t1 : Intensity of light of wavelength λ 1 at time t 1 I 1t 2 : Wavelength at time t 2 . lambda 1 of the light intensity I 2t1: time t 1 at the wavelength lambda 2 of the light intensity I 2t2: a [Phi before strength dye injection wavelength lambda 2 of light at time t 2 and [Phi 0. Φ is as follows. Φ 0 = ΔA 1 / ΔA 2 = [{Eh 1 (Eh 1 + F)} 1/2 + Ex 1 ] / [{Eh 2 (Eh 2 + F)} 1/2 + Ex 2 ] (6) where Φ 0 Is the measured value, Eh 1 , Eh 2 , F are known numbers,
Ex 1 and Ex 2 are unknowns. Let Ex 2 = KEx 1 . For convenience, do the following: All are known values. Eb 1 = {Eh 1 (Eh 1 + F)} 1/2 , Eb 2 = {Eh 2 · (Eh 2 + F)} 1/2 Therefore, Φ 0 = (Eb 1 + Ex 1 ) / (Eb 2 + K Ex 1 ). (7) Eb 1 + Ex 1 = Φ 0 (Eb 2 + KEx 1) Ex 1 (1-Φ 0 K) = Φ 0 Eb 2 -Eb 1 Ex 1 = (Φ 0 Eb 2 -Eb 1) / (1-Φ 0 K) (8) Ex 2 = K (Φ 0 Eb 2 −Eb 1 ) / (1−Φ 0 K) (9) The formula of Φ after dye injection is as follows. Φ = ΔA 1 / ΔA 2 = [{(Eh 1 + Ed 1 Cd ′) (Eh 1 + Ed 1 Cd ′ + F)} 1/2 + Ex 1 ] / [{Eh 2 (Eh 2 + F)} 1/2 + KEx 1 ] (10) Cd '= Cd / Hb (11); Relative value of blood dye concentration Cd to hemoglobin concentration Hb. By this, {(Eh 1 + Ed 1 Cd ′) (Eh 1 + Ed 1 Cd ′ + F)} 1/2 = Φ (Eb 2 + KEx 1 ) −Exx 1 (12) (Ed 1 Cd ′) 2 + Ed 1 Cd ′ (2Eh 1 + F) + Eb 1 2 − [Φ (Eb 2 + KEx 1 ) −Ex 1 > 2 = 0 Cd ′ = {− B + (B 2 -4AC) 1/2 } / 2A (13) A = Ed 1 2 B = Ed 1 (2Eh 1 + F) C = Eb 1 2 − [Φ (Eb 2 + KEx 1 ) −Ex 1 ] 2 From this, Cd ′ can be obtained. Next, the blood dye concentration Cd is calculated by the following equation. Cd = Cd'.Hb (14)

【0021】Hb はそれぞれの被検査者毎に予め測定さ
れ血中色素濃度の計算に用いるか、あるいは、後に測定
されて、Cd ′を血中色素濃度に換算するのに用いる。
Hb is measured in advance for each subject and used in the calculation of blood dye concentration, or is measured afterwards and used to convert Cd 'into blood dye concentration.

【0022】この式中のKを決定するために、ボランテ
アの静脈に色素を注入して、耳朶及び指尖における透過
光を連続測定し、これに平行して、動脈血を一定時間毎
に採取して血中色素濃度を観血的に測定し、両者の対比
から、K=0.5 なる結果が得られた。
In order to determine K in this equation, a dye was injected into the vein of volantea and the transmitted light at the earlobe and fingertip was continuously measured. In parallel with this, arterial blood was sampled at regular intervals. The dye concentration in blood was measured invasively, and the result of K = 0.5 was obtained from the comparison of both.

【0023】また、このK値を用いた血中色素濃度測定
が充分な精度を示すことが、実証された。
It was also proved that the blood dye concentration measurement using this K value shows sufficient accuracy.

【0024】以上の原理をより一般的に述べるならば、
2個の補正項をそれぞれ、ある1個の未知数Xの関数f
1 (X),f2 (X)として、色素注入前のΦの実測値
に基づいてXを求めるものである。
To describe the above principle more generally,
Each of the two correction terms has a function f of one unknown X.
As 1 (X) and f 2 (X), X is obtained based on the measured value of Φ before dye injection.

