JPH06308177A - Apparatus and method for measuring dielectric constant - Google Patents

Apparatus and method for measuring dielectric constant

Info

Publication number
JPH06308177A
JPH06308177A JP10311693A JP10311693A JPH06308177A JP H06308177 A JPH06308177 A JP H06308177A JP 10311693 A JP10311693 A JP 10311693A JP 10311693 A JP10311693 A JP 10311693A JP H06308177 A JPH06308177 A JP H06308177A
Authority
JP
Japan
Prior art keywords
dielectric
resonator
cavity
dielectric constant
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311693A
Other languages
Japanese (ja)
Other versions
JP3210769B2 (en
Inventor
Akira Nakayama
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10311693A priority Critical patent/JP3210769B2/en
Publication of JPH06308177A publication Critical patent/JPH06308177A/en
Application granted granted Critical
Publication of JP3210769B2 publication Critical patent/JP3210769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To make it possible to measure the dielectric constant simply in high accuracy even for not only high-loss material but also ordinary-loss material by filling the cavity of a two-split cavity resonator with a dielectric substance whose dielectric constant and dielectric dissipation factor are known, holding the planar dielectric sample with agreed divided faces, and constituting the resonator. CONSTITUTION:A dielectric substance 4 is filled in a cavity 3 of a cavity resonator 2. The faces of the two-split left-right symmetric cavity resonator 2 are made to agree. A planar dielectric sample 6 is held between the faces, and a resonator 1 is constituted. Then, the resonance frequency f0 at the TE011 mode of the resonator 1 and the no-load Q are measured. The dielectric constant epsilon' and the dielectric dissipation factor tandelta are obtained by the expressions. In the expression, L is the thickness of the dielectric sample, R and M are the radius and the height of the filled dielectric substance, epsilon'1 and epsilon'2 are the dielectric constants of the dielectric sample 6 and the filled dielectric substance 4, beta1 and beta2 are the phase constants of the regions 1 and 2, (c) is the luminous flux J'0 is the differential of the first-class Bessel function in 0 order and omega is the resonance angular frequency. Thus, the dielectric constant can be obtained simply in high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波の周波数領
域で電子回路基板や電子部品として使用する各種誘電体
セラミックスの誘電定数を測定する測定装置及びその測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device and a measuring method for measuring the dielectric constant of various dielectric ceramics used as electronic circuit boards and electronic parts in the frequency range of microwaves.

【0002】[0002]

【従来の技術】従来より、誘電体材料として各種誘電体
セラミックスが電子回路基板や電子部品等に広く使用さ
れており、近年、移動体通信の発展と普及により、1〜
3GHzの周波数領域で使用する電子回路基板や電子部
品として、例えば、電極材料として使用する銀(Ag)
や銅(Cu)と同時焼成可能なアルミナ(Al2 3
を主成分とする低温焼成基板等に代表される、比誘電率
が5〜20の領域の誘電体セラミックスが、積極的に利
用されるようになってきた。
2. Description of the Related Art Conventionally, various dielectric ceramics have been widely used as a dielectric material in electronic circuit boards, electronic parts and the like.
Silver (Ag) used as an electrode material, for example, as an electronic circuit board or electronic component used in the frequency range of 3 GHz
Alumina (Al 2 O 3 ) that can be co-fired with copper and copper (Cu)
Dielectric ceramics having a relative permittivity of 5 to 20, which is represented by a low-temperature fired substrate containing as a main component, has been actively used.

【0003】そこでは、適用に際して誘電体セラミック
スの誘電体特性として、比誘電率、誘電正接、その他、
共振周波数の温度特性等の誘電定数が評価項目としてあ
げられており、実際に使用する周波数領域における前記
誘電体セラミックスの誘電体特性として、例えば、比誘
電率では測定精度が1%以下、また誘電正接では測定精
度が1×10-5程度の精度が要求されている。
In this regard, when applied, the dielectric properties of the dielectric ceramics include dielectric constant, dielectric loss tangent, and others.
The dielectric constant such as the temperature characteristic of the resonance frequency is listed as an evaluation item. As the dielectric characteristic of the dielectric ceramic in the frequency range to be actually used, for example, the measurement accuracy is 1% or less in the relative permittivity, For the tangent, a measurement accuracy of about 1 × 10 −5 is required.

