JPH06308336A - Production of distributed refractive index type optical fiber - Google Patents

Production of distributed refractive index type optical fiber

Info

Publication number
JPH06308336A
JPH06308336A JP5115223A JP11522393A JPH06308336A JP H06308336 A JPH06308336 A JP H06308336A JP 5115223 A JP5115223 A JP 5115223A JP 11522393 A JP11522393 A JP 11522393A JP H06308336 A JPH06308336 A JP H06308336A
Authority
JP
Japan
Prior art keywords
refractive index
polymer
optical fiber
monomer
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5115223A
Other languages
Japanese (ja)
Inventor
Kozo Mise
興造 三瀬
Tsuneo Takano
恒男 高野
Katsuhiko Shimada
勝彦 島田
Yoshihiro Uozu
吉弘 魚津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5115223A priority Critical patent/JPH06308336A/en
Publication of JPH06308336A publication Critical patent/JPH06308336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To provide the process for production of the distributed refractive index type optical fiber having practicability and a wide range of characteristics by packing a monomer having a specific value of the refractive index after polymn. curing and subjecting the monomers included between both phases to crossdiffusion, thereby making polymn. curing in the state of giving a refractive index distribution. CONSTITUTION:This distributed refractive index type fiber is constituted by molding a circular columnar pipe-shaped perform of a mixture composed of a polymer and monomer capable of forming a polymer having >=10000 poises viscosity and the refractive index n1 of the polymer after polymn. curing and packing the mixture composed of the polymer and monomer capable of forming the polymer having n2 (where n2>n1) refractive index of the polymer after the polymn. curing within this preform. The monomers included in both phase pipes are crossdiffused and are subjected to the polymn. curing in the state of having the refractive index distribution, by which this optical fiber is produced. The distributed refractive index type optical fiber produced in such a manner is reduced in diameter by stretching the fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光情報通信媒体として有
用に利用できる光伝送帯域の広い、中心部から外周部に
向って連続的な屈折率分布を有する屈折率分布型光ファ
イバの製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gradient index optical fiber having a wide optical transmission band which can be effectively used as an optical information communication medium and having a continuous refractive index distribution from a central portion toward an outer peripheral portion. It is a thing.

【0002】[0002]

【従来の技術】円柱体の中心部から外周部に向けて屈折
率分布を有する光ファイバの製造法としては、屈折率
の異なる単量体と重合体との混合物にて作った円柱管状
プリフォームの外周より単量体を部分的に揮散せしめ
て、該円柱状賦形物の中心部から外周部に向けて屈折率
分布を生起せしめた状態で、円柱状物内の単量体を重合
硬化する方法、特開昭54−30301号公報に記載
されるごとく、反応性比の異なる単量体混合物の円柱状
プリフォームを重合して屈折率分布型光ファイバを製造
する方法、特開平4−97302号公報に示されるご
とく、分子サイズの異なる単量体混合物よりの円柱状プ
リフォーム中の単量体の拡散速度の違いを利用して屈折
率分布型光ファイバを作る方法、などである。
2. Description of the Related Art As a method for producing an optical fiber having a refractive index distribution from the center to the outer periphery of a cylindrical body, a cylindrical tubular preform made of a mixture of a monomer and a polymer having different refractive indexes. The monomer in the columnar object is polymerized and cured in a state where the monomer is partially volatilized from the outer periphery of the columnar object, and the refractive index distribution is generated from the central portion of the columnar shaped object toward the outer peripheral portion. As described in JP-A-54-30301, a method for producing a gradient index optical fiber by polymerizing cylindrical preforms of a monomer mixture having different reactivity ratios, and JP-A-4-30301. As disclosed in Japanese Unexamined Patent Publication No. 97302, there is a method of producing a gradient index optical fiber by utilizing the difference in the diffusion rate of monomers in a cylindrical preform from a mixture of monomers having different molecular sizes.

【0003】[0003]

【発明が解決しようとする課題】これら従来技術では、
プリフォームの製造においては、反応性比の異なる単量
体の混合物や、分子サイズの異なる単量体混合物を用い
ることが必要であるとともに、これら単量体混合物で
も、相分離を起こさない単量体混合物であることが必要
であるため、用い得る単量体の組合せ範囲が限定される
ため、作り得る屈折率分布型光ファイバの性能も限定さ
れたものとなっており、実用性のある屈折率分布型光フ
ァイバとしての特性は未だ不十分なものであった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the production of preforms, it is necessary to use a mixture of monomers with different reactivity ratios, or a mixture of monomers with different molecular sizes, and even with these monomer mixtures, a single amount that does not cause phase separation Since it is necessary to be a body mixture, the range of monomer combinations that can be used is limited, so the performance of the graded index optical fiber that can be produced is also limited. The characteristics of the rate distribution type optical fiber were still insufficient.