【0025】上記原理に基づく装置を図1を参照して説
明する。
An apparatus based on the above principle will be described with reference to FIG.

【0026】光源装置1は2個のLED11,12とこれを
駆動するLED駆動装置13から成る。LED11は波長λ
1 の光を発生し、LED12は波長λ2 の光を発生する。
この光源装置1のLED11,12から所定の間隙をあけて
対向する位置に光検出装置2が配置されている。光検出
装置2は光センサ21とこの光センサ21の出力を増幅する
増幅器22とから成る。光センサ21としては例えばフォト
ダイオードが用いられる。
The light source device 1 is composed of two LEDs 11 and 12 and an LED driving device 13 for driving them. LED11 has wavelength λ
The light of 1 is generated, and the LED 12 generates the light of wavelength λ 2 .
The light detection device 2 is arranged at a position facing the LEDs 11 and 12 of the light source device 1 with a predetermined gap. The photodetector 2 comprises a photosensor 21 and an amplifier 22 for amplifying the output of the photosensor 21. For example, a photodiode is used as the optical sensor 21.

【0027】光検出装置2の出力は減光度変化計算装置
3に与えられるようになっている。減光度変化計算装置
3は、マルチプレクサ31、1対の再生回路32,33、1対
の対数回路34,35および1対の変化分検出回路36,37か
ら成る。マルチプレクサ31は光検出装置2の増幅器22の
出力信号である波長λ1 ,λ2 の光に対応する信号を再
生回路32,33へ振り分ける回路である。このマルチプレ
クサ31は、光源装置1のLED駆動装置13へLED11,
12の点滅のタイミングを与えるタイミング装置100 に接
続されており、LED11,12の点滅と同じタイミングで
増幅器22からの信号を振り分ける。またタイミング装置
100 から出力されるタイミング信号は光検出装置の増幅
器22にも至るようにされている。増幅器22のゲインはこ
のタイミング信号により波長λ1 、波長λ2 の光に応じ
て切換えられる。再生回路32,33はマルチプレクサ31か
ら与えられる各波長の光に対応する信号を平滑化する回
路である。対数回路34,35は再生回路32,33の出力の対
数を求める回路である。変化分検出回路36,37は対数回
路34,35の出力の変化分を検出する回路である。具体的
には2つの時点t1 ,t2 における対数回路34,35の出
力の差を検出するもので、それぞれ前述した式(4) 、
(5) を計算してΔA1 ,ΔA2 を求める。この計算は、
対数回路34,35の出力の1回の脈動につき1回行なうよ
うにされている。
The output of the photodetection device 2 is supplied to the dimming degree change calculation device 3. The dimming degree change calculation device 3 includes a multiplexer 31, a pair of reproduction circuits 32 and 33, a pair of logarithmic circuits 34 and 35, and a pair of change amount detection circuits 36 and 37. The multiplexer 31 is a circuit that distributes the signals corresponding to the light having the wavelengths λ 1 and λ 2 which are the output signals of the amplifier 22 of the photodetector 2 to the reproduction circuits 32 and 33. This multiplexer 31 connects the LED driving device 13 of the light source device 1 to the LED 11,
It is connected to a timing device 100 which gives the blinking timing of 12 and distributes the signal from the amplifier 22 at the same timing as the blinking of the LEDs 11 and 12. Also timing device
The timing signal output from 100 also reaches the amplifier 22 of the photodetector. The gain of the amplifier 22 is switched according to the light having the wavelength λ 1 and the wavelength λ 2 by this timing signal. The reproduction circuits 32 and 33 are circuits that smooth the signals corresponding to the light of each wavelength given from the multiplexer 31. The logarithmic circuits 34 and 35 are circuits for obtaining the logarithm of the outputs of the reproducing circuits 32 and 33. The change detection circuits 36 and 37 are circuits that detect a change in the outputs of the logarithmic circuits 34 and 35. Specifically, the difference between the outputs of the logarithmic circuits 34 and 35 at two time points t 1 and t 2 is detected.
(5) is calculated to obtain ΔA 1 and ΔA 2 . This calculation is
It is designed to be performed once for each pulsation of the outputs of the logarithmic circuits 34 and 35.

