JPH06308110A - Method for quantitative analysis of crushing assistant in inorganic powdery body - Google Patents

Method for quantitative analysis of crushing assistant in inorganic powdery body

Info

Publication number
JPH06308110A
JPH06308110A JP5094333A JP9433393A JPH06308110A JP H06308110 A JPH06308110 A JP H06308110A JP 5094333 A JP5094333 A JP 5094333A JP 9433393 A JP9433393 A JP 9433393A JP H06308110 A JPH06308110 A JP H06308110A
Authority
JP
Japan
Prior art keywords
column
temperature
quantitative analysis
gas
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5094333A
Other languages
Japanese (ja)
Inventor
Akira Ono
晃 大野
Takashi Inokawa
尚 井ノ川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP5094333A priority Critical patent/JPH06308110A/en
Publication of JPH06308110A publication Critical patent/JPH06308110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correctly determine by instantaneously heating an inorganic powdery body after being crushed, measuring a thermally decomposed product of organic components generated as a crushing assistant by a gas chromatograph with a cooling device, and performing a quantitative analysis from the peak area of each component on the chromatogram. CONSTITUTION:A carrier gas of a gas chromatograph 1 is branched in the middle way, and sent to a Dewar vessel 4 containing a liquid nitrogen 3. In consequence, the nitrogen 3 is sent to a solenoid valve 5 set to a column oven of the chromatograph 1 because of the rise of the internal pressure. The valve 5 is opened. The nitrogen 3 is sprayed until the temperature inside the oven is lowered to a set value. The valve 5 is closed when the temperature becomes not higher than the set value. Accordingly, the temperature of the column can be set suitably. An inorganic powdery body is instantaneously heated by the chromatograph 1 with a cooling device, and a generated thermally-decomposed product of organic components is separated at the low temperature in the column, and subjected to a quantitative analysis from the peak area of each component on the chromatogram. In this manner, organic components added as a crushing assistant in the crushing process can be determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機粉体中の粉砕助剤
の定量分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively analyzing a grinding aid in an inorganic powder.

【0002】[0002]

【従来の技術】従来、セメント、炭酸カルシウム粉末等
の無機化合物の粉体からなる工業製品には、製造工程上
の粉砕工程において、粉砕性の向上や消費エネルギーの
削減を目的として、高極性有機化合物を主成分とする粉
砕助剤が添加されている。
2. Description of the Related Art Conventionally, industrial products made of powders of inorganic compounds such as cement and calcium carbonate powders have high polar organic substances for the purpose of improving pulverizability and reducing energy consumption in the pulverizing process in the manufacturing process. A grinding aid containing a compound as a main component is added.

【0003】添加された粉砕助剤は一般に製品中に残存
するが、製品中の粉砕助剤の残存量は、粉砕工程におけ
る粉砕助剤の添加量及び粉砕機内部の温度と密接な関係
を有し、これらは粉砕効率に大きな影響を与える。また
製品中に残存する粉砕助剤は、製品の性能に影響を与え
る場合もあり、その残存量によりその効果は異なってい
る。
The added grinding aid generally remains in the product, but the remaining amount of the grinding aid in the product is closely related to the addition amount of the grinding aid in the grinding process and the temperature inside the grinder. However, these have a great influence on the grinding efficiency. Further, the grinding aid remaining in the product may affect the performance of the product, and the effect varies depending on the remaining amount.

【0004】従って、粉砕効率及び製品の性能について
検討するには、製品中に残存する粉砕助剤を定量するこ
とが重要であり、特に粉砕効率の著しい悪化や製品の性
能異常等の問題が生じた場合には原因究明のために製品
中の粉砕助剤の残存量を確認することが必要である。
Therefore, in order to examine the grinding efficiency and the performance of the product, it is important to quantify the grinding aid remaining in the product, and in particular, problems such as remarkable deterioration of the grinding efficiency and abnormal performance of the product occur. In this case, it is necessary to confirm the residual amount of grinding aid in the product in order to investigate the cause.

【0005】一般に、セメント、炭酸カルシウム等の無
機材料の粉砕工程における粉砕助剤としては、例えば、
ジエチレングリコール、プロピレングリコール等の多価
アルコール類、トリエタノールアミン、トリイソプロパ
ノールアミン等のアミノアルコール類などが使用されて
いる。
Generally, as a grinding aid in the grinding process of inorganic materials such as cement and calcium carbonate, for example,
Polyhydric alcohols such as diethylene glycol and propylene glycol, and amino alcohols such as triethanolamine and triisopropanolamine are used.

【0006】一般に、これらの粉砕助剤の添加量は極め
て少なく、例えばセメントの粉砕時に使用されるジエチ
レングリコールの添加量は、通常約0.05重量%であ
る。
Generally, the amount of these grinding aids added is extremely small, and for example, the amount of diethylene glycol used when grinding cement is usually about 0.05% by weight.

【0007】従来、このような無機材料中の微量の粉砕
助剤を定量分析するための有効な手法については一切報
告されていない。
Heretofore, no effective method for quantitatively analyzing a trace amount of a grinding aid in such an inorganic material has been reported.

【0008】一方、セメント及びセメント硬化体中の有
機混和剤を簡便かつ迅速に定量する方法としては、熱分
解ガスクロマトグラフ法が知られている。
On the other hand, a pyrolysis gas chromatographic method is known as a method for easily and quickly determining the amount of the organic admixture in the cement and the cement hardened product.

【0009】この方法はセメント又はセメント硬化体を
瞬間的に加熱することにより、含有される有機成分を試
料中から遊離させ、発生した熱分解生成物をガスクロマ
トグラフにより分離し、含有される有機成分に起因する
ピークの面積から定量を行う方法である。
In this method, the organic component contained is liberated from the sample by instantaneously heating the cement or the hardened cement product, the generated thermal decomposition product is separated by gas chromatography, and the organic component contained is separated. It is a method of quantifying from the area of the peak due to.

【0010】この方法には、熱により試料中から有機成
分を脱離させるために抽出や酸分解等の前処理を必要と
せず、迅速性に優れ、また熱分解生成物がガスクロマト
グラフにより単離されるので共存する他成分の影響を受
けないなどの利点がある。
This method does not require pretreatment such as extraction or acid decomposition in order to desorb organic components from the sample by heat, is excellent in rapidity, and the thermal decomposition product is isolated by gas chromatography. Therefore, there is an advantage that it is not affected by other coexisting components.

【0011】[0011]

【発明が解決しようとする課題】この熱分解ガスクロマ
トグラフ法により無機粉体中の粉砕助剤を検出すること
は可能であるが、前記粉砕助剤として使用される有機成
分の多くが、その加熱により生成する複数の熱分解生成
物のいずれもが極めて低分子量であることから、ガスク
ロマトグラフのカラム中を通過する時間(保持時間)が
短く、しかもその差が極めて小さく、その結果、各ピー
クの分離が困難であるため、その正確な定量は困難なも
のであった。
Although it is possible to detect the grinding aid in the inorganic powder by this pyrolysis gas chromatographic method, most of the organic components used as the grinding aid are heated. Since all of the multiple thermal decomposition products produced by the method have extremely low molecular weight, the time to pass through the column of the gas chromatograph (holding time) is short, and the difference is extremely small. The accurate quantification was difficult because the separation was difficult.

【0012】即ち、通常、熱分解ガスクロマトグラフに
おける分析では、完全に単離され、かつ目的とする有機
成分の含有量とその強度とが比例関係にあるピークの面
積から定量が行われるので、各ピークの分離が困難な、
従来の熱分解ガスクロマトグラフによる前記分析方法に
よっては、無機粉体中の粉砕助剤の検出自体は可能なも
のの、正確な定量を行うことはできなかった。
That is, usually, in the analysis by the pyrolysis gas chromatograph, the quantitative determination is carried out from the area of the peak which is completely isolated and in which the content of the target organic component and its intensity are in a proportional relationship. Difficult to separate peaks,
Although the detection method itself of the grinding aid in the inorganic powder is possible by the above-mentioned analysis method using the conventional pyrolysis gas chromatograph, accurate quantification cannot be performed.

【0013】また、ガスクロマトグラフ分析において
は、カラム温度は保持時間を決定する支配要因の一つで
あり、より低温で測定することにより分離度を上げるこ
とが可能であるが、通常のガスクロマトグラフでは室温
以下での測定が行えず、測定可能温度範囲に限界があっ
た。。
Further, in gas chromatographic analysis, the column temperature is one of the governing factors that determine the retention time, and it is possible to increase the resolution by measuring at a lower temperature. Since measurement could not be performed at room temperature or below, the measurable temperature range was limited. .

【0014】本発明は、従来の熱分解ガスクロマトグラ
フ法における前記問題点を解決して、無機粉体中の粉砕
助剤の正確な定量が可能な、無機粉体中の粉砕助剤の定
量分析法を提供することを目的とする。
The present invention solves the above-mentioned problems in the conventional pyrolysis gas chromatographic method and enables accurate quantification of the grinding aid in the inorganic powder, and quantitative analysis of the grinding aid in the inorganic powder. The purpose is to provide the law.

【0015】[0015]

【課題を解決するための手段】本発明者等は、通常は室
温以上でしか測定できないガスクロマトグラフに、更に
カラム冷却装置を接続することにより、より低温での測
定が可能となり、成分の保持時間を延ばし、分離能の向
上を図ることができ、前記目的が達成されることを見出
して本発明に到達した。
The inventors of the present invention can measure at a lower temperature by further connecting a column cooling device to a gas chromatograph that can normally measure only at room temperature or higher, and the retention time of components can be increased. The present invention has been accomplished by finding that the above-mentioned object can be achieved by extending the above-mentioned range and improving the separability.

【0016】本発明の無機粉体中の粉砕助剤の定量分析
法は、無機材料の粉砕工程において粉砕助剤として添加
された有機成分について、粉砕後の無機材料を瞬間的に
加熱させて発生する有機成分の熱分解生成物を、カラム
冷却装置付きガスクロマトグラフを用いて低カラム温度
で分離し、クロマトグラム上の各成分のピーク面積から
定量分析することを手段とする。
The quantitative analysis method of the grinding aid in the inorganic powder of the present invention is performed by instantaneously heating the pulverized inorganic material with respect to the organic component added as the grinding aid in the pulverization step of the inorganic material. The thermal decomposition products of the organic components are separated at low column temperature using a gas chromatograph equipped with a column cooling device, and quantitatively analyzed from the peak area of each component on the chromatogram.

【0017】本発明の定量分析法においては、発生する
有機成分の熱分解生成物を、カラム冷却装置付きガスク
ロマトグラフを用いて低カラム温度(通常より低いカラ
ム温度)で分離する。
In the quantitative analysis method of the present invention, the generated thermal decomposition product of the organic component is separated at a low column temperature (a column temperature lower than usual) using a gas chromatograph equipped with a column cooling device.

【0018】カラム温度としては、試料中の各有機成分
の熱分解生成物が十分離れた時間で検出できる温度以下
で、かつ熱分解生成物が気体状態を維持できる温度以上
であればよく、ガスクロマトグラフに接続させたカラム
冷却装置により、適宜のカラム温度に設定される。
The column temperature may be equal to or lower than the temperature at which the thermal decomposition products of each organic component in the sample can be detected at a sufficiently long time, and above the temperature at which the thermal decomposition products can maintain a gas state. An appropriate column temperature is set by the column cooling device connected to the Tograph.

【0019】ガスクロマトグラフに接続するカラム冷却
装置の冷媒としては、例えば、液体窒素、液化炭酸ガス
等が挙げられるが、カラムを十分冷却できるものであれ
ばよい。
Examples of the refrigerant of the column cooling device connected to the gas chromatograph include liquid nitrogen and liquefied carbon dioxide gas, but any refrigerant that can sufficiently cool the column may be used.

【0020】本発明の定量分析法において、試料中の有
機成分を熱分解するために使用される装置は、熱分解生
成物がガスクロマトグラフに送られたときに設定された
カラム温度で一定限度以上の蒸気圧を有する気体になる
ものであればよい。
In the quantitative analysis method of the present invention, the apparatus used for thermally decomposing the organic component in the sample has a column temperature set when the pyrolysis product is sent to the gas chromatograph, and is above a certain limit. Any gas that has a vapor pressure of

【0021】検出器としては、FID(flame i
onization detector、水素炎イオン
化検出器)、赤外分光光度計、質量分析計等の使用が可
能であるが、検出すべき成分に対して十分な感度を有す
るものであればよい。
A FID (frame i) is used as a detector.
An orientation detector, a hydrogen flame ionization detector), an infrared spectrophotometer, a mass spectrometer, or the like can be used, as long as it has sufficient sensitivity to the component to be detected.

【0022】定量操作は、得られるピークのうち、その
面積が試料中の目的の有機成分と正比例の関係にあるピ
ークの面積を、予め作成しておいた検量線にプロットす
ることにより行われる。
The quantitative operation is carried out by plotting the area of a peak, of which the area is directly proportional to the target organic component in the sample, in the calibration curve prepared in advance.

【0023】本発明を実施するに際しては、カラム冷却
装置として、例えば図1に示すものが使用される。
In carrying out the present invention, the column cooling device shown in FIG. 1, for example, is used.

【0024】ガスクロマトグラフ1のキャリアガスを途
中で分岐させて、液体窒素3の入ったデュワーびん4へ
流すと、内圧の上昇により、液体窒素3がガスクロマト
グラフ1のカラムオーブンに取付けられた電磁弁5へと
向かう。電磁弁5が開き、カラムオーブン内の温度が設
定値に下がるまで、窒素が噴霧され、設定値以下の温度
になると電磁弁5は閉じ、温度が上昇すると再び開く。
これにより、適宜のカラム温度に設定することができ
る。
When the carrier gas of the gas chromatograph 1 is branched in the middle and flown into the Dewar bottle 4 containing the liquid nitrogen 3, the internal pressure rises, so that the liquid nitrogen 3 is an electromagnetic valve attached to the column oven of the gas chromatograph 1. Go to 5. The solenoid valve 5 is opened, and nitrogen is sprayed until the temperature in the column oven drops to the set value. When the temperature becomes lower than the set value, the solenoid valve 5 closes, and when the temperature rises, it opens again.
Thereby, the column temperature can be set appropriately.

【0025】なお、図1中、6はカラムを示す。In FIG. 1, 6 indicates a column.

【0026】[0026]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0027】下記の条件は実施例中の全ての試料に適用
する。
The following conditions apply to all samples in the examples.

【0028】(試料)分析対象試料は、予め遊星ミル
(フリッチュ社製遊星型ボールミル)で微粉砕し、粒径
を150μm以下としたものを5±0.05mg使用し
た。
(Sample) As the sample to be analyzed, 5 ± 0.05 mg of a sample having a particle size of 150 μm or less, which had been finely pulverized by a planetary mill (planetary ball mill manufactured by Fritsch), was used.

【0029】(装置) 熱分解装置:JHP−2型キュリーポイントパイロライ
ザー(日本分析工業社製) ガスクロマトグラフ:HP5890A(ヒューレット
パッカード社製) 検出器:HP5970B質量分析器(ヒューレット パ
ッカード社製) カラム冷却装置:HP5890A用冷却装置(ヒューレ
ット パッカード社製) 液体窒素使用 カラム:DB−1701(J&W社製)30m×0.2
5mmi.d(内径)0.25μm f.d(膜厚)
キャリアガス ヘリウム 熱分解温度:764℃ 熱分解時間:10秒間
(Apparatus) Pyrolysis apparatus: JHP-2 type Curie point pyrolyzer (manufactured by Nippon Analytical Industry Co., Ltd.) Gas chromatograph: HP5890A (Hewlett
Packard) Detector: HP5970B Mass Spectrometer (Hewlett Packard) Column Cooling Device: HP5890A Cooling Device (Hewlett Packard) Liquid Nitrogen Column: DB-1701 (J & W) 30m × 0.2
5 mmi. d (inner diameter) 0.25 μm f. d (film thickness)
Carrier gas Helium Thermal decomposition temperature: 764 ° C Thermal decomposition time: 10 seconds

【0030】実施例1 セメント中のジエチレングリコールの定量 図2に、比較として、ジエチレングリコールを0.05
重量%添加したセメントについて、カラム温度30℃
(一定)で測定して得られたガスクロマトグラムを示
す。
Example 1 Quantification of diethylene glycol in cement In FIG. 2, as a comparison, 0.05% diethylene glycol was added.
Column temperature 30 ℃ for cement added by weight%
The gas chromatogram obtained by measuring at (constant) is shown.

【0031】図2から明らかなように、ガスクロマトグ
ラム中に観測される2つのピークは保持時間が近く、重
なっているため、各ピークを単独で定量することは不可
能である。
As is apparent from FIG. 2, the two peaks observed in the gas chromatogram are close to each other in retention time, and therefore, it is impossible to quantify each peak independently.

【0032】図3に、カラム冷却装置付きガスクロマト
グラフを用いることにより、前記と同じ試料をカラム温
度5℃で測定して得られたガスクロマトグラムを示す。
FIG. 3 shows a gas chromatogram obtained by measuring the same sample as described above at a column temperature of 5 ° C. by using a gas chromatograph equipped with a column cooling device.

【0033】図3から明らかなように、低カラム温度で
分離、測定する本発明の場合には、2つのピークは完全
に分離しており、このうち、ピーク2の面積にジエチレ
ングリコール添加量との相関が認められた。
As is apparent from FIG. 3, in the case of the present invention in which the separation and measurement are carried out at a low column temperature, the two peaks are completely separated. Of these, the area of peak 2 corresponds to the amount of diethylene glycol added. A correlation was found.

【0034】図4に、ジエチレングリコールの添加量
が、0.02、0.04及び0.06重量%のセメント
から作成した検量線を示す。
FIG. 4 shows a calibration curve prepared from cement containing 0.02, 0.04 and 0.06% by weight of diethylene glycol.

【0035】図4から明らかなように、検量線には高い
直線性が得られ、カラム冷却装置を接続して、低カラム
温度でガスクロマトグラフ分析を行う本発明の定量分析
法により、セメント中のジエチレングリコールの残存量
を定量できることが分かる。
As is clear from FIG. 4, a high linearity was obtained in the calibration curve, and a column cooling device was connected to the calibration curve to carry out gas chromatographic analysis at a low column temperature. It can be seen that the residual amount of diethylene glycol can be quantified.

【0036】実施例2 セメント中のトリエタノールアミンの定量 図5に、比較として、トリエタノールアミンを0.05
重量%添加したセメントについて、カラム温度30℃
(一定)で測定して得られたガスクロマトグラムを示
す。
Example 2 Quantification of triethanolamine in cement FIG. 5 shows that 0.05% triethanolamine was used for comparison.
Column temperature 30 ℃ for cement added by weight%
The gas chromatogram obtained by measuring at (constant) is shown.

【0037】図5から明らかなように、ガスクロマトグ
ラム中に観測される2つのピークは保持時間が近く、重
なっているため、各ピークを単独で定量することは不可
能である。
As is clear from FIG. 5, the two peaks observed in the gas chromatogram are close to each other in retention time, and therefore, it is impossible to quantify each peak independently.

【0038】図6に、カラム冷却装置付きガスクロマト
グラフを用いることにより、前記と同じ試料をカラム温
度5℃で測定して得られたガスクロマトグラムを示す。
FIG. 6 shows a gas chromatogram obtained by measuring the same sample as above at a column temperature of 5 ° C. by using a gas chromatograph equipped with a column cooling device.

【0039】図6から明らかなように、低カラム温度で
分離、測定する本発明の場合には、低温での測定により
2つのピークの分離が可能となっている。
As is clear from FIG. 6, in the case of the present invention in which separation and measurement are performed at a low column temperature, two peaks can be separated by measurement at a low temperature.

【0040】図7に、トリエタノールアミンの添加量
が、0.02、0.04及び0.06重量%のセメント
から作成した検量線を示す。
FIG. 7 shows a calibration curve prepared from cement containing 0.02, 0.04 and 0.06% by weight of triethanolamine.

【0041】図7から明らかなように、検量線には高い
直線性が得られ、カラム冷却装置を接続して、低カラム
温度でガスクロマトグラフ分析を行う本発明の定量分析
法により、セメント中のトリエタノールアミンの残存量
を定量できることが分かる。
As is clear from FIG. 7, a high linearity is obtained in the calibration curve, and the column cooling device is connected to the quantitative analysis method of the present invention for performing gas chromatographic analysis at a low column temperature. It can be seen that the residual amount of triethanolamine can be quantified.

【0042】実施例3 炭酸カルシウム中のジエチレングリコールの定量 図8に、ジエチレングリコールを0.05重量%添加し
た炭酸カルシウムについて、カラム冷却装置付きガスク
ロマトグラフを用いることにより、カラム温度5℃で測
定して得られたガスクロマトグラムを示す。
Example 3 Quantification of diethylene glycol in calcium carbonate In FIG. 8, calcium carbonate containing 0.05% by weight of diethylene glycol was measured at a column temperature of 5 ° C. by using a gas chromatograph equipped with a column cooling device. The obtained gas chromatogram is shown.

【0043】図8から明らかなように、セメント中のジ
エチレングリコールを定量する、実施例1の場合と同様
なガスクロマトグラムが得られた。
As is apparent from FIG. 8, the same gas chromatogram as in Example 1 was obtained in which the amount of diethylene glycol in the cement was quantified.

【0044】図9に、ジエチレングリコールの添加量
が、0.02、0.04及び0.06重量%の炭酸カル
シウムから作成した検量線を示す。
FIG. 9 shows a calibration curve prepared from calcium carbonate containing 0.02, 0.04 and 0.06% by weight of diethylene glycol.

【0045】図9から明らかなように、検量線には高い
直線性が得られ、カラム冷却装置を接続して、低カラム
温度でガスクロマトグラフ分析を行う本発明の定量分析
法により、炭酸カルシウム中のジエチレングリコールの
残存量を定量できることが分かる。
As is clear from FIG. 9, a high linearity was obtained in the calibration curve, and a column cooling device was connected to the quantitative analysis method of the present invention for performing gas chromatographic analysis at a low column temperature. It can be seen that the remaining amount of diethylene glycol can be quantified.

【0046】[0046]

【発明の効果】本発明の無機粉体中の粉砕助剤の定量分
析法によれば、従来の熱分解ガスクロマトグラフ法では
分析困難とされた無機粉体中の粉砕助剤についても、カ
ラム温度を低下させることによりその正確な定量が可能
となり、しかも従来の熱分解ガスクロマトグラフ法の有
する、迅速性に優れ、また他成分の影響を受けないなど
の利点をも損なわずに、無機粉体中の粉砕助剤を定量分
析することができる。
According to the quantitative analysis method of the grinding aid in the inorganic powder of the present invention, the grinding temperature of the grinding powder in the inorganic powder, which has been difficult to analyze by the conventional pyrolysis gas chromatographic method, can be measured by the column temperature. It becomes possible to accurately quantify the content of the inorganic powder in the inorganic powder without impairing the advantages of the conventional pyrolysis gas chromatographic method, such as excellent rapidity and being unaffected by other components. Can be quantitatively analyzed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用されるカラム冷却装置の一例を示
す図である。
FIG. 1 is a diagram showing an example of a column cooling device used in the present invention.

【図2】測定温度30℃でのジエチレングリコール添加
セメント(0.05重量%)のガスクロマトグラムを示
す図である。
FIG. 2 is a diagram showing a gas chromatogram of a cement (0.05% by weight) containing diethylene glycol at a measurement temperature of 30 ° C.

【図3】測定温度5℃でのジエチレングリコール添加セ
メント(0.05重量%)のガスクロマトグラムを示す
図である。
FIG. 3 is a diagram showing a gas chromatogram of cement (0.05% by weight) containing diethylene glycol at a measurement temperature of 5 ° C.

【図4】セメント中のジエチレングリコールの検量線を
示す図である。
FIG. 4 is a diagram showing a calibration curve of diethylene glycol in cement.

【図5】測定温度30℃でのトリエタノールアミン添加
セメント(0.05重量%)のガスクロマトグラムを示
す図である。
FIG. 5 is a diagram showing a gas chromatogram of cement (0.05% by weight) containing triethanolamine at a measurement temperature of 30 ° C.

【図6】測定温度5℃でのトリエタノールアミン添加セ
メント(0.05重量%)のガスクロマトグラムを示す
図である。
FIG. 6 is a diagram showing a gas chromatogram of triethanolamine-added cement (0.05% by weight) at a measurement temperature of 5 ° C.

【図7】セメント中のトリエタノールアミンの検量線を
示す図である。
FIG. 7 is a view showing a calibration curve of triethanolamine in cement.

【図8】測定温度5℃でのジエチレングリコール添加炭
酸カルシウム(0.05重量%)のガスクロマトグラム
を示す図である。
FIG. 8 is a diagram showing a gas chromatogram of diethylene glycol-added calcium carbonate (0.05% by weight) at a measurement temperature of 5 ° C.

【図9】炭酸カルシウム中のジエチレングリコールの検
量線を示す図である。
FIG. 9 is a diagram showing a calibration curve of diethylene glycol in calcium carbonate.

【符号の説明】[Explanation of symbols]

1 ガスクロマトグラフ 2 キャリアガスボンベ 3 液体窒素 4 デュワーびん 5 電磁弁 6 カラム 1 Gas chromatograph 2 Carrier gas cylinder 3 Liquid nitrogen 4 Dewar bottle 5 Solenoid valve 6 Column

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機材料の粉砕工程において粉砕助剤と
して添加された有機成分について、粉砕後の無機材料を
瞬間的に加熱させて発生する有機成分の熱分解生成物
を、カラム冷却装置付きガスクロマトグラフを用いて低
カラム温度で分離し、クロマトグラム上の各成分のピー
ク面積から定量分析することを特徴とする、無機粉体中
の粉砕助剤の定量分析法。
1. A gas chromatograph equipped with a column cooling device for a thermal decomposition product of an organic component generated by instantaneously heating an inorganic material after pulverization with respect to an organic component added as a pulverization aid in the pulverization step of an inorganic material. A method for quantitatively analyzing a grinding aid in an inorganic powder, which comprises performing a quantitative analysis from a peak area of each component on a chromatogram by separating at a low column temperature using a tograph.
JP5094333A 1993-04-21 1993-04-21 Method for quantitative analysis of crushing assistant in inorganic powdery body Pending JPH06308110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5094333A JPH06308110A (en) 1993-04-21 1993-04-21 Method for quantitative analysis of crushing assistant in inorganic powdery body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5094333A JPH06308110A (en) 1993-04-21 1993-04-21 Method for quantitative analysis of crushing assistant in inorganic powdery body

Publications (1)

Publication Number Publication Date
JPH06308110A true JPH06308110A (en) 1994-11-04

Family

ID=14107359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5094333A Pending JPH06308110A (en) 1993-04-21 1993-04-21 Method for quantitative analysis of crushing assistant in inorganic powdery body

Country Status (1)

Country Link
JP (1) JPH06308110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190613B1 (en) * 1998-04-30 2001-02-20 Frontier Laboratories Ltd. Sample concentration device
JP2007240227A (en) * 2006-03-07 2007-09-20 Sumitomo Osaka Cement Co Ltd Qualitative/quantitative analyzing method of grinding aid in cement and quantitative analyzing method
JP2010276414A (en) * 2009-05-27 2010-12-09 Sumitomo Osaka Cement Co Ltd Method and device for measuring content of grinding aid in cement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127297A (en) * 1976-04-14 1977-10-25 Labofina Sa Measuring method of organic carbon contents in crude mineral and the like
JPS59136654A (en) * 1983-01-26 1984-08-06 Yuji Takayama Fraction method of component in injected sample
JPH02114176A (en) * 1988-10-25 1990-04-26 Mitsui Toatsu Chem Inc Method for analyzing oxygen difluoride in nitrogen trifluoride gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127297A (en) * 1976-04-14 1977-10-25 Labofina Sa Measuring method of organic carbon contents in crude mineral and the like
JPS59136654A (en) * 1983-01-26 1984-08-06 Yuji Takayama Fraction method of component in injected sample
JPH02114176A (en) * 1988-10-25 1990-04-26 Mitsui Toatsu Chem Inc Method for analyzing oxygen difluoride in nitrogen trifluoride gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190613B1 (en) * 1998-04-30 2001-02-20 Frontier Laboratories Ltd. Sample concentration device
JP2007240227A (en) * 2006-03-07 2007-09-20 Sumitomo Osaka Cement Co Ltd Qualitative/quantitative analyzing method of grinding aid in cement and quantitative analyzing method
JP4684137B2 (en) * 2006-03-07 2011-05-18 住友大阪セメント株式会社 A qualitative and quantitative analysis method and a qualitative analysis method for grinding aids in cement.
JP2010276414A (en) * 2009-05-27 2010-12-09 Sumitomo Osaka Cement Co Ltd Method and device for measuring content of grinding aid in cement

Similar Documents

Publication Publication Date Title
Melton et al. The utilisation of ion chromatography and tandem mass spectrometry (IC-MS/MS) for the multi-residue simultaneous determination of highly polar anionic pesticides in fruit and vegetables
Zhang et al. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts
US5191211A (en) Thermal desorption method for separating volatile additives from vulcanizable rubber
Norli et al. Independent evaluation of a commercial deconvolution reporting software for gas chromatography mass spectrometry analysis of pesticide residues in fruits and vegetables
Brenna High-precision gas isotope ratio mass spectrometry: recent advances in instrumentation and biomedical applications
Li et al. Selection of representative matrices for the multiresidue analysis of pesticides in tea by GC-MS/MS
Xie et al. Determination of acetone, 2-butanone, diethyl ketone and BTX using HSCC-UV-IMS
Dublyansky et al. Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system and on‐line continuous‐flow isotope ratio mass spectrometric analysis
Quan Establishment of the purity values of carbohydrate certified reference materials using quantitative nuclear magnetic resonance and mass balance approach
CN104297644A (en) Method for monitoring insulation state of epoxy resin insulating media in sulfur hexafluoride electrical device
Zhao et al. LC‐ESI‐MS/MS analysis and pharmacokinetics of heterophyllin B, a cyclic octapeptide from Pseudostellaria heterophylla in rat plasma
Krishna et al. Multi-element characterization of high purity cadmium using inductively coupled plasma quadrupole mass spectrometry and glow-discharge quadrupole mass spectrometry
JPH06308110A (en) Method for quantitative analysis of crushing assistant in inorganic powdery body
Gong et al. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples
Soares et al. Thin‐layer chromatography–surface‐enhanced Raman spectroscopy and chemometric tools applied to Pilsner beer fingerprint analysis
KR20030085918A (en) Analytical method of Ginseng Radix, Ginseng Radix rubra or processed goods thereof
Spitaler et al. PTR-MS in enology: Advances in analytics and data analysis
Arii et al. A combined thermogravimetric-gas chromatographic/mass spectrometric analysis (TG-GC/MS) using a high resolution TG technique
Deruaz et al. Analytical strategy by coupling headspace gas chromatography, atomic emission spectrometric detection and mass spectrometry Application to sulfur compounds from garlic
Liang et al. Analysis of herbicide atrazine and its degradation products in cereals by ultra-performance liquid chromatography-mass spectrometry
Pavón et al. Headspace–programmed temperature vaporizer–fast gas chromatography–mass spectrometry coupling for the determination of trihalomethanes in water
Ojala et al. A new purge-and-membrane mass spectrometric (PAM-MS) instrument for analysis of volatile organic compounds in soil samples
Qi et al. Microwave-assisted extraction combined with ultra-high-performance liquid chromatography and quadrupole/q-exactive high-resolution mass spectrometry for the determination of main flavor substances in green tea
Bors et al. Chemical analysis of racing fuels using total vaporization and gas chromatography mass spectrometry (GC/MS)
Tan et al. A practical method for rapid screening and quantitative analysis of 130 pesticide residues in herbal medicines based on the Kovats retention index principle: an exemplary study using Panacis quinquefolii radix