【0004】[0004]

【課題を解決するための手段】そこで本発明者等は、従
来の屈折率分布型光ファイバの製造法に比べ、用い得る
単量体の組合せ範囲が広くなり、広範な特性を有する屈
折率分布型光ファイバの製法を見いだすべく検討した結
果、本発明を完成したものであり、その要旨とするとこ
ろは、粘度10,000ポイズ以上で、重合硬化後の重合体の
屈折率がn1となる重合体を形成しうる重合体と単量体と
の混合物で円柱管状プリフォームを賦形し、このプリフ
ォーム内に、重合硬化後の重合体の屈折率がn2(ただし
n2>n1)なる重合体を作り得る重合体と単量体との混合
物を充填し、両相間に含まれる単量体を相互拡散せしめ
て屈折率分布をつけた状態で重合体硬化せしめることを
特徴とする屈折率分布型光ファイバの製法、および、こ
の屈折率分布型光ファイバを延伸し、細径化する屈折率
分布型光ファイバの製法にある。
Therefore, the present inventors have widened the range of monomer combinations that can be used and have a wider range of refractive index distribution than the conventional method for manufacturing a gradient index optical fiber. The present invention has been completed as a result of studies to find a method for producing a mold-type optical fiber, and the gist thereof is a polymer having a viscosity of 10,000 poise or more and a refractive index of the polymer after polymerization and curing is n 1. A cylindrical tubular preform is shaped with a mixture of a polymer and a monomer capable of forming, and the refractive index of the polymer after polymerization and curing is n 2 (however, in this preform.
n 2 > n 1 ) A polymer that can form a polymer is filled with a mixture of the monomer and the monomer contained in both phases is mutually diffused to cure the polymer with a refractive index distribution. The present invention relates to a method of manufacturing a graded index optical fiber, and a method of manufacturing a graded index optical fiber in which the graded index optical fiber is drawn to have a smaller diameter.

【0005】次に本発明の屈折率分布型光ファイバの好
ましい製法について説明する。
Next, a preferable method for producing the gradient index optical fiber of the present invention will be described.

【0006】まず、円柱管状プリフォームは、透光性の
円管状容器内に重合後の屈折率がn1となる単量体と光重
合開始剤との混合物を充填し、この円管状容器を軸中心
で回転しながら管容器外部から光を照射し、円管状容器
内の外周面側より、徐々に重合を内部に向けて進行さ
せ、外周壁面より所望厚の範囲の重合体組成物の粘度が
10,000ポイズ以上となった時点で光重合を停止し、好ま
しくは冷却して、10,000ポイズ以下の樹脂組成物を流出
せしめ、円柱管状プリフォームとする。かくして得られ
たプリフォームの外周面の分子量はより高いものとなっ
ており、その内部へ向うにしたがってその粘度は低いも
のとなっている。当該円柱管状プリフォームの粘度は70
万ポイズ以下、より好ましくは50万ポイズ以下のものと
することにより、次いで行う単量体拡散処理を容易に行
い得る。
First, a cylindrical tubular preform is filled with a mixture of a monomer having a refractive index after polymerization of n 1 and a photopolymerization initiator in a translucent circular tubular container, and Irradiating light from the outside of the tube container while rotating about the axis, from the outer peripheral surface side in the circular tubular container, gradually progress the polymerization toward the inside, the viscosity of the polymer composition in the desired thickness range from the outer peripheral wall surface. But
The photopolymerization is stopped at a point of 10,000 poises or more, and preferably cooled to allow the resin composition of 10,000 poises or less to flow out to obtain a cylindrical tubular preform. The molecular weight of the outer peripheral surface of the preform thus obtained is higher, and the viscosity becomes lower toward the inside. The viscosity of the cylindrical tubular preform is 70
By setting the porosity to 10,000 poises or less, more preferably 500,000 poises or less, the subsequent monomer diffusion treatment can be easily performed.

【0007】上記円柱管状プリフォームは、上述したご
とく、円柱状成型容器を用いて行うこともできるが、単
量体に熱重合触媒、あるいは光重合触媒を加えたもの
を、予め10,000ポイズ以上の重合体と単量体との組成物
となるように重合したものを、ダイスまたはノズルを用
いて押出し、中空管状体に押出成型する方法によって作
ってもよい。
The above-mentioned cylindrical tubular preform can be carried out by using a cylindrical molding container as described above. However, a monomer obtained by adding a thermal polymerization catalyst or a photopolymerization catalyst to a cylindrical preform of 10,000 poise or more in advance is used. It may be produced by a method in which a polymer obtained by polymerizing a composition of a polymer and a monomer is extruded using a die or a nozzle, and then extrusion-molded into a hollow tubular body.

【0008】また、上記円管状容器に充填する単量体
は、単量体と光重合開始剤とよりなるものでもよいが、
この状態で容器を回転しながら光重合すると、光重合効
率はあまり良好なものではない。この光重合工程の短縮
化を図るには、単量体を熱重合または光重合して、その
粘度が10,000ポイズ程度以下なる重合体−単量体混合物
となし、光重合工程でのゲル効果を有効に利用するのが
よい。
The monomer to be filled in the above-mentioned tubular container may be composed of a monomer and a photopolymerization initiator,
When photopolymerization is performed while rotating the container in this state, the photopolymerization efficiency is not very good. In order to shorten the photopolymerization step, the monomer is thermally or photopolymerized to form a polymer-monomer mixture having a viscosity of about 10,000 poise or less, and the gel effect in the photopolymerization step is obtained. It is good to use effectively.

【0009】上記のごとくして得た円柱管状プリフォー
ムの中空部には、n2なる屈折率の重合体を作り得る単量
体、より好ましくは、粘度 5,000ポイズ以下、好ましく
は1,000 ポイズ以下の単量体−重合体混合物を充填し、
この中心層と外側層との間で単量体の相互拡散を行わし
め、屈折率分布をつけた状態で光重合することにより、
本発明の目的とする屈折率分布型光ファイバとすること
ができる。
In the hollow portion of the cylindrical tubular preform obtained as described above, a monomer capable of forming a polymer having a refractive index of n 2 , more preferably a viscosity of 5,000 poises or less, preferably 1,000 poises or less Fill the monomer-polymer mixture,
By interdiffusion of the monomer between the central layer and the outer layer, by photopolymerization in the state of having a refractive index distribution,
The gradient index optical fiber which is the object of the present invention can be obtained.

【0010】この屈折率分布型光ファイバをさらに細径
化するには、該光ファイバを通常の熱延伸により延伸す
ることによって作ることができ、熱源としては遠赤外線
を用いるのがよい。
In order to further reduce the diameter of this gradient index optical fiber, it can be produced by stretching the optical fiber by ordinary thermal stretching, and far infrared rays are preferably used as a heat source.

【0011】なお、円柱管状プリフォームを作るに際
し、数種の単量体または単量体と重合体の重合体混合物
を用意し、上記手法を繰返すことにより、得られる光フ
ァイバの屈折率分布を理想二次曲線に近付けることがで
きる。
When a cylindrical tubular preform is produced, several types of monomers or a polymer mixture of monomers and polymers are prepared, and the above procedure is repeated to obtain the refractive index distribution of the obtained optical fiber. It can approach the ideal quadratic curve.

【0012】本発明を実施するに際して用いうる硬化し
うる物質としては、ラジカル重合性ビニル単量体または
該単量体と該単量体に可溶性の重合体とよりなる組成物
を用いることができ、その単量体の具体例としては、メ
チルメタクリレート、スチレン、クロルスチレン、酢酸
ビニル、2,2,3,3-テトラフルオロプロピル(メタ)アク
リレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル
(メタ)アクリレート、2,2,3,3,4,4-ヘキサフルオロブ
チル(メタ)アクリレート、2,2,2-トリフルオロエチル
(メタ)アクリレート等のフッ素化アルキル(メタ)ア
クリレート、エチル(メタ)アクリレート、フェニル
(メタ)アクリレート、ベンジル(メタ)アクリレー
ト、ヒドロキシアルキル(メタ)アクリレート、アルキ
レングリコールジ(メタ)アクリレート、トリメチロー
ルプロパンジまたはトリ(メタ)アクリレート、ペンタ
エリスリトールジ、トリ、またはテトラ(メタ)アクリ
レート、ジグリセリンテトラ(メタ)アクリレート、ジ
ペンタエリスリトールヘキサ(メタ)アクリレートなど
のほか、ジエチレングリコールビスアリルカーボネー
ト、フッ素化アルキレングリコールポリ(メタ)アクリ
レートなどが挙げられる。
As the curable substance which can be used in the practice of the present invention, a radically polymerizable vinyl monomer or a composition comprising the monomer and a polymer soluble in the monomer can be used. , Specific examples of the monomer include methyl methacrylate, styrene, chlorostyrene, vinyl acetate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4,4, Fluorinated alkyls such as 5,5-octafluoropentyl (meth) acrylate, 2,2,3,3,4,4-hexafluorobutyl (meth) acrylate and 2,2,2-trifluoroethyl (meth) acrylate (Meth) acrylate, ethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, hydroxyalkyl (meth) acrylate, alkylene glycol di (meth) acrylate In addition to trimethylolpropane di- or tri (meth) acrylate, pentaerythritol di-, tri- or tetra (meth) acrylate, diglycerin tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, diethylene glycol bisallyl carbonate, fluorine Alkylene glycol poly (meth) acrylate and the like.

【0013】これらの単量体は単独で、あるいは複合化
した状態で用いることができる。また、単量体の状態で
用いてもよいが、外層形成用組成物としてはこれら単量
体に熱重合触媒を加えて加熱重合し、粘度が略10,000ポ
イズ以下の重合体、単量体混合物として用いることが好
ましい。この粘度があまり高すぎると、該組成物の円筒
管内への充填に際し、光学的歪を生じたり、不都合な泡
を巻き込んだりするので好ましくない。
These monomers can be used alone or in a composite state. Further, although it may be used in the state of a monomer, as a composition for forming an outer layer, a thermal polymerization catalyst is added to these monomers to perform heat polymerization, and the viscosity is about 10,000 poise or less, a monomer mixture. It is preferable to use as. If the viscosity is too high, an optical distortion may occur or an inconvenient bubble may be involved when the composition is filled in the cylindrical tube, which is not preferable.

【0014】これらの単量体を硬化するための熱重合開
始剤としては、例えば、2,2'−アゾビスイソブチロニト
リル、1,1'−アゾビスシクロヘキサンカルボニトリル、
2,2'−アゾビス-(2,4-ジメチルバレロニトリル)等のア
ゾ化合物、ならびにジ−t-ブチルパーオキサイド、ジク
ミルパーオキサイド、ジ−t-ブチルパーフタレート、ジ
−t-ブチルパーアセテート、ジ−t-アミルパーオキサイ
ド等の有機過酸化物が用いられる。
Examples of thermal polymerization initiators for curing these monomers include 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile,
Azo compounds such as 2,2′-azobis- (2,4-dimethylvaleronitrile), and di-t-butylperoxide, dicumyl peroxide, di-t-butylperphthalate, di-t-butylperacetate , Organic peroxides such as di-t-amyl peroxide are used.

【0015】また光重合開始剤としては、ベンゾフェノ
ン、ベンゾインアルキルエーテル、4'−イソプロピル−
2-メチル−プロピオフェノン、1-ヒドロキシシクロヘキ
シルフェニルケトン、ベンジルメチルケタール、2,2-ジ
エトキシアセトフェノン、クロロチオキサントン、チオ
キサントン系化合物、ベンゾフェノン系化合物、4-ジメ
チルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸
イソアミル、N-メチルジエタノールアミン、トリエチル
アミンなどが挙げられる。
Further, as the photopolymerization initiator, benzophenone, benzoin alkyl ether, 4'-isopropyl-
2-Methyl-propiophenone, 1-hydroxycyclohexyl phenyl ketone, benzyl methyl ketal, 2,2-diethoxyacetophenone, chlorothioxanthone, thioxanthone compounds, benzophenone compounds, 4-dimethylaminoethyl benzoate, 4-dimethylamino Examples include isoamyl benzoate, N-methyldiethanolamine, triethylamine and the like.

【0016】紫外線照射を行う光源としては、炭素アー
ク灯、高圧水銀灯、超高圧水銀灯、低圧水銀灯、ケミカ
ルランプ、キセノンランプ、レーザー光等を挙げること
ができる。
Examples of the light source for irradiating ultraviolet rays include a carbon arc lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a chemical lamp, a xenon lamp and a laser beam.

【0017】本発明によって得られる屈折率分布型プラ
スチック光ファイバは、これを熱延伸することによって
より細い任意の径を有する光ファイバにすることができ
る。
The gradient index plastic optical fiber obtained by the present invention can be made into an optical fiber having an arbitrary smaller diameter by heat drawing the plastic optical fiber.

【0018】本発明の光ファイバの性能は、伝送損失と
伝送帯域を測定することにより評価した。伝送損失の測
定は、光源として白色光源を用い、ファイバの一端から
光を入射し、他端からの出射光の絶対強度を各波長毎に
スペクトラムアナライザーで読み取ることにより行っ
た。光ファイバの伝送帯域の測定は、パルス光源として
波長670nm のレーザーダイオードを用い、株式会社浜松
ホトニクス製ピコセックパルスジェネレーターを駆動装
置として、10MHz の間隔で光を発生させ、ファイバに入
射し、出射光の検出には、株式会社浜松ホトニクス製サ
ンプリングヘッドを受光およびAD変換に用い、株式会
社浜松ホトニクス製サンプリングオシロスコープを測定
波形のフーリエ変換に用いることにより行った。得られ
た波形のフーリエ変換により周波数換算し、3dB減衰す
る周波数を求め、これを伝送帯域とした。
The performance of the optical fiber of the present invention was evaluated by measuring the transmission loss and the transmission band. The transmission loss was measured by using a white light source as a light source, injecting light from one end of the fiber, and reading the absolute intensity of light emitted from the other end for each wavelength with a spectrum analyzer. To measure the transmission band of an optical fiber, a laser diode with a wavelength of 670 nm is used as a pulse light source, and a Picosec pulse generator manufactured by Hamamatsu Photonics Co., Ltd. is used as a driving device to generate light at intervals of 10 MHz, and the light is made incident on the fiber and emitted. Was detected by using a sampling head manufactured by Hamamatsu Photonics Co., Ltd. for light reception and AD conversion, and using a sampling oscilloscope manufactured by Hamamatsu Photonics Co., Ltd. for Fourier transform of the measured waveform. The frequency was converted by Fourier transform of the obtained waveform to obtain a frequency that attenuated by 3 dB, and this was used as a transmission band.

【0019】[0019]

【発明の効果】本発明により、従来法で屈折率分布型プ
ラスチック光ファイバを製造する場合の欠点である、使
用可能な単量体の種類が限定される点が改善され、より
多くの種類の単量体を原料として利用でき、より広範な
特性を有する屈折率分布型プラスチック光ファイバを製
造することができる。
EFFECTS OF THE INVENTION According to the present invention, the drawback of producing a graded index plastic optical fiber by the conventional method, that is, the type of usable monomer is limited, is improved. A monomer can be used as a raw material, and a gradient index plastic optical fiber having a wider range of properties can be manufactured.

【0020】以下、実施例により本発明をさらに詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0021】[0021]

【実施例1】2,2,3,3,4,4,5,5-オクタフルオロペンチル
メタクリレート 100重量部(重合後の屈折率1.397)、2,
2'−アゾビス-(2,4-ジメチルバレロニトリル)0.04重量
部、1-ヒドロキシシクロヘキシルフェニルケトン0.2 重
量部とを混合、窒素置換した後、65℃で60分間加熱した
ものを、ポリエチレン製の円筒管に充填した。次に、3
本の蛍光灯(40cm、20W)から10cm離して円筒管を回転
させながら20分間光照射し、5分間冷水中で冷却した
後、円管中心側の低粘度物を流出させた(流出物の粘度
は 900ポイズであった)。これにより生じた円筒管中空
部に、2,2,2-トリフルオロエチルメタクリレート 100重
量部(重合後の屈折率1.413 )に、2,2'−アゾビス-(2,
4-ジメチルバレロニトリル)0.04重量部、1-ヒドロキシ
シクロヘキシルフェニルケトン0.2 重量部とを混合、窒
素置換した後、65℃で45分間加熱したものを充填し、25
分間28℃で静置した。続いて、3本の蛍光灯から10cm離
して円管を回転させながら70分間光照射し、直径1cm、
長さ70cmの円柱状硬化物を得た。この円柱状硬化物を、
200℃に設定された円筒型加熱筒内で間接加熱しながら
熱延伸することにより、外径0.8mm のファイバを作成
し、伝送損失および伝送帯域の測定を行った。その結
果、伝送損失95dB/km、伝送帯域350MHz・kmであった。
Example 1 100 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (refractive index after polymerization 1.397), 2,
2'-azobis- (2,4-dimethylvaleronitrile) 0.04 parts by weight and 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight were mixed, and after nitrogen substitution, the mixture was heated at 65 ° C for 60 minutes. The tube was filled. Then 3
After irradiating light for 20 minutes while rotating the cylindrical tube at a distance of 10 cm from this fluorescent lamp (40 cm, 20 W) and cooling in cold water for 5 minutes, the low-viscosity material on the center side of the circular tube was discharged (effluent The viscosity was 900 poise). In the hollow portion of the cylindrical tube generated by this, 100 parts by weight of 2,2,2-trifluoroethyl methacrylate (refractive index 1.413 after polymerization), 2,2'-azobis- (2,
4-Dimethylvaleronitrile) 0.04 parts by weight and 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight are mixed, the atmosphere is replaced with nitrogen, and then the mixture is heated at 65 ° C. for 45 minutes and filled with 25 parts by weight.
It was allowed to stand for 28 minutes at 28 ° C. Then, light is irradiated for 70 minutes while rotating the circular tube 10 cm away from the three fluorescent lamps, and the diameter is 1 cm,
A columnar cured product having a length of 70 cm was obtained. This cylindrical cured product,
A fiber with an outer diameter of 0.8 mm was created by performing thermal drawing while indirectly heating in a cylindrical heating cylinder set at 200 ° C, and the transmission loss and transmission band were measured. As a result, the transmission loss was 95 dB / km and the transmission band was 350 MHz · km.

【0022】[0022]

【実施例2】メチルメタクリレート 100重量部(重合後
の屈折率1.489)、2,2'−アゾビス-(2,4-ジメチルバレロ
ニトリル)0.04重量部、1-ヒドロキシシクロヘキシルフ
ェニルケトン0.2 重量部とを混合、窒素置換した後、65
℃で45分間加熱したものを、ポリエチレン製の円筒管に
充填した。次に、3本の蛍光灯(40cm、20W)から10cm
離して円管を回転させながら20分間光照射し、5分間冷
水中で冷却した後、円管中心側の低粘度物を流出させた
(流出物の粘度は 800ポイズであった)。これにより生
じた円筒管中空部に、ベンジルメタクリレート 100重量
部(重合後の屈折率1.568)に、2,2'−アゾビス-(2,4-ジ
メチルバレロニトリル)0.04重量部、1-ヒドロキシシク
ロヘキシルフェニルケトン0.2 重量部とを混合、窒素置
換した後、65℃で60分間加熱したものを充填し、15分間
30℃で静置した。続いて、3本の蛍光灯から10cm離して
円筒管を回転させながら60分間光照射し、直径1cm、長
さ70cmの円柱状硬化物を得た。この円柱状硬化物を、 2
50℃に設定された円筒型加熱筒内で間接加熱しながら熱
延伸することにより、外径1.0mm のファイバを作成し、
伝送損失および伝送帯域の測定を行った。その結果、伝
送損失 200dB/km、伝送帯域320MHz・kmであった。
Example 2 100 parts by weight of methyl methacrylate (refractive index after polymerization 1.489), 0.02 part by weight of 2,2'-azobis- (2,4-dimethylvaleronitrile) and 0.2 part by weight of 1-hydroxycyclohexylphenylketone were used. After mixing and purging with nitrogen, 65
The one heated at 45 ° C. for 45 minutes was filled in a polyethylene cylindrical tube. Next, 10cm from 3 fluorescent lamps (40cm, 20W)
After irradiating with light for 20 minutes while rotating the circular tube separately and cooling in cold water for 5 minutes, the low-viscosity material on the central side of the circular tube was discharged (the viscosity of the effluent was 800 poise). In the hollow part of the resulting cylindrical tube, 100 parts by weight of benzyl methacrylate (refractive index 1.568 after polymerization), 0.04 parts by weight of 2,2'-azobis- (2,4-dimethylvaleronitrile), 1-hydroxycyclohexylphenyl After mixing with 0.2 part by weight of ketone and purging with nitrogen, heat the mixture for 60 minutes at 65 ° C and fill it for 15 minutes.
It was left still at 30 ° C. Then, light was irradiated for 60 minutes while rotating the cylindrical tube at a distance of 10 cm from the three fluorescent lamps to obtain a cylindrical cured product having a diameter of 1 cm and a length of 70 cm. This cylindrical cured product is
A fiber with an outer diameter of 1.0 mm was created by heat drawing while indirectly heating in a cylindrical heating cylinder set at 50 ° C.
Transmission loss and transmission band were measured. As a result, the transmission loss was 200 dB / km and the transmission band was 320 MHz · km.

【0023】[0023]

【実施例3】2,2,3,3,4,4,5,5-オクタフルオロペンチル
メタクリレート60重量部、メチルメタクリレート40重量
部(共重合後の屈折率1.436)、2,2'−アゾビス-(2,4-ジ
メチルバレロニトリル)0.04重量部、1-ヒドロキシシク
ロヘキシルフェニルケトン0.2 重量部とを混合、窒素置
換した後、60℃で70分間加熱したものを、ポリエチレン
製の円筒管に充填した。次に、3本の蛍光灯(40cm、20
W)から10cm離して円管を回転させながら30分間光照射
し、5分間冷水中で冷却した後、円管中心側の低粘度物
を流出させた(流出物の粘度は1050ポイズであった)。
これにより生じた円筒管中空部に、ベンジルメタクリレ
ート50重量部、メチルメタクリレート50重量部、2,2'−
アゾビス-(2,4-ジメチルバレロニトリル)0.04重量部、
1-ヒドロキシシクロヘキシルフェニルケトン0.2 重量部
とを混合、窒素置換した後、60℃で90分間加熱したもの
に、2,2,2-トリフルオロエチルメタクリレート30重量部
を加え、混合したもの(共重合後の屈折率1.502)を充填
し、20分間30℃で静置した。続いて、3本の蛍光灯から
10cm離して円筒管を回転させながら60分間光照射し、直
径1cm、長さ60cmの円柱状硬化物を得た。この円柱状硬
化物を、 200℃に設定された円筒型加熱筒内で間接加熱
しながら熱延伸することにより、外径0.7mmのファイバ
を作成し、伝送損失および伝送帯域の測定を行った。そ
の結果、伝送損失 190dB/km、伝送帯域330MHz・kmであ
った。
EXAMPLE 3 60 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 40 parts by weight of methyl methacrylate (refractive index 1.436 after copolymerization), 2,2'-azobis -(2,4-Dimethylvaleronitrile) 0.04 parts by weight and 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight were mixed, and after nitrogen substitution, what was heated at 60 ° C for 70 minutes was filled in a polyethylene cylindrical tube. . Next, 3 fluorescent lights (40 cm, 20
Light was irradiated for 30 minutes while rotating the circular tube at a distance of 10 cm from W), cooled in cold water for 5 minutes, and then the low-viscosity material on the central side of the circular tube was discharged (the viscosity of the effluent was 1050 poise). ).
In the hollow part of the cylindrical tube generated by this, 50 parts by weight of benzyl methacrylate, 50 parts by weight of methyl methacrylate, 2,2'-
Azobis- (2,4-dimethylvaleronitrile) 0.04 parts by weight,
After mixing with 0.2 part by weight of 1-hydroxycyclohexyl phenyl ketone, purging with nitrogen, and heating at 60 ° C for 90 minutes, 30 parts by weight of 2,2,2-trifluoroethyl methacrylate was added and mixed (copolymerization The subsequent refractive index of 1.502) was filled and the mixture was allowed to stand at 30 ° C. for 20 minutes. Then from three fluorescent lamps
Light was irradiated for 60 minutes while rotating the cylindrical tube at a distance of 10 cm to obtain a cylindrical cured product having a diameter of 1 cm and a length of 60 cm. This cylindrical cured product was subjected to thermal drawing while being indirectly heated in a cylindrical heating cylinder set at 200 ° C. to prepare a fiber having an outer diameter of 0.7 mm, and the transmission loss and the transmission band were measured. As a result, the transmission loss was 190 dB / km and the transmission band was 330 MHz · km.

【0024】[0024]

【実施例4】メチルメタクリレート 100重量部(重合後
の屈折率1.489)、2,2'−アゾビス-(2,4-ジメチルバレロ
ニトリル)0.04重量部、1-ヒドロキシシクロヘキシルフ
ェニルケトン0.2 重量部とを混合、窒素置換した後、60
℃で20分間加熱したものを、ポリエチレン製の円筒管に
充填した。次に、3本の蛍光灯(40cm、20W)から10cm
離して円管を回転させながら25分間光照射し、5分間冷
水中で冷却した後、円管中心側の低粘度物を流出させた
(流出物の粘度は 700ポイズであった)。これにより生
じた円筒管中空部に、ベンジルメタクリレート30重量
部、メチルメタクリレート70重量部(共重合後の屈折率
1.513)に、2,2'−アゾビス-(2,4-ジメチルバレロニトリ
ル)0.04重量部、1-ヒドロキシシクロヘキシルフェニル
ケトン0.2重量部とを混合、窒素置換した後、60℃で25
分間加熱したものを充填し、10分間28℃で静置した。続
いて、3本の蛍光灯から10cm離して円筒管を回転させな
がら20分間光照射し、5分間冷水中で冷却した後、円筒
管中心側の低粘度物を同様に流出させた(流出物の粘度
は 900ポイズであった)。これにより生じた円筒管中空
部に、ベンジルメタクリレート70重量部、メチルメタク
リレート30重量部(共重合後の屈折率1.5443)、2,2'−
アゾビス-(2,4-ジメチルバレロニトリル)0.04重量部、
1-ヒドロキシシクロヘキシルフェニルケトン0.2 重量部
とを混合、窒素置換した後、60℃で30分間加熱したもの
を充填し、20分間28℃で静置した。続いて、3本の蛍光
灯から10cm離して円筒管を回転させながら65分間光照射
し、直径1cm、長さ70cmの円柱状硬化物を得た。この円
柱状硬化物を、 250℃に設定された円筒型加熱筒内で間
接加熱しながら熱延伸することにより、外径0.75mmのフ
ァイバを作成し、伝送損失および伝送帯域の測定を行っ
た。その結果、伝送損失 185dB/km、伝送帯域380MHz・
kmであった。
Example 4 100 parts by weight of methyl methacrylate (refractive index after polymerization 1.489), 0.04 parts by weight of 2,2′-azobis- (2,4-dimethylvaleronitrile), and 0.2 parts by weight of 1-hydroxycyclohexylphenylketone were used. After mixing and purging with nitrogen, 60
What was heated at 0 ° C. for 20 minutes was filled in a polyethylene cylindrical tube. Next, 10cm from 3 fluorescent lamps (40cm, 20W)
After irradiating with light for 25 minutes while rotating the circular tube separately and cooling in cold water for 5 minutes, the low viscosity substance on the center side of the circular pipe was allowed to flow out (viscosity of the effluent was 700 poise). In the hollow part of the resulting cylindrical tube, 30 parts by weight of benzyl methacrylate and 70 parts by weight of methyl methacrylate (refractive index after copolymerization
1.513) was mixed with 0.04 parts by weight of 2,2'-azobis- (2,4-dimethylvaleronitrile) and 0.2 parts by weight of 1-hydroxycyclohexyl phenyl ketone, and after substituting with nitrogen, 25 at 60 ° C.
After heating for one minute, it was filled and left standing at 28 ° C. for 10 minutes. Subsequently, while the cylindrical tube was rotated 10 cm away from the three fluorescent lamps, the cylindrical tube was irradiated with light for 20 minutes, cooled in cold water for 5 minutes, and then the low-viscosity material on the center side of the cylindrical tube was similarly discharged (effluent. Had a viscosity of 900 poise). In the hollow part of the cylindrical tube generated by this, 70 parts by weight of benzyl methacrylate, 30 parts by weight of methyl methacrylate (refractive index 1.5443 after copolymerization), 2,2'-
Azobis- (2,4-dimethylvaleronitrile) 0.04 parts by weight,
After mixing with 0.2 part by weight of 1-hydroxycyclohexyl phenyl ketone and purging with nitrogen, what was heated at 60 ° C. for 30 minutes was filled and left standing at 28 ° C. for 20 minutes. Subsequently, light was irradiated for 65 minutes while rotating the cylindrical tube at a distance of 10 cm from the three fluorescent lamps to obtain a cylindrical cured product having a diameter of 1 cm and a length of 70 cm. The cylindrical cured product was thermally stretched while being indirectly heated in a cylindrical heating cylinder set at 250 ° C. to prepare a fiber having an outer diameter of 0.75 mm, and the transmission loss and the transmission band were measured. As a result, transmission loss is 185 dB / km, transmission band is 380 MHz.
It was km.

フロントページの続き (72)発明者 魚津 吉弘 広島県大竹市御幸町20番1号三菱レイヨン 株式会社中央研究所内Front Page Continuation (72) Inventor Yoshihiro Uozu 20-1 Miyukicho, Otake, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘度が10,000ポイズ以上で、重合硬化後
の重合体の屈折率がn1となる重合体を形成しうる重合体
と単量体混合物よりなる円柱管状プリフォーム内に、重
合硬化後の屈折率がn2(ただしn2>n1)なる単量体を充
填し、両相間に含まれる単量体を相互拡散せしめ、屈折
率分布をつけた状態で重合硬化することを特徴とする屈
折率分布型光ファイバの製法。
1. A polymerization-cured polymer in a cylindrical tubular preform made of a mixture of a polymer and a monomer, which has a viscosity of 10,000 poise or more and has a refractive index of n 1 after the polymerization and curing. It is characterized by being filled with a monomer having a refractive index of n 2 (where n 2 > n 1 ) afterward, allowing the monomers contained in both phases to mutually diffuse, and polymerizing and curing with a refractive index distribution. And a method of producing a graded index optical fiber.
【請求項2】 粘度が10,000ポイズ以上で、重合硬化後
の重合体の屈折率がn1となる重合体と単量体との混合物
よりなる円柱管状プリフォーム内に、重合硬化後の屈折
率がn2(ただしn2>n1)なる単量体と重合体との混合物
を充填し、両相間に含まれる単量体を相互拡散せしめ
て、円柱状物に屈折率分布をつけた状態で重合硬化した
円柱状物を延伸することを特徴とする屈折率分布型光フ
ァイバの製法。
2. A cylindrical tubular preform made of a mixture of a polymer and a monomer, the viscosity of which is 10,000 poise or more, and the refractive index of the polymer after polymerization and curing is n 1. N 2 (where n 2 > n 1 ) is filled with a mixture of a monomer and a polymer, and the monomers contained in both phases are interdiffused to give a cylindrical body a refractive index distribution. A method for producing a graded-index optical fiber, which comprises stretching a columnar material that has been polymerized and cured in step 1.
JP5115223A 1993-04-20 1993-04-20 Production of distributed refractive index type optical fiber Pending JPH06308336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5115223A JPH06308336A (en) 1993-04-20 1993-04-20 Production of distributed refractive index type optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5115223A JPH06308336A (en) 1993-04-20 1993-04-20 Production of distributed refractive index type optical fiber

Publications (1)

Publication Number Publication Date
JPH06308336A true JPH06308336A (en) 1994-11-04

Family

ID=14657412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5115223A Pending JPH06308336A (en) 1993-04-20 1993-04-20 Production of distributed refractive index type optical fiber

Country Status (1)

Country Link
JP (1) JPH06308336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120002A (en) * 1994-10-13 1996-05-14 Natl Sci Council Production of light-focusing optical plastic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120002A (en) * 1994-10-13 1996-05-14 Natl Sci Council Production of light-focusing optical plastic element
JP2670240B2 (en) * 1994-10-13 1997-10-29 ナショナル・サイエンス・カウンシル Method for manufacturing light-focusing optical plastic element

Similar Documents

Publication Publication Date Title
JP3332922B2 (en) Refractive index distribution type optical resin material, method for producing the same, and optical transmission body
JP3471015B2 (en) Method for manufacturing plastic optical transmission body
CN1049050C (en) Refractive index distribution type optical resin and production method thereof
KR950001049B1 (en) Optical transmission medium and process for producing the same
JP2003531394A (en) Method and apparatus for manufacturing plastic optical transmission media
WO1994015005A1 (en) Shaped articles of graduated refractive index
JPH06308336A (en) Production of distributed refractive index type optical fiber
JPH10123336A (en) Production of optical material having gradient refractive index
JPH06297596A (en) Refractive index distribution type plastic optical fiber
JPS5986003A (en) Manufacture of synthetic resin body for transmitting image
KR100460720B1 (en) Plastic optical fiber preform and method for preparing the same
JPH1096825A (en) Production of preform for plastic optical fiber
KR100430389B1 (en) Cavity-Preventing Type Reactor and Method for Fabricating Preform for Plastic Optical Fiber Using the Same
JP4011000B2 (en) Manufacturing method of base material for plastic optical fiber
JPH10186157A (en) Plastic optical fiber and its production
JPH04251805A (en) Refractive index distribution type plastic optical transmission body
JP3217975B2 (en) Method for producing rod-shaped member made of polymer compound and polymerization apparatus used in the method
KR100586362B1 (en) Apparatus and Method for Preparing Plastic Optical Fiber using successive UV polymerization
JP2841068B2 (en) Manufacturing method of plastic fiber
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
JPH02136804A (en) Production of light transmission body made of plastic
JPH08106014A (en) Production of plastic optical fiber
EP1393885A1 (en) Method for fabricating preform for plastic optical fiber
KR100307918B1 (en) Method for fabricating plastic optical transmission body
JPH063508A (en) Light transmission body made of hemispherical plastic and its production