【0004】従来よりマイクロ波誘電定数測定法として
最も精度が高く、かつ標準的な測定方法として、例えば
誘電体円柱試料の端面を2枚の導体板で短絡して共振器
を構成する両端短絡形誘電体円柱共振器法や、二分割し
た円筒状の空洞共振器で平板状の誘電体試料を挟んで共
振器を構成する空洞共振器法等が知られている。
Conventionally, as a microwave dielectric constant measuring method, the most accurate and standard measuring method is, for example, a both-end short-circuiting method in which an end face of a dielectric cylindrical sample is short-circuited by two conductor plates to form a resonator. There are known a dielectric cylinder resonator method, a cavity resonator method in which a resonator is formed by sandwiching a flat plate-shaped dielectric sample between two divided cylindrical cavity resonators.

【0005】しかしながら、前記両端短絡形誘電体円柱
共振器法では、測定周波数が測定しようとする誘電体材
料の比誘電率と寸法により限定されるという問題があ
り、また前記空洞共振器法では、測定周波数が主として
共振器の寸法により限定されるため、周波数を変えて誘
電定数を測定する場合には大きさの異なる空洞共振器と
誘電体を多数製作し、各周波数ごとに測定する必要があ
るが、誘電特性の再現性を保つために製作可能な測定試
料の寸法に制限がある。
However, the both-end short-circuit type dielectric cylindrical resonator method has a problem that the measurement frequency is limited by the relative permittivity and size of the dielectric material to be measured, and the cavity resonator method is Since the measurement frequency is mainly limited by the size of the resonator, when measuring the dielectric constant by changing the frequency, it is necessary to fabricate many cavity resonators and dielectrics of different sizes and measure for each frequency. However, there is a limit to the size of the measurement sample that can be manufactured in order to maintain the reproducibility of dielectric properties.

【0006】よって前記方法で比誘電率が5〜20の誘
電体試料の誘電定数を測定した場合、測定可能な周波数
領域は5〜20GHzに制限され、要求されている1〜
3GHzの周波数領域での測定は困難であった。
Therefore, when the dielectric constant of a dielectric sample having a relative dielectric constant of 5 to 20 is measured by the above method, the measurable frequency range is limited to 5 to 20 GHz, and the required 1 to
It was difficult to measure in the frequency region of 3 GHz.

【0007】そこで、前記1〜3GHzの周波数領域で
誘電体特性の測定が可能な比較的簡便な方法として、従
来よりストリップライン共振器法や誘電体共振器摂動
法、反射波法等が提案されている(特開平3−5686
6号公報、特開平3−286601号公報参照)。
Therefore, as a relatively simple method capable of measuring the dielectric characteristics in the frequency range of 1 to 3 GHz, the stripline resonator method, the dielectric resonator perturbation method, the reflected wave method, etc. have been proposed. (JP-A-3-5686)
No. 6, JP-A-3-286601).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記ス
トリップライン共振器法は、ストリップ線路13を挟む
ように2枚の誘電体試料14、15を重ね合わせ、該誘
電体試料14、15の上下面にグランドの導体面16、
17を形成したトリプレート共振器の共振特性より誘電
定数を求める方法であり、前記2枚の誘電体試料14、
15を重ね合わせる際に、可撓性がない材料では2枚の
誘電体試料間に隙間を生じ易く、測定精度が悪くなる恐
れがあることから、誘電体セラミックスには適用困難で
あるという課題がある。
However, in the stripline resonator method, the two dielectric samples 14 and 15 are superposed so that the stripline 13 is sandwiched therebetween, and the dielectric samples 14 and 15 are provided on the upper and lower surfaces thereof, respectively. Ground conductor surface 16,
17 is a method of obtaining the dielectric constant from the resonance characteristics of the triplate resonator having the structure 17 described above.
In the case of stacking the 15 pieces, it is difficult to apply the method to the dielectric ceramics, because a gap between the two dielectric samples is likely to occur in a material having no flexibility and the measurement accuracy may be deteriorated. is there.

【0009】また、前記誘電体共振器摂動法は、上下に
対称に配設した2個のTE01δモードの共振器18の間
に誘電体試料19を挿入し、挿入前後の共振特性の変化
より電磁界の摂動公式を用いて誘電体試料の誘電定数を
求める方法であり、該摂動公式自体が近似解であること
から系統的な誤差を有し、誘電正接の測定可能な範囲が
10-4〜10-2に制約されるという課題がある。
In the dielectric resonator perturbation method, a dielectric sample 19 is inserted between two TE 01 δ mode resonators 18 which are vertically symmetrically arranged, and the resonance characteristics change before and after the insertion. This is a method for obtaining the dielectric constant of a dielectric sample by using a perturbation formula of an electromagnetic field. Since the perturbation formula itself is an approximate solution, there is a systematic error, and the measurable range of the dielectric loss tangent is 10 −. There is a problem of being restricted to 4 to 10 -2 .

【0010】更に、前記反射波法も、伝送線路20を誘
電体試料21で終端し、その反射係数を測定して誘電定
数を求める方法であるため、低損失の誘電体セラミック
スを測定した場合、反射係数の大きさが極めて1に近く
なり、測定精度が低下するという課題がある。
Further, since the reflected wave method is also a method in which the transmission line 20 is terminated by the dielectric sample 21 and the reflection coefficient is measured to obtain the dielectric constant, when measuring low-loss dielectric ceramics, There is a problem in that the magnitude of the reflection coefficient becomes extremely close to 1 and the measurement accuracy decreases.

【0011】以上詳述したように、前記各測定方法で
は、いずれも実際に使用する周波数領域における誘電定
数の測定は可能なものの、測定値の精度が前述の要求を
満足しないという課題がある。
As described above in detail, in each of the above-mentioned measuring methods, although the dielectric constant can be measured in the frequency range actually used, there is a problem that the accuracy of the measured value does not satisfy the above-mentioned requirement.

【0012】[0012]

【発明の目的】本発明は、前記課題に鑑みてなされたも
ので、マイクロ波の周波数領域、とりわけ1〜3GHz
の周波数領域で高損失材料は勿論、低損失材料に対して
も要求精度を満足する誘電定数が簡便に測定できる誘電
定数の測定装置及びその測定方法を提供することを目的
とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a microwave frequency range, especially 1 to 3 GHz.
It is an object of the present invention to provide a dielectric constant measuring device and a measuring method thereof, which can easily measure the dielectric constant satisfying the required accuracy not only for a high loss material but also for a low loss material in the frequency region of.

【0013】[0013]

【課題を解決するための手段】本発明の誘電定数の測定
装置は、二分割した空洞共振器の空洞に、比誘電率と誘
電正接が既知である円柱上の誘電体を充填し、面一致と
した分割面を持つ左右対称の2個の共振器部品で平板状
の誘電体試料を挟持して共振器を構成したことを特徴と
するものである。
A dielectric constant measuring device according to the present invention is such that a cavity of a cavity resonator divided into two is filled with a cylindrical dielectric having a known relative permittivity and dielectric loss tangent, and the plane matching is achieved. It is characterized in that a flat plate-shaped dielectric sample is sandwiched between two symmetrically symmetric resonator parts having the above-mentioned division surface to constitute a resonator.

【0014】一方、誘電定数の測定方法は、空洞共振器
の空洞に充填した前記誘電体の表面と二分割した左右対
称の空洞共振器とを面一致とし、その間に平板状の誘電
体試料を挟持して構成した共振器のTE011 モードの共
振周波数f0 と無負荷Qを測定し、比誘電率ε’と誘電
正接tanδを
On the other hand, the method for measuring the dielectric constant is such that the surface of the dielectric material filled in the cavity of the cavity resonator and the bilaterally symmetric cavity resonator are made to coincide with each other, and a flat dielectric sample is placed between them. The resonance frequency f 0 of the TE 011 mode and the no-load Q of the resonator constituted by sandwiching are measured, and the relative permittivity ε ′ and the dielectric loss tangent tan δ are measured.

【0015】[0015]

【数1】 [Equation 1]

【0016】及びAnd

【0017】[0017]

【数2】 [Equation 2]

【0018】の式より求めることを特徴とするものであ
る。
It is characterized by being obtained from the equation (1).

【0019】前記空洞共振器の空洞に充填する誘電体
は、誘電特性の再現性を保つために製作可能な測定試料
の寸法と実用的な共振器の寸法を勘案し、マイクロ波の
周波数領域、とりわけ1〜3GHzの周波数領域での誘
電定数を測定するためには、その比誘電率は10〜10
0の範囲が良く、具体的な誘電体材料としては、誘電正
接の小さい、例えばサファイア等の単結晶が好適であ
る。
The dielectric filled in the cavity of the cavity resonator has a microwave frequency range in consideration of the dimensions of a measurement sample that can be manufactured to maintain the reproducibility of dielectric characteristics and the dimensions of a practical resonator. In particular, in order to measure the dielectric constant in the frequency range of 1 to 3 GHz, the relative dielectric constant is 10 to 10
The range of 0 is good, and as a concrete dielectric material, a single crystal having a small dielectric loss tangent, such as sapphire, is suitable.