【0028】減光度変化比計算装置4は、変化分検出回
路36,37の出力の比ΔA1 /ΔA2=Φを求める装置で
ある。この出力Φは切換えスイッチ5の1つの端子に与
えられる。切換えスイッチ5はモード切換え装置101 に
よって切換えられ、変化比計算装置4の出力Φを独立変
数計算装置6と血中色素相対濃度測定装置8のいずれか
へ与える。
The dimming degree change ratio calculation device 4 is a device for obtaining the ratio ΔA 1 / ΔA 2 = Φ of the outputs of the change amount detection circuits 36 and 37. This output Φ is given to one terminal of the changeover switch 5. The changeover switch 5 is changed over by the mode changeover device 101, and the output Φ of the change ratio calculation device 4 is given to either the independent variable calculation device 6 or the blood dye relative concentration measurement device 8.

【0029】モード切換え装置101 はタイマによってあ
るいは操作者の操作によって切換えスイッチ5に切換え
信号を出力するものである。
The mode changeover device 101 outputs a changeover signal to the changeover switch 5 by a timer or an operation of an operator.

【0030】独立変数計算装置6は変化比計算装置4か
ら与えられるΦ(=Φ0 )を式(8)に代入してEx 1
計算する装置である。
The independent variable calculation device 6 is a device for substituting Φ (= Φ 0 ) given from the change ratio calculation device 4 into the equation (8) to calculate Ex 1 .

【0031】補正項計算装置7は独立変数計算装置6が
算出したEx 1 に基づいて式(9) を計算し、Ex 1 とE
x 2 の値を記憶する装置である。
The correction term calculation device 7 calculates the equation (9) based on Ex 1 calculated by the independent variable calculation device 6 and calculates Ex 1 and E
It is a device that stores the value of x 2 .

【0032】血中色素相対濃度計算装置8は、変化比計
算装置4から与えられるΦと補正項計算装置7が記憶し
ているEx 1 とEx 2 (=KEx 1 )と式(13)から血中
色素相対濃度Cd ′を計算する装置である。
The blood dye relative concentration calculation device 8 calculates the blood from Φ given from the change ratio calculation device 4 and Ex 1 and Ex 2 (= KEx 1 ) stored in the correction term calculation device 7 and the equation (13). This is a device for calculating the relative concentration of medium dye Cd '.

【0033】ヘモグロビン濃度記憶装置9は被検者のヘ
モグロビン濃度Hb が与えられると、これを記憶する装
置である。
The hemoglobin concentration storage device 9 is a device for storing the hemoglobin concentration Hb of the subject when it is given.

【0034】血中色素濃度計算装置10は血中相対濃度計
算装置8が算出したCd ′とヘモグロビン濃度記憶装置
9が記憶しているHb と式(14)とにより被検者の血中色
素濃度Cd を算出する回路である。
The blood dye concentration calculation device 10 uses the Cd 'calculated by the blood relative concentration calculation device 8 and Hb stored in the hemoglobin concentration storage device 9 and the formula (14) to determine the blood dye concentration of the subject. This is a circuit for calculating Cd.

【0035】本実施例において、光源装置1とタイミン
グ装置100 から光発生手段を構成し、光検出装置2が光
検出手段であり、減光度変化計算装置3が変化検出手段
であり、減光度変化比計算装置4が変化比算出手段であ
り、独立変数計算装置6が第1の変数算出手段であり、
補正項計算装置7が関数値算出手段であり、血中色素相
対濃度計算装置8が第2の変数算出手段であり、ヘモグ
ロビン濃度記憶装置9がヘモグロビン濃度記憶手段であ
り、血中色素濃度計算装置10が色素濃度算出手段であ
り、切換えスイッチ5とモード切換装置101 が切換え手
段を構成する。
In this embodiment, the light source device 1 and the timing device 100 constitute the light generating means, the light detecting device 2 is the light detecting means, and the dimming degree change calculating device 3 is the change detecting means. The ratio calculation device 4 is a change ratio calculation means, the independent variable calculation device 6 is a first variable calculation means,
The correction term calculation device 7 is the function value calculation means, the blood dye relative concentration calculation device 8 is the second variable calculation means, the hemoglobin concentration storage device 9 is the hemoglobin concentration storage means, and the blood dye concentration calculation device. Reference numeral 10 is a dye concentration calculating means, and the changeover switch 5 and the mode changing device 101 constitute a changing means.

【0036】次に、このように構成された本実施例装置
の動作を説明する。
Next, the operation of the apparatus of this embodiment thus constructed will be described.

【0037】まず、モード切換装置101 は切換えスイッ
チ5を独立変数計算装置6側に切換えておく。次に被検
者は測定部位である例えば耳朶、指尖等の生体組織102
を光源装置1と光検出装置2との間隙に挿入する。操作
者はタイミング装置100 を起動する。これによりLED
11,12は交互に点灯する。LED11,12で発生した光は
生体組織102 を透過して光センサ21で電気信号に変換さ
れ、増幅器22で増幅される。
First, the mode switching device 101 switches the changeover switch 5 to the independent variable calculation device 6 side. Next, the subject is a living body tissue 102 such as an earlobe or a fingertip, which is a measurement site.
Is inserted into the gap between the light source device 1 and the light detection device 2. The operator activates the timing device 100. This allows the LED
11 and 12 light up alternately. The light generated by the LEDs 11 and 12 passes through the living tissue 102, is converted into an electric signal by the optical sensor 21, and is amplified by the amplifier 22.

【0038】増幅器22の出力信号はマルチプレクサ31で
波長λ1 ,λ2 それぞれの光に対応する信号に振り分け
る。これらの信号は再生回路32,33で平滑化される。再
生回路32,33の出力I1 ,I2 は対数回路34,35で対数
に変換されlog I1 ,log I2 とされる。変化分検出回
路36,37は、1回毎の脈動における2つの時点t1 ,t
2 のlog I1 ,log I2 それぞれの差、すなわち式(4)
,(5) に示すΔA1 ,ΔA2 を計算し、減光度変化比
計算装置4に出力する。
The output signal of the amplifier 22 is distributed by the multiplexer 31 into signals corresponding to the lights of the wavelengths λ 1 and λ 2 . These signals are smoothed by the reproduction circuits 32 and 33. The outputs I 1 and I 2 of the reproduction circuits 32 and 33 are converted into logarithms by the logarithmic circuits 34 and 35 to be log I 1 and log I 2 . The change amount detection circuits 36 and 37 have two time points t 1 and t in each pulsation.
2 log I 1, log I 2 respective differences, i.e. formula (4)
, .DELTA.A 1 shown in (5), calculates a .DELTA.A 2, and outputs the attenuation variation ratio calculation unit 4.

【0039】減光度変化比計算装置4は変化分検出回路
36,37の出力ΔA1 ,ΔA2 からΔA1 /ΔA2 =Φ0
を計算する。色素注入前であるからΦ0 は一定である。
独立変数計算装置6は減光度変化比計算装置4の出力Φ
0 を式(8) に代入してEx 1 を算出する。補正項計算装
置7は独立変数計算装置6が算出したEx 1 より式(9)
を計算してEx 2 を求め、Ex 1 とこのEx 2 を記憶す
る。
The dimming degree change ratio calculation device 4 is a change amount detection circuit.
36, 37 outputs ΔA 1 , ΔA 2 to ΔA 1 / ΔA 2 = Φ 0
To calculate. Φ 0 is constant because it is before dye injection.
The independent variable calculation device 6 outputs the output Φ of the dimming degree change ratio calculation device 4.
Ex 1 is calculated by substituting 0 into equation (8). The correction term calculation device 7 uses the equation (9) calculated from Ex 1 calculated by the independent variable calculation device 6.
Is calculated to obtain Ex 2 , and Ex 1 and this Ex 2 are stored.

【0040】次に操作者は被検者の血液に色素を注入す
ると共にその注入時点をモード切換装置101 に知らせ
る。色素注入時点をモード切換装置101 に知らせる方法
としては、例えば、モード切換装置101 にフィットスイ
ッチを接続しておき、操作者がこれを踏むなどの方法が
ある。このときモード切換装置101 は切換えスイッチ5
を血中色素相対濃度計算装置8側へ切換える。このため
減光度変化比計算装置4の出力Φは血中色素相対濃度計
算装置8に与えられる。このとき以後のΦは測定部位に
おける色素濃度に応じて変化する。
Next, the operator injects the dye into the blood of the subject and informs the mode switching device 101 of the injection time. As a method of informing the mode switching device 101 of the time of dye injection, for example, there is a method in which a fit switch is connected to the mode switching device 101 and the operator steps on it. At this time, the mode switching device 101 uses the selector switch 5
Is switched to the blood dye relative concentration calculation device 8 side. Therefore, the output Φ of the dimming degree change ratio calculation device 4 is given to the blood dye relative concentration calculation device 8. At this time, φ changes depending on the dye concentration at the measurement site.

【0042】血中色素相対濃度計算装置8は与えられた
Φと、補正項計算装置7が記憶しているEx 1 ,Ex 2
(=KEx 1 )と、式(13)とにより相対濃度Cd ′を計
算する。次に血中色素濃度計算装置10はこの相対濃度C
d ′と、ヘモグロビン濃度記憶装置9が記憶しているヘ
モグロビン濃度と、式(14)よりDd =Cd ′・Hb を求
める。こうして求められた血中色素濃度Cd は図示せぬ
記録装置、表示装置にそれぞれ記録、表示される。
The blood pigment relative concentration calculation device 8 receives the given Φ and Ex 1 , Ex 2 stored in the correction term calculation device 7.
The relative concentration Cd 'is calculated from (= KEx 1 ) and the equation (13). Next, the blood pigment concentration calculation device 10 uses the relative concentration C
Dd = Cd'.Hb is calculated from d ', the hemoglobin concentration stored in the hemoglobin concentration storage device 9, and the equation (14). The blood dye concentration Cd thus obtained is recorded and displayed on a recording device and a display device (not shown).

【0043】本実施例では変化分検出回路36,37、減光
度変化比計算装置4、独立変数計算装置7、血中色素相
対濃度計算装置8および血中色素濃度計算装置10はそれ
ぞれ独立した装置としたが、これらの一部または全部を
ディジタルコンピュータで置き換えても良い。この場
合、処理すべき信号はA/D変換器でディジタル化して
おく必要がある。
In this embodiment, the change detecting circuits 36 and 37, the extinction change ratio calculation device 4, the independent variable calculation device 7, the blood dye relative concentration calculation device 8 and the blood dye concentration calculation device 10 are independent devices. However, some or all of these may be replaced by a digital computer. In this case, the signal to be processed needs to be digitized by an A / D converter.

【0043】尚、上記実施例では血中色素濃度Cd を求
めるまでの装置であるが、このCdから更に単位時間当
りの血液の拍出量を求めたり、あるいはCd を求める前
段階で得られるCd ′(血中色素濃度のヘモグロビン濃
度に対する相対値)から単位時間当りのヘモグロビンの
拍出量を求める装置としても良い。
In the above embodiment, the device is used to obtain the blood dye concentration Cd. However, from this Cd, the blood stroke volume per unit time is further obtained, or Cd obtained at the stage before obtaining Cd. A device for obtaining the hemoglobin stroke volume per unit time from ′ (relative value of blood dye concentration to hemoglobin concentration) may be used.

【0044】[0044]

【発明の効果】本発明によれば下記の効果が得られる。According to the present invention, the following effects can be obtained.

【0045】従来の観血法に比して、侵襲が少ない。Less invasive than the conventional open blood method.

【0046】従来の非観血法に比して、耳朶を圧迫して
虚血状態にするなどの操作が無用で、簡便である。
Compared with the conventional non-invasive method, the operation of pressing the earlobe to put it in an ischemic state is unnecessary and simple.

【0047】動脈血のみを測定対象とするので、静脈血
中の色素の重畳がなく、良質の色素希釈曲線が得られ
る。
Since only the arterial blood is measured, the dye in the venous blood does not overlap and a good dye dilution curve can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック構成図。FIG. 1 is a block diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源装置 2 光検出装置 3 減光度変化計算装置 4 減光度変化比計
算装置 5 切換えスイッチ 6 独立変数計算装
置 7 補正項計算装置 8 血中色素相対濃
度計算装置 9 ヘモグロビン濃度記憶装置 10 血中色素濃度計
算装置
DESCRIPTION OF SYMBOLS 1 light source device 2 photodetector device 3 extinction change calculation device 4 extinction change ratio calculation device 5 changeover switch 6 independent variable calculation device 7 correction term calculation device 8 blood dye relative concentration calculation device 9 hemoglobin concentration storage device 10 blood dye Concentration calculator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月6日[Submission date] April 6, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】この式中のKを決定するために、ボランテ
アの静脈に色素を注入して、耳朶及び指尖における透過
光を連続測定し、これに行して、動脈血を一定時間毎
に採取して血中色素濃度を観血的に測定した。両者の対
比から、Kが得られ、ある例ではK=0.5 であり、また
ある例ではK=−1であった。このように、Kは人それ
ぞれにより一義的に得られる定数である。
[0022] collected for determination of K in the equation, by injecting dye into a vein of volunteer, the transmitted light was measured continuously at the apex earlobe and finger, to which was concurrent, the arterial blood at regular intervals The blood dye concentration was measured invasively . Pair of both
The ratio gives K, in some cases K = 0.5, and
In one example, K = -1. In this way, K is the person
It is a constant uniquely obtained by each.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】減光度変化比計算装置4は、変化分検出回
路36,37 の出力の比△A1 /△A2=Φを求める装置で
ある。この出力Φは切換えスイッチ5の1つの端子に与
えられる。切換えスイッチ5はモード切換え装置101 に
よって切換えられ、減光度変化比計算装置4の出力Φを
独立変数計算装置6と血中色素相対濃度測定装置8のい
ずれかへ与える。
The dimming degree change ratio calculation device 4 is a device for obtaining the ratio ΔA 1 / ΔA 2 = Φ of the outputs of the change amount detection circuits 36, 37. This output Φ is given to one terminal of the changeover switch 5. The changeover switch 5 is changed over by the mode changeover device 101, and the output Φ of the dimming degree change ratio calculation device 4 is given to either the independent variable calculation device 6 or the blood dye relative concentration measurement device 8.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】独立変数計算装置6は減光度変化比計算装
置4から与えられるΦ(=Φ0 )を式(8) に代入してE
x 1 を計算する装置である。
The independent variable calculation device 6 substitutes Φ (= Φ 0 ) given from the extinction change ratio calculation device 4 into the equation (8) to obtain E.
A device that calculates x 1 .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】血中色素相対濃度計算装置8は、減光度
化比計算装置4から与えられるΦと補正項計算装置7が
記憶しているEx 1 とEx 2 (=KEx 1 )と式(13)か
ら血中色素相対濃度Cd ´を計算する装置である。
The blood dye relative concentration calculation device 8 has Φ given from the extinction degree change ratio calculation device 4 and Ex 1 and Ex 2 (= KEx 1 ) stored in the correction term calculation device 7. And a device for calculating the blood dye relative concentration Cd 'from equation (13).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 謝 承泰 東京都新宿区西落合1丁目31番4号 日本 光電工業株式会社内 (72)発明者 富田 英行 東京都新宿区西落合1丁目31番4号 日本 光電工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Xie Yi Tai 1-31-4 Nishi-Ochiai, Shinjuku-ku, Tokyo Within Nihon Kohden Kogyo Co., Ltd. (72) Inventor Hideyuki Tomita 1-31 Nishi-ochiai, Shinjuku-ku, Tokyo No. 4 inside Nippon Koden Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1および第2の波長それぞれの光を発
生する光発生手段と、 この光発生手段から発生した光を生体組織を介して受光
しその透過光を電気信号に変換する光検出手段と、 この光検出手段が検出した前記第1および第2の波長の
透過光の変化から前記生体組織の減光度の変化ΔA1
ΔA2 を検出する変化検出手段と、 この変化検出手段が検出したΔA1 とΔA2 の比Φを算
出する変化比算出手段と、 この変化比算出手段が算出したΦが与えられたとき、Φ
={C1 +f1 (X)}/{C2 +f2 (X)}(C1
2 :定数、f1 (X),f2 (X):Xを独立変数と
する関数)を満足するX=X0 を算出する第1の変数算
出手段と、 この第1の変数算出手段が算出したX0 に基づいてf1
(X0 ),f2 (X0 )の値をそれぞれ算出して記憶する
関数値算出手段と、 前記変化比算出手段が算出したΦが与えられたとき、Φ
={f10(Cd′)+f1 (X0 )}/{f20(Cd
′)+f2 (X0 )}(f10(Cd ′),f20(Cd
′):Cd ′を独立変数とする関数、f1 (X0 ),
2 (X0 ):前記関数値算出手段が算出した関数値)
を満足するCd ′を算出する第2の変数算出手段と、 前記変化比算出手段が算出したΦを前記第1の変数算出
手段へ与えるか前記第2の変数算出手段へ与えるかの切
換えを行なう切換え手段と、を具備する色素希釈曲線測
定装置。
1. A light generating means for generating light of each of the first and second wavelengths, and light detection for receiving the light generated by the light generating means through living tissue and converting the transmitted light into an electric signal. Means and a change ΔA 1 , in the degree of extinction of the biological tissue, based on a change in transmitted light of the first and second wavelengths detected by the light detecting means.
Given a change detecting means for detecting ΔA 2 , a change ratio calculating means for calculating a ratio Φ between ΔA 1 and ΔA 2 detected by this change detecting means, and a Φ calculated by this change ratio calculating means,
= {C 1 + f 1 (X)} / {C 2 + f 2 (X)} (C 1 ,
C 2 : constant, f 1 (X), f 2 (X): a first variable calculating means for calculating X = X 0 satisfying X (function having X as an independent variable), and the first variable calculating means F 1 based on X 0 calculated by
Given the function value calculation means for calculating and storing the values of (X 0 ), f 2 (X 0 ), and Φ calculated by the change ratio calculation means,
= {F 10 (Cd ′) + f 1 (X 0 )} / {f 20 (Cd
′) + F 2 (X 0 )} (f 10 (Cd ′), f 20 (Cd
′): Function with Cd ′ as an independent variable, f 1 (X 0 ),
f 2 (X 0 ): function value calculated by the function value calculating means)
And a second variable calculating means for calculating Cd ′ satisfying the above condition, and Φ calculated by the change ratio calculating means are switched to the first variable calculating means or the second variable calculating means. A dye dilution curve measuring device comprising a switching means.
【請求項2】 第1および第2の波長それぞれの光を発
生する光発生手段と、 この光発生手段から発生した光を生体組織を介して受光
しその透過光を電気信号に変換する光検出手段と、 この光検出手段が検出した前記第1および第2の波長の
透過光の変化から前記生体組織の減光度の変化ΔA1
ΔA2 を検出する変化検出手段と、 この変化検出手段が検出したΔA1 とΔA2 の比Φを算
出する変化比算出手段と、 この変化比算出手段が算出したΦが与えられたとき、Φ
={C1 +f1 (X)}/{C2 +f2 (X)}(C1
2 :定数、f1 (X),f2 (X):Xを独立変数と
する関数)を満足するX=X0 を算出する第1の変数算
出手段と、 この第1の変数算出手段が算出したX0 に基づいてf1
(X0 ),f2 (X0 )の値をそれぞれ算出して記憶する
関数値算出手段と、 前記変化比算出手段が算出したΦが与えられたとき、Φ
={f10(Cd′)+f1 (X0 )}/{f20(Cd
′)+f2 (X0 )}(f10(Cd ′),f20(Cd
′):Cd ′を独立変数とする関数、f1 (X0 ),
2 (X0 ):前記関数値算出手段が算出した関数値)
を満足するCd ′を算出する第2の変数算出手段と、 ヘモグロビン濃度Hb を記憶するヘモグロビン濃度記憶
手段と、 前記第2の変数算出手段が算出したCd ′と前記ヘモグ
ロビン濃度記憶手段が記憶したHb とによりCd ′・H
b を算出して色素濃度Cd を求める色素濃度算出手段
と、 前記変化比算出手段が算出したΦを前記第1の変数算出
手段へ与えるか前記第2の変数算出手段へ与えるかの切
換えを行なう切換え手段と、を具備する色素希釈曲線測
定装置。
2. Light generating means for generating light of each of the first and second wavelengths, and light detection for receiving the light generated by the light generating means through living tissue and converting the transmitted light into an electric signal. Means and a change ΔA 1 , in the degree of extinction of the biological tissue, based on a change in transmitted light of the first and second wavelengths detected by the light detecting means.
Given a change detecting means for detecting ΔA 2 , a change ratio calculating means for calculating a ratio Φ between ΔA 1 and ΔA 2 detected by this change detecting means, and a Φ calculated by this change ratio calculating means,
= {C 1 + f 1 (X)} / {C 2 + f 2 (X)} (C 1 ,
C 2 : constant, f 1 (X), f 2 (X): a first variable calculating means for calculating X = X 0 satisfying X (function having X as an independent variable), and the first variable calculating means F 1 based on X 0 calculated by
Given the function value calculation means for calculating and storing the values of (X 0 ), f 2 (X 0 ), and Φ calculated by the change ratio calculation means,
= {F 10 (Cd ′) + f 1 (X 0 )} / {f 20 (Cd
′) + F 2 (X 0 )} (f 10 (Cd ′), f 20 (Cd
′): Function with Cd ′ as an independent variable, f 1 (X 0 ),
f 2 (X 0 ): function value calculated by the function value calculating means)
Cd ′ calculated by the second variable calculation means and Hb stored by the hemoglobin concentration storage means, and a second variable calculation means for calculating Cd ′ satisfying the above condition, a hemoglobin concentration storage means for storing the hemoglobin concentration Hb, and a Cd ′ calculated by the second variable calculation means and Hb stored by the hemoglobin concentration storage means. And by Cd '· H
Switching is performed between the dye concentration calculating means for calculating b to obtain the dye concentration Cd and the Φ calculated by the change ratio calculating means for the first variable calculating means or the second variable calculating means. A dye dilution curve measuring device comprising a switching means.
【請求項3】 第1の変数算出手段はf2 (X)=K・
1 (X)(K:定数)の関係を用いて計算することを
特徴とする請求項1または2記載の色素希釈曲線測定装
置。
3. The first variable calculation means is f 2 (X) = K ·
The dye dilution curve measuring device according to claim 1 or 2, which is calculated using a relationship of f 1 (X) (K: constant).
JP4065655A 1992-03-24 1992-03-24 Dye dilution curve measuring device Expired - Fee Related JP2608831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065655A JP2608831B2 (en) 1992-03-24 1992-03-24 Dye dilution curve measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065655A JP2608831B2 (en) 1992-03-24 1992-03-24 Dye dilution curve measuring device

Publications (2)

Publication Number Publication Date
JPH0630917A true JPH0630917A (en) 1994-02-08
JP2608831B2 JP2608831B2 (en) 1997-05-14

Family

ID=13293243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065655A Expired - Fee Related JP2608831B2 (en) 1992-03-24 1992-03-24 Dye dilution curve measuring device

Country Status (1)

Country Link
JP (1) JP2608831B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419969A (en) * 1977-07-15 1979-02-15 Yoshitomi Pharmaceut Ind Ltd Proline derivative and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419969A (en) * 1977-07-15 1979-02-15 Yoshitomi Pharmaceut Ind Ltd Proline derivative and its preparation

Also Published As

Publication number Publication date
JP2608831B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US5127406A (en) Apparatus for measuring concentration of substances in blood
JP3364819B2 (en) Blood absorption substance concentration measurement device
JP4490587B2 (en) Device for noninvasive detection of oxygen metabolism in tissues
US7254431B2 (en) Physiological parameter tracking system
US7254432B2 (en) Method and device for non-invasive measurements of blood parameters
US4854699A (en) Backscatter oximeter
US6456862B2 (en) Method for non-invasive spectrophotometric blood oxygenation monitoring
CA2494030C (en) Method for spectrophotometric blood oxygenation monitoring
CA2441017C (en) Method and apparatus for improving the accuracy of noninvasive hematocrit measurements
US5277181A (en) Noninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
US5676140A (en) Non-invasive blood pressure measurement device
EP0619981B1 (en) Arterial blood monitoring probe
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
Kraitl et al. An optical device to measure blood components by a photoplethysmographic method
JP2005533609A5 (en)
JP3270917B2 (en) Oxygen saturation measuring device, blood light absorbing substance concentration measuring device, and biological signal processing method
JPH11244267A (en) Blood component concentration measuring device
US5154176A (en) Liver function testing apparatus
US5190040A (en) Apparatus for measuring the change in the concentration of a pigment in blood
WO2003071939A1 (en) Active pulse spectraphotometry
JPH05212016A (en) Bloodless oximeter
JP2002541892A (en) Method of improved calibration of blood monitoring devices
JPH0630917A (en) Pigment dilution curve measuring apparatus
US6339714B1 (en) Apparatus and method for measuring concentrations of a dye in a living organism
GB2424270A (en) Optical monitoring of predetermined substances in blood

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961105

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees