JPH06308546A - Method for adjusting characteristic of optical circuit - Google Patents

Method for adjusting characteristic of optical circuit

Info

Publication number
JPH06308546A
JPH06308546A JP9312593A JP9312593A JPH06308546A JP H06308546 A JPH06308546 A JP H06308546A JP 9312593 A JP9312593 A JP 9312593A JP 9312593 A JP9312593 A JP 9312593A JP H06308546 A JPH06308546 A JP H06308546A
Authority
JP
Japan
Prior art keywords
optical
refractive index
light
optical waveguide
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9312593A
Other languages
Japanese (ja)
Other versions
JP3374990B2 (en
Inventor
Atsushi Abe
淳 阿部
Yoshinori Hibino
善典 日比野
Yasuji Omori
保治 大森
Masao Kawachi
正夫 河内
Hiroaki Yamada
裕朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9312593A priority Critical patent/JP3374990B2/en
Publication of JPH06308546A publication Critical patent/JPH06308546A/en
Application granted granted Critical
Publication of JP3374990B2 publication Critical patent/JP3374990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12169Annealing
    • G02B2006/12171Annealing using a laser beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the method for adjusting characteristics of an optical circuit capable of efficiently controlling the local refractive index or optical path length of optical waveguides constituting the optical circuit. CONSTITUTION:A Mach-Zehnder interferometer composed of directional couplers 12a, 12b and optical waveguides 13a, 13b formed on a silicon substrate 11 is impregnated with hydrogen at room temp. and is subjected to a heat treatment, by which the sensibility with a light induced change in refractive index is easily and safely improved with good controllability. Only a part of the optical waveguide 13a not coated with a metallic film 22 is thereafter irradiated with UV light from a KrF excimer laser 23, by which the refractive index thereof is corrected and the characteristics are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成された光
導波路で構成される光回路の特性を調整する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting the characteristics of an optical circuit composed of an optical waveguide formed on a substrate.

【0002】[0002]

【従来の技術】石英ガラス基板やシリコン基板上に形成
可能な石英系光導波路は、損失が低い、安定性が高い、
加工性が良い、石英系光ファイバとの整合性が良い等の
特徴があるため、光合分波回路等の実用的な光回路を構
成する上で非常に有用であることが知られている。最
近、前述した特徴を活かして、より高機能化高集積化し
た平面型光回路の作製が進められているが、その中で、
光の位相を利用した光回路は電子回路では実現しにくい
回路を可能にするため、重要性が高い。
2. Description of the Related Art A quartz optical waveguide that can be formed on a quartz glass substrate or a silicon substrate has low loss and high stability.
It is known that it is very useful in constructing a practical optical circuit such as an optical multiplexing / demultiplexing circuit because of its features such as good workability and good compatibility with a silica optical fiber. Recently, making use of the above-mentioned features, the fabrication of a planar optical circuit with higher functionality and higher integration is underway.
Optical circuits that use the phase of light are highly important because they enable circuits that are difficult to achieve with electronic circuits.

【0003】石英系光導波路では、シリコン基板上にア
ンダークラッド層堆積→コア層堆積→コアエッチング→
オーバークラッド層堆積という作製プロセスを施すこと
によりコア・クラッド構造が形成されるが、光の位相を
利用した高機能化高集積化光回路において、光の位相は
導波路の屈折率と伝搬長(光路長)に依存するので、作
製上の微小な屈折率や導波路形状の変動及び導波路にか
かる応力が素子特性に大きく影響する。従って、高機能
化高集積化光回路において生産性を向上させるために
は、作製上の微小な変動等を修正する必要があり、局部
的な屈折率の制御を可能とする光回路の特性調整方法の
実現が望まれていた。
In a silica-based optical waveguide, under clad layer deposition → core layer deposition → core etching → on a silicon substrate.
The core-clad structure is formed by performing the fabrication process called over-cladding layer deposition. In a highly functionalized and highly integrated optical circuit that uses the phase of light, the phase of light depends on the refractive index of the waveguide and the propagation length ( Since it depends on the optical path length, a minute refractive index in manufacturing, a change in the shape of the waveguide, and a stress applied to the waveguide have a great influence on the device characteristics. Therefore, in order to improve the productivity in a highly functionalized and highly integrated optical circuit, it is necessary to correct minute fluctuations in fabrication, etc., and it is possible to locally adjust the refractive index to adjust the characteristics of the optical circuit. Realization of the method was desired.

【0004】前述した平面型光回路を構成する重要な要
素である、マッハ・ツェンダ(Mach-Zehnder:MZ)干
渉計を一例として挙げ、以下に局部的な屈折率制御の重
要性について述べる。MZ干渉計は光スイッチや光分波
器を構成する上で欠かすことのできない部品であり、図
2にその一例を示す。
Taking the Mach-Zehnder (MZ) interferometer, which is an important element constituting the above-mentioned planar optical circuit, as an example, the importance of local refractive index control will be described below. The MZ interferometer is an indispensable component in constructing an optical switch and an optical demultiplexer, and an example thereof is shown in FIG.

【0005】図2において、1a,1bは2つの方向性
結合器、2a,2bは該方向性結合器1a,1bを結ぶ
2本の光導波路であり、これらはシリコン基板3上に形
成されている。また、4a,4b,4c,4dは2本の
光導波路2a,2bの両端に接続された光ファイバであ
る。
In FIG. 2, 1a and 1b are two directional couplers, 2a and 2b are two optical waveguides connecting the directional couplers 1a and 1b, and these are formed on the silicon substrate 3. There is. Further, 4a, 4b, 4c and 4d are optical fibers connected to both ends of the two optical waveguides 2a and 2b.

【0006】MZ干渉計では、石英系光導波路に限ら
ず、微小な屈折率や導波路形状の変動及び導波路にかか
る応力が素子特性に大きく影響する。前述した2本の光
導波路2a,2bの光路長差がnf ・L1 であるとする
と、出力光強度は、入射光の周波数f(又は波長λ)に
関して、 fsr=c/nf ・L1 (但し、cは光の速度) を周期とする特性を有することが知られており、この出
力光強度の周期特性を利用して、光スイッチ、光周波数
合分波器等として動作する光デバイスが実現されてい
る。
In the MZ interferometer, not only the silica-based optical waveguide but also the minute refractive index, the variation of the waveguide shape, and the stress applied to the waveguide greatly affect the element characteristics. Assuming that the optical path length difference between the two optical waveguides 2a and 2b is n f · L1, the output light intensity is f sr = c / n f · L1 with respect to the frequency f (or wavelength λ) of the incident light. (However, c is the speed of light) is known to have a characteristic, and using this periodic characteristic of the output light intensity, an optical device that operates as an optical switch, an optical frequency multiplexer / demultiplexer, or the like. Has been realized.

【0007】しかしながら、導波路の屈折率、幅等の作
製誤差は、光干渉計の周期特性の位相によるずれをもた
らし、光スイッチ、光周波数合分波器としての動作特性
に著しい劣化を生じさせることになる。従って、MZ干
渉計を用いた光回路において生産性を向上させるために
は、作製上の微小な変動を補償する必要性があり、効果
的な調節法が望まれていた。
However, a manufacturing error such as a refractive index and a width of the waveguide causes a shift of the periodic characteristic of the optical interferometer due to the phase, and causes a remarkable deterioration in the operating characteristics of the optical switch and the optical frequency multiplexer / demultiplexer. It will be. Therefore, in order to improve productivity in an optical circuit using an MZ interferometer, it is necessary to compensate for minute fluctuations in manufacturing, and an effective adjustment method has been desired.

【0008】光干渉計において位相誤差を補償する方法
の一つとして、可視光もしくは紫外レーザ光を照射する
ことによって生じる屈折率変化(光誘起屈折率変化)を
利用する方法が報告されている(例えば、PTL, (3), 19
91, Hibino, et al., pp640-642 参照)。
As one of the methods of compensating for the phase error in the optical interferometer, a method of utilizing a refractive index change (light-induced refractive index change) caused by irradiation with visible light or ultraviolet laser light has been reported ( For example, PTL, (3), 19
91, Hibino, et al., Pp640-642).

【0009】また、光導波路の屈折率制御に関する類似
の報告として、光ファイバの屈折率の変化に関するもの
がある(例えば、Opt.Lett., vol.15, 1990, B.Molo, e
t al., pp953-955参照)。これによれば、GeO2 添加
石英系光ファイバにおいて紫外線照射によりコアの屈折
率が3×10-5だけ変化することが観測されている。ま
た、シリコン基板上に形成された石英系光導波路におい
ても同様な光誘起屈折率変化Δnが観測されている。
A similar report regarding the control of the refractive index of the optical waveguide is one regarding the change of the refractive index of the optical fiber (eg, Opt. Lett., Vol.15, 1990, B. Molo, e.
t al., pp953-955). According to this, it has been observed that in the GeO 2 -doped silica optical fiber, the refractive index of the core is changed by 3 × 10 −5 by ultraviolet irradiation. In addition, a similar photo-induced refractive index change Δn is also observed in a silica-based optical waveguide formed on a silicon substrate.

【0010】しかしながら、シリコン基板上に作製され
た石英系光導波路における光誘起屈折率変化の敏感性
は、光ファイバに比べて弱いものであった。このことは
応用例の一つである光誘起屈折率分布型グレーティング
の作製時に長い光照射時間を必要とし、より安定な光照
射の光学系が必要とされる等の困難を生じさせた。その
ため、屈折率変化の効率を高めるための処理方法が提案
された。
However, the sensitivity of the photo-induced refractive index change in the silica type optical waveguide formed on the silicon substrate was weaker than that of the optical fiber. This causes a difficulty in that a long light irradiation time is required at the time of manufacturing a photo-induced gradient index grating, which is one of the application examples, and a more stable light irradiation optical system is required. Therefore, a treatment method has been proposed for increasing the efficiency of changing the refractive index.

【0011】一つは、水素雰囲気下で高温(500 ℃程
度)熱処理を行うことにより、光誘起屈折率変化の敏感
性(効率)を高めることを可能としたものである(例え
ば、Opt.Lett., vol.18, 1993, K.D.Simmons, et al.,
pp25-27 参照)(以下、高温水素化処理法と称す)。し
かしながら、水素雰囲気で高温熱処理を行うことは安全
性に欠け、また、高温熱処理を行うための特殊な電気炉
等を必要とし、さらにまた、近赤外領域における損失も
数dB以上増加する等の問題があった(例えば、Electr
on Lett., (28), 1992, G.D.Maxwell, et al., pp2106-
2107参照)。
One is that it is possible to increase the sensitivity (efficiency) of the photo-induced refractive index change by performing a high temperature (about 500 ° C.) heat treatment in a hydrogen atmosphere (for example, Opt. Lett). ., vol.18, 1993, KDSimmons, et al.,
pp25-27) (hereinafter referred to as the high temperature hydrotreatment method). However, performing high-temperature heat treatment in a hydrogen atmosphere lacks safety, requires a special electric furnace for performing high-temperature heat treatment, and increases loss in the near infrared region by several dB or more. There was a problem (eg Electr
on Lett., (28), 1992, GDMaxwell, et al., pp2106-
See 2107).

【0012】また、もう一つは、水素バーナー、LPG
バーナー等の火炎で光導波路を炙ることにより、光誘起
屈折率変化の敏感性(効率)を高めることを可能とした
ものである(例えば、OFC '93, K.O.Hill, et al. 参
照)(以下、火炎掃引法(flame brushing)と称す)。
この方法は、簡便に屈折率変化の効率を高めることがで
きる点で優れているが、その制御性及び再現性に問題が
あった。
The other is hydrogen burner and LPG.
By burning the optical waveguide with a flame such as a burner, it is possible to increase the sensitivity (efficiency) of the light-induced refractive index change (see OFC '93, KOHill, et al.) (See below, Flame sweeping method (called flame brushing).
This method is excellent in that the efficiency of changing the refractive index can be easily increased, but there is a problem in its controllability and reproducibility.

【0013】[0013]

【発明が解決しようとする課題】本発明は前記従来の問
題点に鑑み、光誘起屈折率変化の敏感性を簡便且つ安全
にしかも制御性良く高めることができ、光回路を構成す
る光導波路の局部的な屈折率もしくは光路長の制御を効
率良く行うことを可能とする光回路の特性調整方法を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention makes it possible to increase the sensitivity of light-induced refractive index change easily, safely and with good controllability, and to provide an optical waveguide constituting an optical circuit. An object of the present invention is to provide a method for adjusting the characteristics of an optical circuit, which makes it possible to efficiently control the local refractive index or the optical path length.

【0014】[0014]

【課題を解決するための手段】本発明では前記目的を達
成するため、基板上に形成されたコア及びクラッドから
なる光導波路で構成される光回路の特性調整方法であっ
て、前記光導波路に室温で水素を含浸させる工程と、前
記光導波路に熱処理を行う工程と、前記光導波路に局部
的に可視光又は紫外光を照射する工程とを備えた光回路
の特性調整方法を提案する。
In order to achieve the above object, the present invention provides a method for adjusting the characteristics of an optical circuit comprising an optical waveguide consisting of a core and a clad formed on a substrate. We propose a method for adjusting the characteristics of an optical circuit, which comprises a step of impregnating hydrogen at room temperature, a step of heat-treating the optical waveguide, and a step of locally irradiating the optical waveguide with visible light or ultraviolet light.

【0015】[0015]

【作用】本発明によれば、水素を含浸させる工程と熱処
理を行う工程とを分離しているため、水素を含浸させる
工程は室温で行うことができ、高温水素化処理法に比べ
て、より安全性が高く、また、大気中或いはHe雰囲気
下で熱処理を行うため、通常の電気炉等を用いることが
でき、簡単に熱処理を行うことができる。また、水素を
含浸させる工程における水素圧力と水素雰囲気下に導波
路を置く時間、並びに熱処理工程における熱処理温度と
熱処理時間により、屈折率変化の敏感性(効率)の制御
性及び再現性を持たせることができる。
According to the present invention, since the step of impregnating hydrogen and the step of performing heat treatment are separated, the step of impregnating hydrogen can be performed at room temperature, which is more efficient than the high temperature hydrotreatment method. Since the safety is high and the heat treatment is performed in the atmosphere or He atmosphere, the heat treatment can be performed easily by using an ordinary electric furnace or the like. Further, the sensitivity (efficiency) of the change in refractive index can be controlled and reproducible by the hydrogen pressure in the step of impregnating hydrogen and the time for placing the waveguide in a hydrogen atmosphere, and the heat treatment temperature and heat treatment time in the heat treatment step. be able to.

【0016】[0016]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の第1の実施例を示すもの
で、ここでは光誘起屈折率変化の敏感性向上処理を行っ
た後、石英系光導波路においてエキシマレーザによりM
Z干渉計の特性を調節した例を示す。
FIG. 1 shows a first embodiment of the present invention, in which a sensitivity-improving treatment for a photo-induced refractive index change is carried out, and then a M-shaped excimer laser is used in a silica optical waveguide.
An example in which the characteristics of the Z interferometer are adjusted is shown.

【0018】図2において、10はMZ干渉計であり、
シリコン基板11上に形成された2つの方向性結合器1
2a,12b及びこれらを結ぶ2本の光導波路13a,
13bからなっている。また、21a,21b,21
c,21dは2本の光導波路13a,13bの両端に接
続された光ファイバ、22は遮蔽用の金属膜、23はK
rFエキシマレーザ、24はミラー、25はレンズ、2
6はシリンドリカルレンズである。
In FIG. 2, 10 is an MZ interferometer,
Two directional couplers 1 formed on a silicon substrate 11
2a, 12b and two optical waveguides 13a connecting them,
It consists of 13b. In addition, 21a, 21b, 21
c and 21d are optical fibers connected to both ends of the two optical waveguides 13a and 13b, 22 is a shielding metal film, and 23 is K.
rF excimer laser, 24 is a mirror, 25 is a lens, 2
Reference numeral 6 is a cylindrical lens.

【0019】前記MZ干渉計10は非対称型であり、光
導波路13aが13bより長くなっている。このタイプ
のMZ干渉計は周波数又は波長分波器として動作する。
ここでは、2つの光導波路13a,13bの光路長差Δ
2 を約1cmとし、周波数10GHz間隔で入射光を
分波できるように設計した。
The MZ interferometer 10 is an asymmetric type, and the optical waveguide 13a is longer than 13b. This type of MZ interferometer operates as a frequency or wavelength demultiplexer.
Here, the optical path length difference Δ between the two optical waveguides 13a and 13b
L 2 was set to about 1 cm, and the incident light was designed to be demultiplexed at intervals of 10 GHz.

【0020】以下、本発明方法を説明する。The method of the present invention will be described below.

【0021】まず、通常の方法でシリコン基板11上に
GeO2 添加石英系ガラス導波路型のMZ干渉計10を
作製した。ここで、導波路のコアは矩形とし、サイズは
7×7μmとした。また、コアとクラッドとの屈折率差
は0.75%とした。方向性結合器12a,12bでは結合
率が波長1.3 μmでほぼ50%になるようにした。
First, a GeO 2 -doped silica glass waveguide type MZ interferometer 10 was produced on a silicon substrate 11 by a usual method. Here, the core of the waveguide was rectangular and the size was 7 × 7 μm. Further, the refractive index difference between the core and the clad was set to 0.75%. In the directional couplers 12a and 12b, the coupling rate is set to about 50% at a wavelength of 1.3 μm.

【0022】前記作製したMZ干渉計10を、図3に示
すようなH2 ガス高圧封入容器に入れ、水素ガス圧力を
5気圧に設定し、水素の含浸を約24時間行った。な
お、図3において、27は容器、28は水素ガス供給
系、29は圧力ゲージ、30はリーク用バルブである。
続いて、水素を含浸させたMZ干渉計10を、電気炉に
よって200 ℃で約24時間アニーリングを行い、光誘起
屈折率変化の敏感性向上処理を行った。
The MZ interferometer 10 prepared above was placed in a H 2 gas high-pressure enclosure as shown in FIG. 3, the hydrogen gas pressure was set to 5 atm, and hydrogen was impregnated for about 24 hours. In FIG. 3, 27 is a container, 28 is a hydrogen gas supply system, 29 is a pressure gauge, and 30 is a leak valve.
Subsequently, the MZ interferometer 10 impregnated with hydrogen was annealed at 200 ° C. for about 24 hours in an electric furnace to perform a treatment for improving the sensitivity of the photo-induced refractive index change.

【0023】前述した処理を行った導波路型MZ干渉計
10にKrFエキシマレーザ23より、ミラー24、レ
ンズ25及びシリンドリカルレンズ26を介して、波長
248nmの紫外レーザ光を照射し、照射前後の特性変化
を調べた。レーザ光はMZ干渉計10の上部より、金属
膜22で覆われていない部分を照射した。従って、該レ
ーザ光は光導波路13aの一部分だけに屈折率変化を誘
起することになる。この際、KrFエキシマレーザ23
の照射パワーは100 mJ/cm2 ・pulse 、パルス繰り
返し周波数は5Hz、照射時間は2分間とした。
The waveguide type MZ interferometer 10 which has been subjected to the above-mentioned processing is subjected to wavelength conversion from the KrF excimer laser 23 through the mirror 24, the lens 25 and the cylindrical lens 26.
Irradiation with an ultraviolet laser beam of 248 nm was performed and the change in characteristics before and after irradiation was examined. The laser light was applied from above the MZ interferometer 10 to the portion not covered with the metal film 22. Therefore, the laser light induces a refractive index change only in a part of the optical waveguide 13a. At this time, the KrF excimer laser 23
The irradiation power was 100 mJ / cm 2 · pulse, the pulse repetition frequency was 5 Hz, and the irradiation time was 2 minutes.

【0024】前述したMZ干渉計10の特性を調べるた
め、中心波長1.3 μmの電流掃引型半導体レーザを光フ
ァイバ21aから導入した。本実施例では、レーザ光の
照射中にMZ干渉計10の特性変化をモニターすること
ができた。
In order to investigate the characteristics of the MZ interferometer 10 described above, a current-swept semiconductor laser having a center wavelength of 1.3 μm was introduced from the optical fiber 21a. In this example, the characteristic change of the MZ interferometer 10 could be monitored during the irradiation of the laser beam.

【0025】図4は2分間照射後における光ファイバ2
1cからの出力の波長依存性を、照射前と比較して示す
ものである。図4に示すように、照射前は光周波数fi
で消光していたMZ干渉計10の特性を、照射後、所望
の光周波数f0 で消光するように調整することができ
た。この光周波数fi からf0 への調整はKrFエキシ
マレーザ光照射による光誘起屈折率変化Δnによるもの
である。
FIG. 4 shows the optical fiber 2 after irradiation for 2 minutes.
The wavelength dependence of the output from 1c is shown in comparison with that before irradiation. As shown in FIG. 4, before irradiation, the optical frequency f i
The characteristic of the MZ interferometer 10 which was extinguished at 1. could be adjusted so that it would be extinguished at a desired optical frequency f 0 after irradiation. The adjustment from the optical frequency f i to f 0 is based on the photoinduced refractive index change Δn due to the irradiation of the KrF excimer laser light.

【0026】従来の光導波路では、光周波数fi からf
0 への変化に相当する屈折率変化Δnを得るためには、
KrFエキシマレーザの照射パワー100 mJ/cm2
pulse 、パルス繰り返し周波数50Hz、照射時間約2
0分間を要していた。従って、本発明により、光誘起屈
折率変化の敏感性(効率)は、約100 倍向上したことが
確認された。
In the conventional optical waveguide, the optical frequencies f i to f
To obtain the refractive index change Δn corresponding to the change to 0 ,
Irradiation power of KrF excimer laser 100 mJ / cm 2 ·
pulse, pulse repetition frequency 50Hz, irradiation time about 2
It took 0 minutes. Therefore, according to the present invention, it was confirmed that the sensitivity (efficiency) of light-induced refractive index change was improved about 100 times.

【0027】なお、前記光誘起屈折率変化の敏感性向上
処理に用いた水素ガスは、石英ガラスに含浸し還元反応
する気体のものであれば代用することができる。また、
本発明はアモルファスシリコン或いはステンレス等の金
属を光導波路に部分的に密着させ、光回路の一部分にの
み水素の含浸を行い、選択的に光誘起屈折率変化の敏感
性を向上させることも可能である。また、シリコン系樹
脂等を光導波路に密着させ、加熱処理を行うことによ
り、同様に光誘起屈折率変化の敏感性を向上させること
もできる。
The hydrogen gas used for the sensitivity-improving treatment for the photo-induced refractive index change may be any gas that impregnates quartz glass and causes a reduction reaction. Also,
In the present invention, it is also possible to partially adhere a metal such as amorphous silicon or stainless steel to the optical waveguide and impregnate hydrogen only in a part of the optical circuit to selectively improve the sensitivity of the light-induced refractive index change. is there. In addition, the sensitivity of the light-induced refractive index change can be similarly improved by bringing a silicone resin or the like into close contact with the optical waveguide and performing heat treatment.

【0028】また、コアの屈折率変化は波長240 nmの
GeO2 に関連した吸収に起因するため、屈折率変化に
用いるレーザは240 nm付近に発振波長を有するもので
あれば良い。また、可視域に発振波長を有するレーザも
使用可能である。なぜなら、可視域のレーザでも2光子
吸収により同様の変化を誘起するからである。まとめる
と、本発明で使用するレーザは、He−Cdレーザ、N
2 レーザ、各種エキシマレーザ、Arイオンレーザ、N
3+:YAGレーザ、アレキサンドライト(Cr3+:B
eAl2 4 )レーザの第2次,3次,4次高調波等、
紫外・可視領域の波長を有するものであれば良い。
Since the change in the refractive index of the core is caused by the absorption associated with GeO 2 having a wavelength of 240 nm, the laser used for the change in the refractive index may be any laser having an oscillation wavelength near 240 nm. Also, a laser having an oscillation wavelength in the visible region can be used. This is because even in a visible region laser, a similar change is induced by two-photon absorption. In summary, the laser used in the present invention is a He-Cd laser, N
2 lasers, various excimer lasers, Ar ion lasers, N
d 3+ : YAG laser, alexandrite (Cr 3+ : B
eAl 2 O 4 ) laser second, third, fourth harmonics, etc.
Any material having a wavelength in the ultraviolet / visible region may be used.

【0029】なお、GeO2 濃度に関しては、MZ干渉
計の長さにより調節が可能であるから、特に制限するも
のではない。また、前記実施例ではドーパントとしてG
eO2 を用いたが、その外にTiO2 ,Ce2 3 等、
紫外領域に吸収を有し、紫外線に敏感なドーパントを用
いても良い。また、本発明は、光ファイバ21a〜21
dに偏波保持性を有する光ファイバを用いることを妨げ
るものではない。
The GeO 2 concentration is not particularly limited because it can be adjusted by the length of the MZ interferometer. Further, in the above embodiment, G is used as a dopant.
eO 2 was used, but in addition to it, TiO 2 , Ce 2 O 3, etc.
A dopant having absorption in the ultraviolet region and sensitive to ultraviolet rays may be used. The present invention also relates to the optical fibers 21a to 21.
It does not prevent the use of an optical fiber having a polarization maintaining property for d.

【0030】図5は本発明の第2の実施例を示すもの
で、ここでは光誘起屈折率変化の敏感性向上処理を行っ
た後、石英系光導波路において光誘起グレーティングの
作製を行った例を示す。
FIG. 5 shows a second embodiment of the present invention. Here, an example is shown in which a photo-induced grating is produced in a silica-based optical waveguide after a sensitivity improving process for a photo-induced refractive index change is performed. Indicates.

【0031】図5において、40は石英系光導波路、4
1はアレキサンドライト(Cr3+:BeAl2 4 )レ
ーザ、42a,42bは波長変換素子(BBO)、43
は波長選択ミラー、44a,44b,44c,44dは
ミラー、45はレンズ、46はシリンドリカルレンズ、
47はハーフミラーである。
In FIG. 5, 40 is a silica-based optical waveguide, 4
1 is an alexandrite (Cr 3+ : BeAl 2 O 4 ) laser, 42a and 42b are wavelength conversion elements (BBO), 43
Is a wavelength selection mirror, 44a, 44b, 44c and 44d are mirrors, 45 is a lens, 46 is a cylindrical lens,
47 is a half mirror.

【0032】以下、本発明方法を説明する。The method of the present invention will be described below.

【0033】まず、通常の方法でシリコン基板上にGe
2 添加石英系ガラス導波路40を作製した。ここで、
導波路のコアは矩形とし、サイズは7×7μmとした。
また、コアとクラッドとの屈折率差は0.75%とした。
First, Ge is formed on a silicon substrate by a usual method.
An O 2 -doped silica glass waveguide 40 was produced. here,
The core of the waveguide was rectangular and the size was 7 × 7 μm.
Further, the refractive index difference between the core and the clad was set to 0.75%.

【0034】前記作製した石英系光導波路40を、図3
に示したH2 ガス高圧封入容器に入れ、水素ガス圧力を
5気圧に設定し、水素の含浸を約72時間行った。続い
て、水素を含浸させた光導波路40を、電気炉によって
200 ℃で約72時間アニーリングを行い、光誘起屈折率
変化の敏感性向上処理を行った。
The produced silica-based optical waveguide 40 is shown in FIG.
The sample was placed in the H 2 gas high-pressure container shown in (4), the hydrogen gas pressure was set to 5 atm, and hydrogen was impregnated for about 72 hours. Then, the optical waveguide 40 impregnated with hydrogen is placed in an electric furnace.
Annealing was performed at 200 ° C. for about 72 hours to improve the sensitivity of the photo-induced refractive index change.

【0035】前述した処理を行った光導波路40にアレ
キサンドライトレーザ41より、波長変換素子42a,
42b、波長選択ミラー43、ミラー44a〜44d、
レンズ45、シリンドリカルレンズ46及びハーフミラ
ー47を介して、第3高調波(3ω)を上部から約8分
間照射し、光誘起グレーティングを作製した。この際、
レーザ光強度は約400 mJ/cm2 ・pulse 、パルス繰
り返し周波数は20Hz、照射した光導波路の長さは1
0mmとした。
The alexandrite laser 41 is applied to the optical waveguide 40 which has been subjected to the above-mentioned processing, and the wavelength conversion element 42a,
42b, wavelength selection mirror 43, mirrors 44a to 44d,
The third harmonic wave (3ω) was irradiated from above through the lens 45, the cylindrical lens 46, and the half mirror 47 for about 8 minutes to fabricate a photoinduced grating. On this occasion,
The laser light intensity is about 400 mJ / cm 2 · pulse, the pulse repetition frequency is 20 Hz, and the length of the irradiated optical waveguide is 1
It was set to 0 mm.

【0036】グレーティングの特性を調べるため、中心
波長1.55μmのLEDからの光をファイバで光導波路へ
導入し、スペクトラムアナライザを用いて測定した。
In order to examine the characteristics of the grating, light from an LED having a center wavelength of 1.55 μm was introduced into an optical waveguide by a fiber and measured using a spectrum analyzer.

【0037】図6は本発明により作製した光導波路の反
射スペクトル特性を、通常の光導波路と比較して示すも
のである。
FIG. 6 shows the reflection spectrum characteristics of the optical waveguide manufactured according to the present invention in comparison with the ordinary optical waveguide.

【0038】通常の石英系光導波路に、同様の光照射条
件で光誘起グレーティングを作製するためには、数10
分間以上に及ぶ光照射時間を要するが、その間、図5に
示したような光照射の光学系を安定に保つことは困難で
あったため、十分な特性が得られなかったが、本発明の
光誘起屈折率変化の敏感性向上処理を行うことにより、
十分な反射率、ここでは約85%を示す光誘起グレーテ
ィングを作製することができた。
In order to fabricate a photo-induced grating on a normal silica-based optical waveguide under the same light irradiation conditions, several tens are required.
Although a light irradiation time of more than one minute is required, it was difficult to keep the light irradiation optical system as shown in FIG. 5 stable during that time, so that sufficient characteristics could not be obtained. By performing the sensitivity improvement process of the induced refractive index change,
It was possible to fabricate a photoinduced grating exhibiting a sufficient reflectance, here about 85%.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、水
素を含浸させる工程と熱処理を行う工程とを分離してい
るため、水素を含浸させる工程は室温で行うことがで
き、高温水素化処理法に比べて、より安全性が高く、ま
た、大気中或いはHe雰囲気下で熱処理を行うため、通
常の電気炉等を用いることができ、簡単に熱処理を行う
ことができる。また、水素を含浸させる工程における水
素圧力と水素雰囲気下に導波路を置く時間、並びに熱処
理工程における熱処理温度と熱処理時間により、屈折率
変化の敏感性(効率)の制御性及び再現性を持たせるこ
とができ、従来の光回路の作製法の変更を必要とせず、
効果的にしかも簡便に特性を調節した光回路を提供する
ことができる。また、本発明によれば、既に作製された
光回路を対象として実施できるため、規格外の出力特性
の回路を所望の特性にすることができ、光回路の生産性
が向上する。また、本発明によれば、短時間の光照射に
より大きな屈折率変化Δnが得られるため、光誘起グレ
ーティングの特性を向上させることができる。
As described above, according to the present invention, since the step of impregnating hydrogen and the step of performing heat treatment are separated, the step of impregnating hydrogen can be performed at room temperature, and high temperature hydrogenation can be performed. Compared with the treatment method, it is more safe, and since the heat treatment is performed in the atmosphere or He atmosphere, it is possible to use an ordinary electric furnace or the like, and the heat treatment can be easily performed. Further, the sensitivity (efficiency) of the change in refractive index can be controlled and reproducible by the hydrogen pressure in the step of impregnating hydrogen and the time for placing the waveguide in a hydrogen atmosphere, and the heat treatment temperature and heat treatment time in the heat treatment step. It is possible to do without changing the conventional method of manufacturing an optical circuit,
It is possible to effectively and simply provide an optical circuit whose characteristics are adjusted. Further, according to the present invention, since an optical circuit that has already been manufactured can be implemented as a target, a circuit having a nonstandard output characteristic can have desired characteristics, and the productivity of the optical circuit improves. Further, according to the present invention, a large refractive index change Δn can be obtained by irradiating light for a short time, so that the characteristics of the photo-induced grating can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す光学系の配置図FIG. 1 is a layout diagram of an optical system showing a first embodiment of the present invention.

【図2】MZ干渉計の一例を示す構成図FIG. 2 is a configuration diagram showing an example of an MZ interferometer.

【図3】水素ガス高圧封入容器の一例を示す図FIG. 3 is a diagram showing an example of a hydrogen gas high-pressure enclosure.

【図4】第1の実施例における出力光波長スペクトル特
性を示す図
FIG. 4 is a diagram showing output light wavelength spectrum characteristics in the first embodiment.

【図5】本発明の第2の実施例を示す光学系の配置図FIG. 5 is a layout diagram of an optical system showing a second embodiment of the present invention.

【図6】第2の実施例における反射スペクトル特性を示
す図
FIG. 6 is a diagram showing reflection spectrum characteristics in the second embodiment.

【符号の説明】[Explanation of symbols]

10…MZ干渉計、11…シリコン基板、12a,12
b…方向性結合器、13a,13b…光導波路、21a
〜21d…光ファイバ、22…金属膜、23…KrFエ
キシマレーザ、24,44a〜44d…ミラー、25,
45…レンズ、26,46…シリンドリカルレンズ、4
0…石英系光導波路、41…アレキサンドライトレー
ザ、42a,42b…波長変換素子、43…波長選択ミ
ラー、47…ハーフミラー。
10 ... MZ interferometer, 11 ... Silicon substrate, 12a, 12
b ... Directional coupler, 13a, 13b ... Optical waveguide, 21a
21d ... Optical fiber, 22 ... Metal film, 23 ... KrF excimer laser, 24, 44a-44d ... Mirror, 25,
45 ... Lens, 26, 46 ... Cylindrical lens, 4
0 ... Quartz-based optical waveguide, 41 ... Alexandrite laser, 42a, 42b ... Wavelength conversion element, 43 ... Wavelength selection mirror, 47 ... Half mirror.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河内 正夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 山田 裕朗 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masao Kawauchi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Hiroro Yamada 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたコア及びクラッドか
らなる光導波路で構成される光回路の特性調整方法であ
って、 前記光導波路に室温で水素を含浸させる工程と、 前記光導波路に熱処理を行う工程と、 前記光導波路に局部的に可視光又は紫外光を照射する工
程とを備えたことを特徴とする光回路の特性調整方法。
1. A method for adjusting characteristics of an optical circuit including an optical waveguide including a core and a clad formed on a substrate, the method including impregnating the optical waveguide with hydrogen at room temperature, and heat treating the optical waveguide. And a step of locally irradiating the optical waveguide with visible light or ultraviolet light, the method for adjusting characteristics of an optical circuit.
JP9312593A 1993-04-20 1993-04-20 Optical circuit characteristic adjustment method Expired - Lifetime JP3374990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312593A JP3374990B2 (en) 1993-04-20 1993-04-20 Optical circuit characteristic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312593A JP3374990B2 (en) 1993-04-20 1993-04-20 Optical circuit characteristic adjustment method

Publications (2)

Publication Number Publication Date
JPH06308546A true JPH06308546A (en) 1994-11-04
JP3374990B2 JP3374990B2 (en) 2003-02-10

Family

ID=14073807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312593A Expired - Lifetime JP3374990B2 (en) 1993-04-20 1993-04-20 Optical circuit characteristic adjustment method

Country Status (1)

Country Link
JP (1) JP3374990B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307220A (en) * 1997-05-06 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical waveguide type filter, and optical waveguide filter
JP2000047046A (en) * 1998-07-31 2000-02-18 Toshiyuki Watanabe Manufacture of refractive index distribution type optical formed body
WO2000029881A1 (en) * 1998-11-12 2000-05-25 The University Of Sydney Tuning of optical devices
EP1067409A2 (en) * 1999-07-09 2001-01-10 Lucent Technologies Inc. Optical device having modified transmission characteristics by localized thermal treatment
US6226428B1 (en) 1997-07-30 2001-05-01 Nec Corporation Optical multiplexer/demultiplexer with optical waveguides and a diffraction grating
WO2001038909A1 (en) * 1999-11-24 2001-05-31 Mitsubishi Cable Industries, Ltd. Coated optical fiber, optical fiber assembly, methods for the same, and optical fiber substrate
WO2002052313A1 (en) * 2000-12-22 2002-07-04 Redfern Optical Components Pty Ltd Tuning of optical devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307220A (en) * 1997-05-06 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical waveguide type filter, and optical waveguide filter
US6226428B1 (en) 1997-07-30 2001-05-01 Nec Corporation Optical multiplexer/demultiplexer with optical waveguides and a diffraction grating
JP2000047046A (en) * 1998-07-31 2000-02-18 Toshiyuki Watanabe Manufacture of refractive index distribution type optical formed body
WO2000029881A1 (en) * 1998-11-12 2000-05-25 The University Of Sydney Tuning of optical devices
EP1067409A2 (en) * 1999-07-09 2001-01-10 Lucent Technologies Inc. Optical device having modified transmission characteristics by localized thermal treatment
EP1067409A3 (en) * 1999-07-09 2002-07-24 Agere Systems Optoelectronics Guardian Corporation Optical device having modified transmission characteristics by localized thermal treatment
WO2001038909A1 (en) * 1999-11-24 2001-05-31 Mitsubishi Cable Industries, Ltd. Coated optical fiber, optical fiber assembly, methods for the same, and optical fiber substrate
WO2002052313A1 (en) * 2000-12-22 2002-07-04 Redfern Optical Components Pty Ltd Tuning of optical devices

Also Published As

Publication number Publication date
JP3374990B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
Mihailov et al. Bragg gratings written in all-SiO/sub 2/and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask
GB2395797A (en) Fabrication of optical waveguides and Bragg gratings
JP2000504853A (en) Method of manufacturing a symmetric optical waveguide
KR100487888B1 (en) A method of providing an optical element and a process of forming an optical element
JP3374990B2 (en) Optical circuit characteristic adjustment method
Hibino et al. Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-lightwave-circuit-type asymmetric Mach-Zehnder interferometer on Si
JP5068412B2 (en) Method for stabilizing and adjusting the optical path length of a waveguide device
Grobnic et al. Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding
US6870967B2 (en) Pretrimming of tunable finite response (FIR) filter
JP3090293B2 (en) Optical circuit and manufacturing method thereof
CA2361952A1 (en) Laser ablation of waveguide structures
JP2001074950A (en) Method for adjusting characteristic for optical multiplexer/demultiplexer
Starodubov et al. Ultrastrong fiber gratings and their applications
JP4519334B2 (en) Manufacturing method of optical fiber grating
JPH04298702A (en) Optical circuit and its characteristic adjusting method
JP3578376B2 (en) Optical circuit manufacturing method
JP3011308B2 (en) Manufacturing method of optical fiber with increased photosensitivity.
Chen et al. Trimming phase and birefringence errors in photosensitivity-locked planar optical circuits
JP4405946B2 (en) Optical circuit fabrication method
Dai et al. High birefringence control and polarization insensitive Bragg grating fabricated in PECVD planar waveguide with UV polarized irradiation
Wosinski Technology for photonic components in silica/silicon material structure
JP2002303747A (en) Optical waveguide
JPH1020134A (en) Optical waveguide and its production
Svalgaard Direct UV-written integrated optical components
Bazylenko et al. Two Types of Photosensitivity Observed in Hollow Cathode PECVD Germanosilica Planar Waveguides.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term