【0020】[0020]

【作用】本発明の誘電定数の測定装置は、比誘電率と誘
電正接が既知である誘電体を充填した円筒状の空洞共振
器を中央部で分割し、その間に平板状の誘電体測定試料
を挟んで共振器を構成したことから、該共振器のTE
011 モードの共振周波数、即ち誘電定数の測定周波数が
低くなるように作用する。
The dielectric constant measuring device of the present invention is designed such that a cylindrical cavity resonator filled with a dielectric material having a known relative permittivity and dielectric loss tangent is divided at a central portion, and a flat plate-shaped dielectric measurement sample is provided therebetween. Since the resonator is sandwiched between the
The resonance frequency of the 011 mode, that is, the measurement frequency of the dielectric constant is lowered.

【0021】このことは、空洞に充填した誘電体は、そ
の比誘電率が大きくなると共振周波数を小さくするよう
に作用し、具体的には共振周波数が、従来の空洞共振器
法の測定周波数の約1/√ε' 2 となるため、前記比誘
電率の大きさと共振器の寸法を調節することによりマイ
クロ波の周波数領域、とりわけ1〜3GHzの周波数領
域の誘電定数が測定できる。
This means that the dielectric material filled in the cavity acts so as to reduce the resonance frequency as the relative permittivity increases, and specifically, the resonance frequency is the measurement frequency of the conventional cavity resonator method. Since it is about 1 / √ε 2 , the dielectric constant in the microwave frequency region, particularly in the frequency region of 1 to 3 GHz can be measured by adjusting the magnitude of the relative permittivity and the dimensions of the resonator.

【0022】また、空洞共振器の空洞に充填する誘電体
材料としては、前述のサファイア等の単結晶を使用する
ことにより、充填した誘電体に生じる誘電体損失を低く
して、誘電正接が10-5〜10-4の低損失の誘電体セラ
ミックスの測定にも適用可能となる。
As the dielectric material with which the cavity of the cavity resonator is filled, the above-mentioned single crystal such as sapphire is used to reduce the dielectric loss that occurs in the filled dielectric material and to have a dielectric loss tangent of 10. It can also be applied to the measurement of low-loss dielectric ceramics of -5 to 10 -4 .

【0023】また、本発明の誘電定数の測定方法は、解
析用の空洞共振器を仮定して共振電磁界の厳密解を適用
できるので、計算に含まれる誤差も極めて小さくなり、
解析用の空洞共振器を仮定することにより生じる計算上
の誤差は、比誘電率において1%以下、また誘電正接で
は1×10-5以下となる。
Further, since the method for measuring the dielectric constant of the present invention can apply the exact solution of the resonance electromagnetic field assuming a cavity resonator for analysis, the error included in the calculation becomes extremely small,
A calculation error caused by assuming a cavity resonator for analysis is 1% or less in relative permittivity and 1 × 10 −5 or less in dielectric loss tangent.

【0024】[0024]

【実施例】以下、本発明の誘電定数の測定装置及びその
測定方法を詳細に説明する。図1は、本発明に係る誘電
定数の測定装置の要部である共振器を示す断面図であ
り、図2は解析用に仮定した本発明に係る誘電定数の測
定装置の要部である共振器を示す断面図である。
The following is a detailed description of the dielectric constant measuring apparatus and the measuring method thereof according to the present invention. FIG. 1 is a cross-sectional view showing a resonator which is a main part of a dielectric constant measuring device according to the present invention, and FIG. 2 is a resonance which is a main part of a dielectric constant measuring device according to the present invention assumed for analysis. It is sectional drawing which shows a container.

【0025】図において、1は二分割した左右対称の空
洞共振器2の空洞3に比誘電率と誘電正接が既知の誘電
体4を充填し、面一致とした分割面5で平板状の誘電体
試料6を挟持して構成した誘電定数の測定装置の要部を
成す誘電定数測定用共振器である。
In the figure, reference numeral 1 is a bilaterally symmetric cavity 2, and a cavity 3 is filled with a dielectric 4 having a known relative permittivity and dielectric loss tangent, and a plane-shaped dielectric is formed by a plane-divided plane 5. This is a dielectric constant measuring resonator forming an essential part of a dielectric constant measuring device configured by sandwiching a body sample 6.

【0026】前記共振器1においては、誘電体試料6の
周縁部7が共振器1の外に出ているため、僅かながら電
磁界が外に洩れており、電磁界の厳密解を得ることはで
きない。そこで、誘電体試料6を共振器1の中に完全に
埋設した解析用の共振器を仮定し、以下に示す諸式によ
り共振周波数f0 から比誘電率ε' 1 を計算する。
In the resonator 1, since the peripheral edge portion 7 of the dielectric sample 6 is outside the resonator 1, the electromagnetic field slightly leaks to the outside, and an exact solution of the electromagnetic field cannot be obtained. Can not. Therefore, assuming a resonator for analysis in which the dielectric sample 6 is completely embedded in the resonator 1 , the relative permittivity ε'1 is calculated from the resonance frequency f 0 according to the following equations .

【0027】尚、図2において、10は誘電体試料の厚
さLであり、11は空洞に充填した誘電体4の直径2R
であり、12は誘電体4の高さMである。
In FIG. 2, 10 is the thickness L of the dielectric sample, and 11 is the diameter 2R of the dielectric 4 filled in the cavity.
And 12 is the height M of the dielectric 4.

【0028】比誘電率ε' 1 は、図に示す8の領域1及
び9の領域2の電磁界の接線成分の連続性により得られ
る下記式から算出できる。
The dielectric constant epsilon '1 can be calculated from the following formula obtained by the continuity of the tangential component of the electromagnetic field in the region 2 in the regions 1 and 9 of 8 shown in FIG.

【0029】[0029]

【数1】 [Equation 1]

【0030】次に、平板状の誘電体試料の誘電正接ta
nδ1 は、図1に示す共振器のTE011 モードの無負荷
Q、Qu の測定値より求める。但し、前記誘電正接の計
算は比誘電率と同様に解析用に仮定した図2に示す本発
明に係る誘電定数の測定装置の共振器を用いて行う。
Next, the dielectric loss tangent ta of the flat plate-shaped dielectric sample
1 is obtained from the measured values of the unloaded Q and Q u in the TE 011 mode of the resonator shown in FIG. However, the calculation of the dielectric loss tangent is performed by using the resonator of the dielectric constant measuring apparatus according to the present invention shown in FIG.

【0031】図2における前記無負荷Q、Qu は、下記
式で与えられる。
The unloaded Q and Q u in FIG. 2 are given by the following equations.

【0032】[0032]

【数3】 [Equation 3]

【0033】但し、W1 e 、W2 e は、それぞれ領域
1、2の電界の蓄積エネルギーであり、Pcy1 、Pcy2
はそれぞれ領域1、2の側壁における導体損であり、P
end は端板における導体損である。
However, W 1 e and W 2 e are stored energies of the electric fields of the regions 1 and 2, respectively, and P cy1 and P cy2
Is the conductor loss on the sidewalls of regions 1 and 2, respectively, and P
end is the conductor loss in the end plate.

【0034】また、Pd1、Pd2はそれぞれ領域1、2に
おける誘電体損であり、領域1、2の誘電正接をtan
δ1 、tanδ2 とすると、 Pd1=ωW1 e tanδ1d2=ωW2 e tanδ2 で示される。
Further, P d1 and P d2 are dielectric losses in the regions 1 and 2, respectively, and the dielectric loss tangents of the regions 1 and 2 are tan.
If δ 1 and tan δ 2 , then P d1 = ωW 1 e tanδ 1 P d2 = ωW 2 e tan δ 2 .

【0035】前記数3と誘電体損の関係より、誘電体試
料の誘電正接tanδ1 は下記式
From the relationship between the above equation 3 and the dielectric loss, the dielectric loss tangent tan δ 1 of the dielectric sample is expressed by the following equation.

【0036】[0036]

【数2】 [Equation 2]

【0037】で示される。It is shown by.

【0038】ここで、TE011 モードのW1 e
2 e 、Pcy1 、Pcy2 及びPend はそれぞれ下記式で
示される。
Here, W 1 e in the TE 011 mode,
W 2 e , P cy1 , P cy2, and P end are each represented by the following formula.

【0039】[0039]

【数4】 [Equation 4]

【0040】[0040]

【数5】 [Equation 5]

【0041】[0041]

【数6】 [Equation 6]

【0042】[0042]

【数7】 [Equation 7]

【0043】[0043]

【数8】 [Equation 8]

【0044】但し、Rs は共振器内壁の表面抵抗であ
り、その実効導電率より計算され、AおよびBは領域
1、2における電磁界の振幅係数であり、 B/A=−cosX/sinY の関係にある。
However, R s is the surface resistance of the inner wall of the resonator, calculated from its effective conductivity, A and B are the amplitude coefficients of the electromagnetic field in the regions 1 and 2, and B / A = -cosX / sinY Have a relationship.

【0045】次に、本発明の誘電定数の測定装置及びそ
の測定方法を具体的な実施例に基づいて説明する。測定
周波数が3GHzにおける誘電定数測定用の共振器とし
て、空洞を有する内径40mm、高さ40mmの無酸素
銅から成る円筒状の空洞共振器を二分割し、二分割した
それぞれの空洞に誘電正接が小さい、即ち低損失材料で
あるC軸に垂直な端面を持つ単結晶サファイアの円柱を
嵌合し、分割面を面一致にして共振器構成部材とした。
Next, the dielectric constant measuring apparatus and the measuring method of the present invention will be explained based on concrete examples. As a resonator for measuring the dielectric constant at a measurement frequency of 3 GHz, a cylindrical cavity resonator made of oxygen-free copper having a cavity having an inner diameter of 40 mm and a height of 40 mm is divided into two, and each of the two divided cavities has a dielectric loss tangent. A single crystal sapphire cylinder, which is a small, low-loss material, having an end face perpendicular to the C-axis was fitted, and the divided faces were made to coincide with each other to form a resonator constituent member.

【0046】尚、前記サファイアのC軸に垂直な方向の
比誘電率は9.4であり、前記寸法の円筒状空洞共振器
に充填すると、TE011 モードの共振周波数は3.2G
Hzとなる。表1に測定周波数が3GHzの共振器の定
数を示す。
The relative permittivity of the sapphire in the direction perpendicular to the C axis is 9.4, and when the cylindrical cavity resonator of the above size is filled, the TE 011 mode resonance frequency is 3.2 G.
It becomes Hz. Table 1 shows the constants of the resonator whose measurement frequency is 3 GHz.

【0047】[0047]

【表1】 [Table 1]

【0048】次いで、前記共振器構成部材で純度96%
と90%のアルミナ質焼結体から成る厚さ1.0mm、
直径50.0mmの誘電体試料をそれぞれ挟持して緊締
し、誘電定数測定用の共振器を構成するとともに、該共
振器の入力側及び出力側に同軸ケーブルを配設し、その
先端にループを形成して誘電定数の測定装置を作製し
た。かくして得られた誘電定数の測定装置を用いて測定
した結果を、従来の空洞共振器法により測定した結果と
ともに表2に示す。
Next, the resonator constituent member has a purity of 96%.
And a thickness of 1.0 mm consisting of 90% alumina sintered body,
A dielectric sample having a diameter of 50.0 mm is sandwiched and tightened to form a resonator for measuring the dielectric constant, and coaxial cables are arranged on the input side and the output side of the resonator, and a loop is provided at the tip thereof. After that, a device for measuring the dielectric constant was produced. Table 2 shows the result of measurement using the thus-obtained dielectric constant measuring device together with the result of measurement by the conventional cavity resonator method.

【0049】[0049]

【表2】 [Table 2]

【0050】表2の結果より、本発明の誘電定数の測定
方法では、測定精度が比誘電率においては±0.1(1
%)以下であり、誘電正接においても±0.1×10-4
以下であった。
From the results shown in Table 2, in the method for measuring the dielectric constant of the present invention, the measurement accuracy is ± 0.1 (1
%) Or less, and the dielectric loss tangent is ± 0.1 × 10 −4
It was below.

【0051】尚、本発明は前記実施例に何ら限定される
ものではない。
The present invention is not limited to the above embodiment.

【0052】[0052]

【発明の効果】本発明の誘電定数の測定装置及びその測
定方法は、空洞共振器の空洞に比誘電率と誘電正接が既
知である誘電体を充填し、該誘電体を充填した空洞共振
器を中央部で2つに分割してその間に平板状の誘電体測
定試料を挟んで共振器を構成し、該共振器のTE011
ードの共振周波数f0 と無負荷Qを測定して前記誘電体
試料の誘電定数を求めることから、1〜3GHzの周波
数領域で、任意の形状の誘電体を高損失材料は勿論、低
損失材料に対しても高精度、かつ簡便に真値からの偏差
も極めて小さい誘電定数を測定することが可能となる。
Industrial Applicability The dielectric constant measuring apparatus and the measuring method therefor according to the present invention include a cavity resonator in which the cavity of the cavity resonator is filled with a dielectric having a known relative permittivity and dielectric loss tangent, and the cavity is filled with the dielectric. Is divided into two at the central part, and a flat plate-shaped dielectric measurement sample is sandwiched between them to form a resonator, and the resonance frequency f 0 of the TE 011 mode and the unloaded Q of the resonator are measured to measure the dielectric constant. Since the dielectric constant of the body sample is obtained, the dielectric of any shape can be accurately and easily deviated from the true value not only for high-loss materials but also for low-loss materials in the frequency range of 1 to 3 GHz. It is possible to measure extremely small dielectric constants.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る誘電定数の測定装置の要部である
共振器を示す断面図である。
FIG. 1 is a cross-sectional view showing a resonator which is a main part of a device for measuring a dielectric constant according to the present invention.

【図2】解析用に仮定した本発明に係る誘電定数の測定
装置の要部である共振器を示す断面図である。
FIG. 2 is a cross-sectional view showing a resonator which is a main part of a dielectric constant measuring apparatus according to the present invention which is assumed for analysis.

【図3】ストリップライン共振器の要部を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a main part of a stripline resonator.

【図4】誘電体共振器摂動法の測定装置の要部を示す断
面図である。
FIG. 4 is a cross-sectional view showing a main part of a measuring device of a dielectric resonator perturbation method.

【図5】反射波法の概要を説明するための回路を示す図
である。
FIG. 5 is a diagram showing a circuit for explaining an outline of a reflected wave method.

【符号の説明】[Explanation of symbols]

1 誘電定数測定用共振器 2 空洞共振器 3 空洞 4 誘電体 5 分割面 6 誘電体試料 1 Resonator for dielectric constant measurement 2 Cavity resonator 3 Cavity 4 Dielectric 5 Dividing surface 6 Dielectric sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二分割した空洞共振器の空洞に、比誘電率
と誘電正接が既知である誘電体を充填し、面一致とした
分割面で平板状の誘電体試料を挟持して共振器を構成し
たことを特徴とする誘電定数の測定装置。
1. A resonator in which a cavity of a cavity resonator divided into two is filled with a dielectric material whose relative permittivity and dielectric loss tangent are known, and a flat plate-shaped dielectric sample is sandwiched between plane-matched division surfaces. An apparatus for measuring a dielectric constant, comprising:
【請求項2】二分割した空洞共振器の空洞に、比誘電率
と誘電正接が既知である誘電体を充填し、面一致とした
分割面で平板状の誘電体試料を挟持して共振器を構成
し、該共振器の共振周波数f0 と無負荷Qを測定し、比
誘電率ε' と誘電正接tanδをそれぞれ下記式 【数1】 及び 【数2】 より求めることを特徴とする誘電定数の測定方法。
2. A cavity of a cavity resonator divided into two is filled with a dielectric material having a known relative permittivity and dielectric loss tangent, and a planar dielectric sample is sandwiched between plane-matched division surfaces to form a resonator. And the resonance frequency f 0 and the unloaded Q of the resonator are measured, and the relative permittivity ε ' and the dielectric loss tangent tan δ are respectively expressed by the following equations: And A method for measuring a dielectric constant, which is characterized by further obtaining.
JP10311693A 1993-04-28 1993-04-28 Apparatus and method for measuring dielectric constant Expired - Fee Related JP3210769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311693A JP3210769B2 (en) 1993-04-28 1993-04-28 Apparatus and method for measuring dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311693A JP3210769B2 (en) 1993-04-28 1993-04-28 Apparatus and method for measuring dielectric constant

Publications (2)

Publication Number Publication Date
JPH06308177A true JPH06308177A (en) 1994-11-04
JP3210769B2 JP3210769B2 (en) 2001-09-17

Family

ID=14345627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311693A Expired - Fee Related JP3210769B2 (en) 1993-04-28 1993-04-28 Apparatus and method for measuring dielectric constant

Country Status (1)

Country Link
JP (1) JP3210769B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258451A (en) * 2005-03-15 2006-09-28 Micro Denshi Kk Measuring method of dielectric constant by utilizing microwave and measuring instrument therefor
JP2010535325A (en) * 2007-08-02 2010-11-18 ジー.デー ソチエタ ペル アツィオニ Device for detecting the properties of fibrous materials
JP2011232152A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
CN112051454A (en) * 2020-09-08 2020-12-08 中电科仪器仪表有限公司 Terahertz wave-based method and system for detecting dielectric property of material in high-temperature environment
CN113970670A (en) * 2021-09-29 2022-01-25 西安电子科技大学 Foil strip air-mixed dielectric constant measuring method
CN117347730A (en) * 2023-12-05 2024-01-05 电子科技大学 Inversion method of relative complex dielectric constant under material ablation volatilization

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258451A (en) * 2005-03-15 2006-09-28 Micro Denshi Kk Measuring method of dielectric constant by utilizing microwave and measuring instrument therefor
JP4710082B2 (en) * 2005-03-15 2011-06-29 ミクロ電子株式会社 Method and apparatus for measuring dielectric constant using microwaves
JP2010535325A (en) * 2007-08-02 2010-11-18 ジー.デー ソチエタ ペル アツィオニ Device for detecting the properties of fibrous materials
JP2011232152A (en) * 2010-04-27 2011-11-17 Kyocera Corp Thickness measuring method
CN112051454A (en) * 2020-09-08 2020-12-08 中电科仪器仪表有限公司 Terahertz wave-based method and system for detecting dielectric property of material in high-temperature environment
CN112051454B (en) * 2020-09-08 2023-11-07 中电科思仪科技股份有限公司 Method and system for detecting dielectric characteristics of material under high-temperature environment based on terahertz waves
CN113970670A (en) * 2021-09-29 2022-01-25 西安电子科技大学 Foil strip air-mixed dielectric constant measuring method
CN113970670B (en) * 2021-09-29 2022-08-09 西安电子科技大学 Foil strip air-mixed dielectric constant measuring method, system, equipment, medium and terminal
CN117347730A (en) * 2023-12-05 2024-01-05 电子科技大学 Inversion method of relative complex dielectric constant under material ablation volatilization
CN117347730B (en) * 2023-12-05 2024-02-20 电子科技大学 Inversion method of relative complex dielectric constant under material ablation volatilization

Also Published As

Publication number Publication date
JP3210769B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
Janezic et al. Dielectric and conductor-loss characterization and measurements on electronic packaging materials
Krupka et al. Measurements of the complex permittivity of microwave circuit board substrates using split dielectric resonator and reentrant cavity techniques
EP0923151A1 (en) Dielecrically loaded cavity resonator
Culshaw et al. Measurement of permittivity and dielectric loss with a millimetre-wave fabry-perot interferometer
Works Resonant cavities for dielectric measurements
JP3210769B2 (en) Apparatus and method for measuring dielectric constant
JP3634966B2 (en) Method for measuring conductivity at metal layer interface
JP2006208070A (en) Method of measuring electrical conductivity
JP4518680B2 (en) Dielectric constant measurement method
JP4726395B2 (en) Electrical property value measurement method
JP4035024B2 (en) Dielectric constant measurement method
JP2003344466A (en) Dielectric constant measuring method
JP3735501B2 (en) Method for measuring conductivity of metal layer
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
JP3532069B2 (en) How to measure surface resistance
JP4157387B2 (en) Electrical property measurement method
JP4065766B2 (en) Dielectric constant measurement method
JP4373902B2 (en) Method for measuring electromagnetic properties
Kopyt et al. Measurements of the complex anisotropic permittivity of microwave laminates
Rajab et al. Dielectric property measurement using a resonant nonradiative dielectric waveguide structure
JP3825299B2 (en) Dielectric constant measurement method
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
Salski et al. Characterization of Low-Loss Liquids With a Double-Concave Fabry–Perot Open Resonator in the 20–50-GHz Range
JP3794437B2 (en) Waveguide device, electrical property measuring device, and electrical property measuring method
JP3204366B2 (en) Waveguide device and dielectric property measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees