JPH06308104A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH06308104A
JPH06308104A JP5102694A JP10269493A JPH06308104A JP H06308104 A JPH06308104 A JP H06308104A JP 5102694 A JP5102694 A JP 5102694A JP 10269493 A JP10269493 A JP 10269493A JP H06308104 A JPH06308104 A JP H06308104A
Authority
JP
Japan
Prior art keywords
thickness
piezoelectric element
ultrasonic probe
transmitting
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5102694A
Other languages
Japanese (ja)
Inventor
Shiro Saito
史郎 斉藤
Mamoru Izumi
守 泉
Takashi Kobayashi
剛史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5102694A priority Critical patent/JPH06308104A/en
Publication of JPH06308104A publication Critical patent/JPH06308104A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer

Abstract

PURPOSE:To prevent the deterioration of a piezoelectric element by providing a protecting member from liquid Na at the side of a transmitting/detecting surface of the piezoelectric element which has the thickness of not larger than a specific ratio of the basic resonance wavelength of the element. CONSTITUTION:A stainless plate (protecting member) 4 is set at the front face of a silver electrode 2a at the side of a transmitting/detecting surface of a piezoelectric body 1. Since a nickel thin film is formed in the stainless plate by vapor deposition, sputtering or the like manner, the wettability of the stainless plate 4 to Na is improved. Corrosion by Na is hence prevented. The thickness of the stainless plate 4 is not larger than about 10% the wavelength determined by the basic resonant frequency of the body 1, for instance, 8.6%. A packing member 3 formed of porous ceramic with approximately 10Mrayl acoustic impedance is provided at the front face of a silver electrode 2b. The member 3 supports the piezoelectric body 1, absorbing the ultrasonic waves radiated from the side of the electrode 2a and transmitting only the ultrasonic waves from the electrode 2b to a transmitting medium. In this manner, when the thickness of the protecting member 4 against Na is set to be approximately not larger than 10% the basic resonance wavelength, a good detecting wave having a short wave train length is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波プローブに係
り、特に高速増殖炉内の高温の液体ナトリウム中で使用
される超音波プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe, and more particularly to an ultrasonic probe used in high temperature liquid sodium in a fast breeder reactor.

【0002】[0002]

【従来の技術】近年、高速増殖炉(FBR)と呼ばれる
原子炉が未来の原子炉として期待されている。高速増殖
炉は、分裂原子核であるPuに高速中性子が衝突して起
こる核反応を利用し、消費した燃料よりも生成される燃
料の方が多いという特徴を持っている。
2. Description of the Related Art In recent years, a nuclear reactor called a fast breeder reactor (FBR) is expected as a future nuclear reactor. The fast breeder reactor uses a nuclear reaction that occurs when fast neutrons collide with Pu, which is a fission nucleus, and is characterized in that more fuel is produced than consumed fuel.

【0003】核分裂より発生した熱を伝える伝達材料、
すなわち、高速増殖炉で使用される冷却材としては、高
速中性子が減速し難く、熱伝導率が水の100倍もある
液体ナトリウムが用いられている。この液体ナトリウム
は、原子炉容器内の炉心で加熱された後、原子炉容器外
に設けられた冷却系へと導かれ、再び原子炉容器内へと
戻され、循環する。液体ナトリウムは、不透明で水や空
気と激しく反応するので、その取扱いには注意を要す
る。
A transfer material for transmitting heat generated by nuclear fission,
That is, as the coolant used in the fast breeder reactor, liquid sodium is used, in which fast neutrons are difficult to slow down and the thermal conductivity is 100 times that of water. The liquid sodium is heated by the core in the reactor vessel, then guided to a cooling system provided outside the reactor vessel, returned to the reactor vessel again, and circulated. Liquid sodium is opaque and reacts violently with water and air, so be careful when handling it.

【0004】ところで、原子炉では、安全性を確保する
ために、炉心構造物や炉内異物などを常に監視する必要
がある。しかし、液体ナトリウムが不透明であることか
ら目視検査は不可能である。このため、炉心構造物など
の監視には、非破壊で内部状態を検査できる超音波探傷
装置が用いられている。これは液体中を超音波が伝搬し
易いことを利用してパルス状の超音波を原子炉内に送波
して、音響インピーダンス(密度と音速の積)が異なる
界面から反射する性質を用い、その反射波を検出し、そ
の結果を画像表示するというものである。
By the way, in a nuclear reactor, in order to ensure safety, it is necessary to constantly monitor the core structure and foreign substances in the reactor. However, visual inspection is not possible due to the opacity of liquid sodium. Therefore, an ultrasonic flaw detector that can non-destructively inspect the internal state is used for monitoring the core structure and the like. This is because ultrasonic waves are easily propagated in a liquid and pulsed ultrasonic waves are transmitted to the inside of the reactor, and the property of reflecting from an interface with different acoustic impedance (product of density and sound velocity) is used. The reflected wave is detected and the result is displayed as an image.

【0005】超音波探傷装置は、超音波を送受波する超
音波プローブと、この超音波プローブの検出結果に所定
の信号処理を施し、画像表示を行なう装置本体とから構
成されている。
The ultrasonic flaw detector comprises an ultrasonic probe for transmitting and receiving ultrasonic waves, and an apparatus main body for displaying an image by subjecting the detection result of the ultrasonic probe to predetermined signal processing.

【0006】超音波プローブは、電気音響変換素子とし
て、二つの電極で圧電体を挾持した構造の圧電素子を用
いている。圧電体には、チタン酸ジルコン酸鉛系やチタ
ン酸系などのセラミック、ニオブ酸リチウムやタンタル
酸リチウムなどの単結晶、ポリフッ化ビニリデンなどの
高分子、若しくはこれらの複合材料が目的に応じて使用
されている。すなわち、液体ナトリウムの温度は、FB
Rの停止状態では約200℃、運転状態では約500℃
になるので、圧電体のキュリー点を考慮して、前者の場
合には主としてセラミックや単結晶、後者の場合には単
結晶が有効である。
The ultrasonic probe uses, as an electroacoustic transducer, a piezoelectric element having a structure in which a piezoelectric body is held between two electrodes. For the piezoelectric body, lead zirconate titanate-based or titanate-based ceramics, single crystals such as lithium niobate or lithium tantalate, polymers such as polyvinylidene fluoride, or composite materials of these are used according to the purpose. Has been done. That is, the temperature of liquid sodium is FB
About 200 ° C when R is stopped, about 500 ° C when operating
Therefore, considering the Curie point of the piezoelectric body, ceramics or single crystals are mainly effective in the former case, and single crystals are effective in the latter case.

【0007】超音波プローブの種類には、一つの振動子
を機械的に走査して画像を形成するメカニカルプローブ
と、複数のアレイ状振動子に電子的な遅延を与えて超音
波ビームの集束や偏向を行なうアレイプローブとがあ
る。基本構造は両者とも略同じであり、超音波の送受波
面側には伝搬媒体との音響整合を取るためのマッチング
層が設けられ、一方、送受波面側の背面側には圧電素子
の支持と背面側に放射された超音波を吸収する役目を果
たすバッキング部材とが設けられている。
The types of ultrasonic probe include a mechanical probe that mechanically scans one transducer to form an image, and a plurality of arrayed transducers that are electronically delayed to focus an ultrasonic beam. There is an array probe that performs deflection. The basic structure is the same for both, and a matching layer for acoustic matching with the propagation medium is provided on the ultrasonic wave transmitting / receiving surface side, while the piezoelectric element support and back surface are provided on the rear surface side of the ultrasonic wave transmitting / receiving surface side. And a backing member that serves to absorb ultrasonic waves emitted to the side.

【0008】マッチング層は、その厚さが基本共振周波
数で決まる波長の略1/4で、その材料として音響イン
ピーダンスが圧電体と伝搬媒体との中間値(例えば両者
の積の平方根)のものが用いられ、更に、広帯域化や高
感度化のために多層構造が取られる場合もある。また、
メカニカルプローブの場合、超音波ビームの集束のため
に凹面状の振動子を用いることが多く、一方、アレイプ
ローブの場合には、振動子の配列方向と垂直な方向の超
音波ビームを集束するために音響レンズが用いることが
多い。
The thickness of the matching layer is approximately 1/4 of the wavelength determined by the fundamental resonance frequency, and the material thereof has an acoustic impedance intermediate between the piezoelectric body and the propagation medium (for example, the square root of the product of the two). In some cases, a multi-layered structure is used for widening the band and increasing the sensitivity. Also,
In the case of a mechanical probe, a concave transducer is often used to focus the ultrasonic beam, while in the case of an array probe, the ultrasonic beam is focused in the direction perpendicular to the array direction of the transducers. Often acoustic lenses are used.

【0009】また、液体ナトリウム中では腐食性やぬれ
性が問題となるので、超音波プローブの表面は、ステン
レスやニッケルなどの金属、若しくはアルミナや窒化珪
素などのセラミックにする必要がある。一般には、耐腐
食性のためにステンレス板を用い、そして、耐ぬれ性の
ためにステンレス板の表面にニッケル薄膜などの金属薄
膜を蒸着してコーティングする。
Further, since corrosiveness and wettability become problems in liquid sodium, the surface of the ultrasonic probe must be made of metal such as stainless steel or nickel, or ceramic such as alumina or silicon nitride. Generally, a stainless steel plate is used for corrosion resistance, and a metal thin film such as a nickel thin film is vapor-deposited and coated on the surface of the stainless steel plate for wettability.

【0010】しかしながら、金属やセラミックなどから
なる耐液体ナトリウム用の保護部材および金属薄膜がコ
ーティングされた保護部材の音響インピーダンスが45
Mrayl前後で、圧電体としてのセラミック材料や単
結晶材料のそれが30〜40Mrayl程度、液体ナト
リウムのそれが2.2Mraylであるため、これらの
間の音響的ミスマッチングによって、プローブの感度が
低下したり、送受信の波形が乱れるという問題があっ
た。
However, the acoustic impedance of the protective member made of metal or ceramic for liquid sodium resistance and the protective member coated with a metal thin film is 45.
Before and after Mrayl, the ceramic material or the single crystal material as the piezoelectric body has a volume of about 30 to 40 Mrayl, and the liquid sodium has a volume of 2.2 Mrayl, so that the acoustic mismatch between them reduces the sensitivity of the probe. However, there was a problem that the transmission / reception waveform was disturbed.

【0011】[0011]

【発明が解決しようとする課題】上述の如く、FBRの
冷却材である液体ナトリウム中で用いる従来の超音波プ
ローブでは、液体ナトリウムによる腐食を防止するため
に、金属やセラミックなどからなる保護部材が必要とな
り、更に、耐ぬれ性のためにはその上にニッケル薄膜な
どの金属薄膜でコーティングする必要があった。
As described above, in the conventional ultrasonic probe used in the liquid sodium which is the coolant of the FBR, the protective member made of metal or ceramic is used to prevent the corrosion by the liquid sodium. In addition, it was necessary to coat it with a metal thin film such as a nickel thin film for the purpose of wetting resistance.

【0012】しかしながら、保護部材と圧電体と液体ナ
トリウムとの間の音響的ミスマッチングによって、プロ
ーブの感度が低下したり、送受信の波形が乱れるという
問題があった。
However, there are problems that the sensitivity of the probe is lowered and the transmission / reception waveform is disturbed due to acoustic mismatch between the protective member, the piezoelectric body, and the liquid sodium.

【0013】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、ナトリウム液体中で使
用しても劣化が起こりに難く、且つ性能が良好な超音波
プローブを提供することにある。
The present invention has been made in consideration of the above circumstances. An object of the present invention is to provide an ultrasonic probe which is resistant to deterioration even when used in a sodium liquid and has good performance. Especially.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の超音波プローブ(請求項1)は、超音波
の送受を行なう圧電素子の送受波面側に、厚さが前記圧
電素子の基本共振周波数で決まる波長の10%以下であ
る耐液体ナトリウム用の保護部材が設けられていること
を特徴とする。
In order to achieve the above object, an ultrasonic probe of the present invention (claim 1) has a piezoelectric element having a thickness on the wave transmitting / receiving surface side of a piezoelectric element for transmitting / receiving ultrasonic waves. It is characterized in that a protective member for liquid sodium resistance having a wavelength of 10% or less determined by the fundamental resonance frequency of the element is provided.

【0015】また、本発明の他の超音波プローブ(請求
項2)は、超音波の送受を行なう圧電素子の送受波面側
に、厚さが前記圧電素子の基本共振周波数で決まる波長
の略(2m−1)/4倍(mは自然数)であるマッチン
グ層が設けられ、このマッチング層の前面に、厚さが前
記圧電素子の基本共振周波数で決まる波長の略n/2倍
(nは自然数)である耐液体ナトリウム用の保護部材が
設けられていることを特徴とする。ここで、基本共振周
波数で決まる波長の略n/2倍とは、具体的には、ステ
ンレス板を用いた場合、5MHzで580μmの自然数
倍である。なお、上記保護部材はステンレス板などの金
属板またはセラミック板であることが好ましい。
According to another ultrasonic probe of the present invention (Claim 2), the thickness of the wavelength determined by the fundamental resonance frequency of the piezoelectric element is approximately on the wave transmitting / receiving surface side of the piezoelectric element for transmitting / receiving ultrasonic waves. A matching layer of 2m-1) / 4 times (m is a natural number) is provided, and a thickness of the matching layer is approximately n / 2 times (n is a natural number) the wavelength determined by the fundamental resonance frequency of the piezoelectric element. ) Is provided with a protective member for liquid sodium resistance. Here, the term “n / 2 times the wavelength determined by the fundamental resonance frequency” is specifically a natural multiple of 580 μm at 5 MHz when a stainless plate is used. The protective member is preferably a metal plate such as a stainless plate or a ceramic plate.

【0016】[0016]

【作用】本発明者等の研究によれば、耐液体ナトリウム
用の保護部材の厚さを圧電素子の基本共振周波数で決ま
る波長の10%以下にすれば、波連長の短い良好な受信
波(反射波)が得られることが分かった。したがって、
本発明(請求項1)によれば、音響的ミスマッチングに
よる性能低下を招かずに液体ナトリウムによる腐食を防
止できる。
According to the research conducted by the present inventors, if the thickness of the protective member for liquid sodium resistance is set to 10% or less of the wavelength determined by the fundamental resonance frequency of the piezoelectric element, a good reception wave with a short wave length is obtained. It was found that (reflected wave) was obtained. Therefore,
According to the present invention (Claim 1), it is possible to prevent corrosion due to liquid sodium without causing performance deterioration due to acoustic mismatch.

【0017】また、本発明者等の研究によれば、圧電素
子の送受波面側に、厚さが圧電素子の基本共振周波数で
決まる波長の略(2m−1)/4倍(mは自然数)であ
るマッチング層が設けられた超音波プローブにおいて、
マッチング層の前面に設ける耐液体ナトリウム用の保護
部材の厚さを圧電素子の基本共振周波数で決まる波長の
略n/2倍(nは自然数)にすれば、波連長の短い良好
な受信波が得られることが分かった。したがって、本発
明(請求項2)によれば、音響的ミスマッチングによる
性能低下を招かずに液体ナトリウムによる腐食を防止で
きる。
Further, according to the study by the present inventors, on the transmitting / receiving surface side of the piezoelectric element, the thickness is approximately (2m-1) / 4 times (m is a natural number) of the wavelength determined by the basic resonance frequency of the piezoelectric element. In the ultrasonic probe provided with the matching layer,
If the thickness of the protective member for liquid sodium resistance provided on the front surface of the matching layer is approximately n / 2 times the wavelength determined by the fundamental resonance frequency of the piezoelectric element (n is a natural number), good reception waves with short wave lengths can be obtained. It turns out that Therefore, according to the present invention (claim 2), it is possible to prevent corrosion due to liquid sodium without causing performance deterioration due to acoustic mismatching.

【0018】[0018]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の一実施例に係る超音波プローブの
構造を示す図である。これは本発明をシングルプローブ
構造の超音波プローブに適用した例である。
Embodiments will be described below with reference to the drawings. FIG. 1 is a diagram showing a structure of an ultrasonic probe according to an embodiment of the present invention. This is an example in which the present invention is applied to an ultrasonic probe having a single probe structure.

【0019】図中、1は直径が10mm,厚さが420
μmのディスク状の圧電体を示している。この圧電体1
は、キュリー点360℃,比誘電率250のチタン酸鉛
系セラミックからなり、その基本共振周波数は5MHz
である。圧電体1は厚さ5μmの銀電極2a,2bで挾
持され、これら圧電体1,銀電極2a,2bによって圧
電素子が形成されている。
In the figure, 1 is 10 mm in diameter and 420 in thickness.
A μm disk-shaped piezoelectric body is shown. This piezoelectric body 1
Is made of lead titanate-based ceramics with a Curie point of 360 ° C. and a relative dielectric constant of 250, and its fundamental resonance frequency is 5 MHz.
Is. The piezoelectric body 1 is held between silver electrodes 2a and 2b having a thickness of 5 μm, and the piezoelectric body 1 and the silver electrodes 2a and 2b form a piezoelectric element.

【0020】圧電体1の送受波面側の銀電極2aの前面
にはニッケル薄膜(不図示)が形成されたステンレス板
4(保護部材)が設けられている。このステンレス板4
はナトリウムによる腐食を防止するためのもので、その
厚さは、圧電素子の基本共振周波数で決まる波長の約
8.6%に相当する100μmである。また、ニッケル
薄膜は、液体ナトリウムに対するぬれ性を改善するため
のもので、蒸着やスパッタなどにより形成する。液体ナ
トリウムに対するぬれ性が良好なものであれば、ニッケ
ル薄膜以外の金属薄膜を使用しても良い。
On the front surface of the silver electrode 2a on the wave transmitting / receiving surface side of the piezoelectric body 1, there is provided a stainless plate 4 (protective member) having a nickel thin film (not shown) formed thereon. This stainless steel plate 4
Is for preventing corrosion due to sodium, and its thickness is 100 μm, which corresponds to about 8.6% of the wavelength determined by the fundamental resonance frequency of the piezoelectric element. The nickel thin film is for improving the wettability with respect to liquid sodium, and is formed by vapor deposition or sputtering. A metal thin film other than the nickel thin film may be used as long as it has good wettability to liquid sodium.

【0021】一方、銀電極2bの前面には音響インピー
ダンス10Mraylのポーラスセラミックからなるバ
ッキング部材3が設けられている。このバッキング部材
3は圧電体1を支持するとともに、圧電体1の銀電極2
a側から放射される超音波を吸収し、圧電体1の銀電極
2側から放射される超音波だけが伝達媒体に伝わるよう
にしている。また、銀電極2bはケーブル6と導通が取
れている。
On the other hand, on the front surface of the silver electrode 2b, there is provided a backing member 3 made of porous ceramic having an acoustic impedance of 10 Mrayl. The backing member 3 supports the piezoelectric body 1 and the silver electrode 2 of the piezoelectric body 1.
The ultrasonic waves emitted from the a side are absorbed, and only the ultrasonic waves emitted from the silver electrode 2 side of the piezoelectric body 1 are transmitted to the transmission medium. The silver electrode 2b is electrically connected to the cable 6.

【0022】銀電極2aとステンレス板4、並びに銀電
極2bとバッキング部材3は、それぞれ、約800℃の
熱処理により銀ろう5a,5bにより接合されている。
この後、圧電体1に分極処理を施した。また、圧電体
1,銀電極2a,2b,バッキング部材3等は、ステン
レスで形成され、銀電極2aと導通が取れた筐体7内に
収容されている。
The silver electrode 2a and the stainless steel plate 4, and the silver electrode 2b and the backing member 3 are joined by silver solders 5a and 5b by heat treatment at about 800.degree.
Then, the piezoelectric body 1 was polarized. Further, the piezoelectric body 1, the silver electrodes 2a and 2b, the backing member 3, etc. are made of stainless steel, and are housed in a housing 7 that is electrically connected to the silver electrode 2a.

【0023】このように構成された超音波プローブを用
いてパルスエコー法により液体ナトリウム中に設置した
ステンレス板からの反射波を測定した。図2はその測定
結果を示し、図2(a)は時間領域で表示された反射
波、図2(b)は周波数領域で表示された反射波を表し
ている。この図2から周波数スペクトラムはリップルの
ない単峰特性となっており、反射波(波形a)は素直な
ダンピング特性となり、それは検波後の包絡線(波形
b)に反映されていることが分かる。
A reflected wave from a stainless steel plate placed in liquid sodium was measured by the pulse echo method using the ultrasonic probe thus constructed. FIG. 2 shows the measurement results, FIG. 2 (a) shows the reflected wave displayed in the time domain, and FIG. 2 (b) shows the reflected wave displayed in the frequency domain. From FIG. 2, it can be seen that the frequency spectrum has a single-peak characteristic with no ripple, the reflected wave (waveform a) has a straight damping characteristic, and this is reflected in the envelope (waveform b) after detection.

【0024】図3(b)にステンレス板の厚さが圧電素
子の基本共振周波数で決まる波長の約0.01%に相当
する1μmの場合の周波数スペクトラムを示す。比較の
ため、図3(a)に図2(b)の結果を図3(b)と同
じスケールで表示したものを示す。1μmの場合、12
5〜200(×104 Hz)の領域で双峰性が現われる
が、その領域ではレベルが低いので、100μmの場合
と同様に良好な反射波とみなせる。
FIG. 3B shows a frequency spectrum when the thickness of the stainless steel plate is 1 μm, which corresponds to about 0.01% of the wavelength determined by the fundamental resonance frequency of the piezoelectric element. For comparison, FIG. 3 (a) shows the result of FIG. 2 (b) displayed on the same scale as FIG. 3 (b). 12 for 1 μm
Bimodality appears in the region of 5 to 200 (× 10 4 Hz), but since the level is low in that region, it can be regarded as a good reflected wave as in the case of 100 μm.

【0025】本発明者等の研究によれば、このような良
好な反射波を得るには、ステンレス板4の厚さが圧電素
子の基本共振周波数で決まる波長の10%以下であれば
良いことが分かった。10%を越えると、例えば、26
%(厚さ300μm)の場合には、図4(b)に示すよ
うに、周波数スペクトラムが双峰性となり、波形も両方
の周波数成分が重なり合って長くなった。検波後の包絡
線で比べると、図4(a)より、−20dBまでのビー
ム幅は本実施例に比べて20%以上も長くなっているこ
とが分かる。
According to the study by the present inventors, in order to obtain such a good reflected wave, the thickness of the stainless steel plate 4 should be 10% or less of the wavelength determined by the fundamental resonance frequency of the piezoelectric element. I understood. If it exceeds 10%, for example, 26
% (Thickness 300 μm), as shown in FIG. 4B, the frequency spectrum was bimodal, and the waveform was also long due to overlapping of both frequency components. Comparing the envelopes after detection, it can be seen from FIG. 4A that the beam width up to −20 dB is 20% or more longer than that of this embodiment.

【0026】図5は、従来のマッチング層を備えた超音
波プローブについての測定結果である。この超音波プロ
ーブの具体的な構造を図6に示す。基本構造は図1の超
音波プローブと同じで、圧電体1とステンレス板4との
間にマッチング層8が設けられている点が異なる。マッ
チング層8としては音響インピーダンスが約12Mra
ylのガラス板を使用している。また、ステンレス板4
の厚さは、圧電素子の基本共振周波数で決まる波長の約
8.6%に相当する100μmで、図1の超音波プロー
ブのそれと同じである。また、銀電極2aとマッチング
層8、銀電極2bとバッキング部材3、並びにステンレ
ス板4とマッチング層8は、ぞれぞれ、銀ろう5a,5
b,5cにより接合されている。
FIG. 5 shows the measurement results of an ultrasonic probe having a conventional matching layer. The specific structure of this ultrasonic probe is shown in FIG. The basic structure is the same as that of the ultrasonic probe of FIG. 1 except that a matching layer 8 is provided between the piezoelectric body 1 and the stainless steel plate 4. The matching layer 8 has an acoustic impedance of about 12 Mra.
The glass plate of yl is used. Also, stainless plate 4
Has a thickness of 100 μm, which corresponds to about 8.6% of the wavelength determined by the fundamental resonance frequency of the piezoelectric element, and is the same as that of the ultrasonic probe of FIG. Further, the silver electrode 2a and the matching layer 8, the silver electrode 2b and the backing member 3, and the stainless steel plate 4 and the matching layer 8 are silver brazes 5a, 5 respectively.
It is joined by b and 5c.

【0027】マッチング層8を備えた超音波プローブの
場合、ステンレス板4の厚さが本実施例のそれと同様に
基本共振周波数で決まる波長の10%以下であっても、
図5に示すように、本実施例の場合に比べて、波連長が
長く、周波数スペクトラムが双峰特性となり、−20d
Bまでのビーム幅は約2倍も長くなっている。
In the case of the ultrasonic probe provided with the matching layer 8, even if the thickness of the stainless steel plate 4 is 10% or less of the wavelength determined by the fundamental resonance frequency as in the case of this embodiment,
As shown in FIG. 5, as compared with the case of the present embodiment, the wave length is long, the frequency spectrum has a bimodal characteristic, and −20d
The beam width up to B is about twice as long.

【0028】したがって、本実施例によれば、ステンレ
ス板4によって液体ナトリウムに対する耐性が高くな
り、しかも、ステンレス板4の厚さを上記条件に合わせ
ているので、分解能も高くなる。
Therefore, according to the present embodiment, the stainless steel plate 4 has high resistance to liquid sodium, and since the thickness of the stainless steel plate 4 is adjusted to the above conditions, the resolution is also high.

【0029】このようにマッチング層がない超音波プロ
ーブにおいて、ステンレス板4の厚さを圧電素子の基本
共振周波数で決まる波長の10%以下にすることによ
り、良好な反射波が得られるのは次のように考えられ
る。
In such an ultrasonic probe having no matching layer, by setting the thickness of the stainless steel plate 4 to 10% or less of the wavelength determined by the fundamental resonance frequency of the piezoelectric element, a good reflected wave can be obtained as follows. Can be thought of as.

【0030】本実施例の場合、ステンレス板4の厚さが
圧電素子の基本共振周波数で決まる波長の10%以下で
あるので、圧電素子の厚さで決まる基本共振周波数と、
圧電素子とステンレス板4とを合わせた厚さで決まる基
本共振周波数とが近接する。更に、圧電素子とステンレ
ス板4との音響インピーダンスの差が小さいため、両者
の界面での反射は5〜10%と小さい。
In the case of this embodiment, since the thickness of the stainless steel plate 4 is 10% or less of the wavelength determined by the basic resonance frequency of the piezoelectric element, the basic resonance frequency determined by the thickness of the piezoelectric element,
The basic resonance frequency determined by the combined thickness of the piezoelectric element and the stainless steel plate 4 is close to each other. Furthermore, since the difference in acoustic impedance between the piezoelectric element and the stainless steel plate 4 is small, the reflection at the interface between the two is as small as 5 to 10%.

【0031】このため、超音波プローブの機械的共振尖
鋭度で決まる帯域(Q値)内に圧電体素子およびステン
レス板4の基本共振周波数が入り、周波数スペクトラム
にはリップルがはいらずに単峰特性となる。
For this reason, the basic resonance frequency of the piezoelectric element and the stainless steel plate 4 falls within the band (Q value) determined by the mechanical resonance sharpness of the ultrasonic probe, and the frequency spectrum has no ripple and has a single peak characteristic. Becomes

【0032】更に、3次高調波成分においては、ステン
レス板4の厚さが基本共振の場合の3倍になるので、圧
電体1のみの共振、並びに圧電体1とステンレス板4と
を合わせた共振は、単峰の周波数スペクトラムとはなら
ず双峰となる。この結果、基本共振に比べてスペクトラ
ムのピーク値が下がり(−10dB以下となることが確
認された)、不要振動としての影響が小さくなる。
Further, in the case of the third harmonic component, the thickness of the stainless steel plate 4 is three times that in the case of the fundamental resonance, so that the resonance of only the piezoelectric body 1 and the piezoelectric body 1 and the stainless steel plate 4 are combined. The resonance does not have a single-peaked frequency spectrum but a double-peaked one. As a result, the peak value of the spectrum is lower than that of the fundamental resonance (it was confirmed to be -10 dB or less), and the effect of unnecessary vibration is reduced.

【0033】したがって、反射波は基本共振以外の周波
数成分が少なく波連長の短いものとなり、分解能が高く
なる。なお、本実施例では、シングルプローブ構造のも
のにつてい説明したが、本発明は図7に示すようなアレ
イプローブ構造のものや、振動子を2次元状に配置した
マトリクスプローブ構造のものに対しても適用できる。
Therefore, the reflected wave has few frequency components other than the fundamental resonance, and has a short wave length, resulting in high resolution. In the present embodiment, the single probe structure has been described, but the present invention has an array probe structure as shown in FIG. 7 and a matrix probe structure in which transducers are two-dimensionally arranged. It can also be applied to.

【0034】図8は、本発明の他の実施例に係る超音波
プローブの構造を示す図である。図中、11は直径が1
0mm,厚さが420μmのディスク状の圧電体を示し
ている。この圧電体11は、キュリー点360℃,比誘
電率250のチタン酸鉛系セラミックからなり、その基
本共振周波数は5MHzである。圧電体11は厚さ5μ
mの銀電極12a,12bで挾持され、これら圧電体1
1,銀電極12a,12bによって圧電素子が形成され
ている。
FIG. 8 is a view showing the structure of an ultrasonic probe according to another embodiment of the present invention. In the figure, 11 has a diameter of 1
A disk-shaped piezoelectric body having a thickness of 0 mm and a thickness of 420 μm is shown. The piezoelectric body 11 is made of lead titanate-based ceramics having a Curie point of 360 ° C. and a relative dielectric constant of 250, and its basic resonance frequency is 5 MHz. Piezoelectric body 11 has a thickness of 5μ
m of the silver electrodes 12a and 12b, the piezoelectric body 1
A piezoelectric element is formed by the silver electrodes 12a and 12b.

【0035】圧電体11の送受波面側の銀電極12aの
前面にはマッチング層18としてのガラス板が設けられ
ている。このガラス板の音響インピーダンスは12Mr
aylで、厚さは圧電素子の基本共振周波数で決まる波
長の1/4に相当する約300μmである。
A glass plate as a matching layer 18 is provided on the front surface of the silver electrode 12a on the wave transmitting / receiving surface side of the piezoelectric body 11. The acoustic impedance of this glass plate is 12 Mr.
In ayl, the thickness is about 300 μm, which corresponds to ¼ of the wavelength determined by the fundamental resonance frequency of the piezoelectric element.

【0036】マッチング層18の前面にはニッケル薄膜
(不図示)が蒸着されたステンレス板14(保護部材)
が設けられている。このステンレス板14の厚さは、圧
電素子の基本共振周波数で決まる波長の約1/2に相当
する580μmである。
A stainless steel plate 14 (protective member) having a nickel thin film (not shown) deposited on the front surface of the matching layer 18
Is provided. The thickness of the stainless steel plate 14 is 580 μm, which corresponds to about ½ of the wavelength determined by the fundamental resonance frequency of the piezoelectric element.

【0037】また、銀電極12bの前面には音響インピ
ーダンス10Mraylのポーラスセラミックからなる
バッキング部材13が設けられている。また、銀電極1
2bはケーブル16と導通が取れている。
On the front surface of the silver electrode 12b, there is provided a backing member 13 made of porous ceramic having an acoustic impedance of 10 Mrayl. Also, silver electrode 1
2b is electrically connected to the cable 16.

【0038】銀電極12aとマッチング層18、銀電極
12bとバッキング部材13、並びにステンレス板14
とマッチング層18は、ぞれぞれ、約800℃の熱処理
により銀ろう15a,15b,15cにより接合されて
いる。この後、圧電体11に分極処理を施した。また、
圧電体11,銀電極12a,12b,バッキング部材1
3,マッチング層18等は、ステンレスで形成され、銀
電極12aと導通が取れた筐体17内に収容されてい
る。
Silver electrode 12a and matching layer 18, silver electrode 12b and backing member 13, and stainless plate 14
The matching layer 18 and the matching layer 18 are joined by silver brazing materials 15a, 15b, 15c by heat treatment at about 800 ° C., respectively. Then, the piezoelectric body 11 was polarized. Also,
Piezoelectric body 11, silver electrodes 12a and 12b, backing member 1
3, the matching layer 18 and the like are made of stainless steel, and are housed in a housing 17 that is electrically connected to the silver electrode 12a.

【0039】このように構成された超音波プローブを用
いてパルスエコー法により200℃の液体ナトリウム中
に設置したステンレス板からの反射波を測定した。図1
0はその測定結果を示している。この図10から周波数
スペクトラムは中心周波数約5MHzの単峰特性で広帯
域なものとなり、また、反射波はダンピング特性の優れ
たものとなっていることが分かる。
The reflected wave from the stainless steel plate placed in the liquid sodium at 200 ° C. was measured by the pulse echo method using the ultrasonic probe thus constructed. Figure 1
0 indicates the measurement result. It can be seen from FIG. 10 that the frequency spectrum has a single-peaked characteristic with a center frequency of about 5 MHz and has a wide band, and the reflected wave has excellent damping characteristics.

【0040】本発明者等の研究によれば、このような良
好な反射波を得るには、ステンレス板14の厚さが圧電
素子の基本共振周波数で決まる波長のn/2倍(nは自
然数)であれば良いことが分かった。n/2倍以外、例
えば、1/12倍(基本共振周波数で決まる波長8.6
%)の場合には、図11(b)に示すように、周波数ス
ペクトラムが双峰性となり、本実施例のように基本共振
周波数5MHzでなく、2.5MHzの低周波成分が支
配的となり、また、本実施例に比べて、レベルが約半分
になっていることが分かる。また、図11(a)から本
実施例に比べて波連長が約15%長くなっていることが
分かる。
According to the research conducted by the present inventors, in order to obtain such a good reflected wave, the thickness of the stainless plate 14 is n / 2 times the wavelength determined by the fundamental resonance frequency of the piezoelectric element (n is a natural number). ) Was found to be good. Other than n / 2 times, for example, 1/12 times (wavelength 8.6 determined by fundamental resonance frequency)
%), The frequency spectrum becomes bimodal, as shown in FIG. 11B, and the low frequency component of 2.5 MHz becomes dominant instead of the fundamental resonance frequency of 5 MHz as in the present embodiment. Further, it can be seen that the level is about half that of the present embodiment. Further, it can be seen from FIG. 11A that the wave length is about 15% longer than that of the present embodiment.

【0041】また、ステンレス板14の厚さが圧電素子
の基本共振周波数で決まる波長の約1/4倍の300μ
mの場合には、図12(b)に示すように、周波数スペ
クトラムは5MHz成分をほとんど含まず、そのレベル
は本実施例のそれの約25%と非常に低くなっているこ
とが分かる。また、図12(a)に示すように、本実施
例に比べて波連長が約70%も長くなっていることが分
かる。
Further, the thickness of the stainless plate 14 is 300 μ, which is about ¼ times the wavelength determined by the fundamental resonance frequency of the piezoelectric element.
In the case of m, as shown in FIG. 12B, it can be seen that the frequency spectrum contains almost no 5 MHz component, and the level thereof is as low as about 25% of that of the present embodiment. Further, as shown in FIG. 12A, it can be seen that the wave length is about 70% longer than that of the present embodiment.

【0042】したがって、本実施例によれば、ステンレ
ス板14によって液体ナトリウムに対する耐性が高くな
り、しかも、ステンレス板14の厚さを上記条件に合わ
せていので、分解能も高くなる。
Therefore, according to the present embodiment, the stainless steel plate 14 has high resistance to liquid sodium, and since the thickness of the stainless steel plate 14 is adjusted to the above conditions, the resolution is also high.

【0043】このようにマッチング層18を備えた超音
波プローブにおいて、ステンレス板14の厚さを圧電素
子の基本共振周波数で決まる波長のn/2倍(nは自然
数)にすることにより、良好な反射波が得られるのは次
のように考えられる。
In the ultrasonic probe having the matching layer 18, the thickness of the stainless plate 14 is set to n / 2 times the wavelength determined by the fundamental resonance frequency of the piezoelectric element (n is a natural number), which is preferable. The reason why the reflected wave is obtained is considered as follows.

【0044】本実施例の超音波プローブにおいて、圧電
体11に駆動パルスが印加されると共振現象が起こり、
粗密波が発生する。この粗密波が伝搬する経路内の任意
の点には、粗波(振幅値が最小の波)と密波(振幅値が
最大の波)とがλ/2v秒の間隔で通過し、この粗密波
がマッチング層18およびステンレス板14を通過した
後に超音波として放射される。ここで、λは波長
[m]、vは音速[m/s]を示している。
In the ultrasonic probe of this embodiment, when a drive pulse is applied to the piezoelectric body 11, a resonance phenomenon occurs,
A compression wave is generated. A coarse wave (wave having a minimum amplitude value) and a dense wave (wave having a maximum amplitude value) pass at an interval of λ / 2v seconds at an arbitrary point in the path along which the compressional wave propagates. The waves are emitted as ultrasonic waves after passing through the matching layer 18 and the stainless plate 14. Here, λ is the wavelength [m] and v is the speed of sound [m / s].

【0045】今、ある時刻にステンレス板14の前面か
ら密波(以下、密波1という)が放射されたと仮定す
る。密波1の一部は、ステンレス板14とナトリウム液
との界面で反射してマッチング層18に向かって伝搬す
る。この反射した波(以下、第1の反射波という)は、
ステンレス板14の音響インピーダンスがナトリウム液
のそれよりも大きいため、180度位相反転したものと
なる。
It is now assumed that a dense wave (hereinafter referred to as dense wave 1) is radiated from the front surface of the stainless steel plate 14 at a certain time. A part of the dense wave 1 is reflected at the interface between the stainless plate 14 and the sodium liquid and propagates toward the matching layer 18. This reflected wave (hereinafter referred to as the first reflected wave) is
Since the acoustic impedance of the stainless steel plate 14 is larger than that of the sodium liquid, the phase is 180 degrees inverted.

【0046】第1の反射波はステンレス板14とマッチ
ング層18との界面に到達すると、その一部は上記界面
で反射し(以下、第2の反射波という)、残りは通過す
る。このとき、ステンレス板14の音響インピーダンス
がマッチング層18のそれよりも大きいため、第1の反
射波と第2の反射波とは位相が180度異なり、第2の
反射波は密波1と同位相になる。また、ステンレス板1
4の厚さは圧電素子の基本共振周波数で決まる波長のn
/2倍(nは自然数)である。この結果、第2の反射波
は、圧電体11からステンレス板14とマッチング層1
8との界面に伝搬してきた密波1の次の密波2と位相が
合って重なり合い、この合成波がステンレス板14の前
面から放射される。
When the first reflected wave reaches the interface between the stainless plate 14 and the matching layer 18, a part of the first reflected wave is reflected at the interface (hereinafter referred to as the second reflected wave) and the rest passes. At this time, since the acoustic impedance of the stainless steel plate 14 is larger than that of the matching layer 18, the phases of the first reflected wave and the second reflected wave are different by 180 degrees, and the second reflected wave is the same as the dense wave 1. Become in phase. Also, stainless plate 1
The thickness of 4 is n of the wavelength determined by the fundamental resonance frequency of the piezoelectric element.
/ 2 (n is a natural number). As a result, the second reflected wave is transmitted from the piezoelectric body 11 to the stainless plate 14 and the matching layer 1.
The dense wave 1 propagating to the interface with 8 overlaps with the next dense wave 2 in phase, and the composite wave is radiated from the front surface of the stainless plate 14.

【0047】したがって、プローブの帯域で決まる基本
共振周波数の近傍で位相の揃った周波数成分を多く含む
波が放射されので、反射波も良好なものとなる。なお、
本実施例では、シングルプローブ構造のものについて説
明したが、本発明は図9に示すようなアレイプローブ構
造のものや、振動子を2次元状に配置したマトリクスプ
ローブ構造のものに対しても適用できる。図9に示すア
レイプローブでは、マッチング層18は各エレメント毎
に分離していないが、クロストークを低減するために各
エレメント毎に分離しても良い。
Therefore, since a wave containing a large number of frequency components whose phases are uniform is radiated in the vicinity of the fundamental resonance frequency determined by the band of the probe, the reflected wave becomes good. In addition,
In this embodiment, a single probe structure is explained, but the present invention is also applied to an array probe structure as shown in FIG. 9 and a matrix probe structure in which transducers are two-dimensionally arranged. it can. In the array probe shown in FIG. 9, the matching layer 18 is not separated for each element, but may be separated for each element in order to reduce crosstalk.

【0048】また、マッチング層18の厚さは圧電素子
の基本共振周波数で決まる波長の1/4に限定されるも
のではなく、要は基本共振周波数で決まる波長の(2m
−1)/4倍(mは自然数)であれば良い。
The thickness of the matching layer 18 is not limited to 1/4 of the wavelength determined by the fundamental resonance frequency of the piezoelectric element, and the point is that the thickness of the wavelength determined by the fundamental resonance frequency is (2 m).
It may be -1) / 4 times (m is a natural number).

【0049】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、ろう材とし
て銀を用いたが、材質には特に制限はなく、例えば、銅
や活性材としてチタンを用いても良い。また、ろう材を
電極と兼ねても差支えないのであれば予め圧電体の両面
に電極を形成しておかなくても良い。
The present invention is not limited to the above embodiment. For example, although silver is used as the brazing material in the above embodiments, the material is not particularly limited, and for example, copper or titanium may be used as the active material. Further, if the brazing material may also serve as the electrode, it is not necessary to form electrodes on both surfaces of the piezoelectric body in advance.

【0050】また、支持の上で特に問題がなければ、バ
ッキング部材の代わりにエアバックを用いても良い。ま
た、本実施例では、液体ナトリウムに対する保護部材と
してステンレス板を用いたがセラミック板などの他のも
のを使用しても良い。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施できる。
If there is no particular problem in terms of support, an air bag may be used instead of the backing member. Further, in this embodiment, the stainless steel plate is used as the protective member against the liquid sodium, but other material such as a ceramic plate may be used. In addition, various modifications can be made without departing from the scope of the present invention.

【0051】[0051]

【発明の効果】以上詳述したように本発明によれば、液
体ナトリウム中で使用しても腐食が起こりに難く、且つ
分解能の高い超音波プローブが得られる。
As described in detail above, according to the present invention, it is possible to obtain an ultrasonic probe which is resistant to corrosion even when used in liquid sodium and has high resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る超音波プローブの構造
を示す図。
FIG. 1 is a diagram showing a structure of an ultrasonic probe according to an embodiment of the present invention.

【図2】図1の超音波プローブのパルスエコー特性を示
す図。
FIG. 2 is a diagram showing pulse echo characteristics of the ultrasonic probe of FIG.

【図3】図1の超音波プローブにおいて、ステンレス板
の厚さが基本共振周波数で決まる波長の約0.001%
の場合のパルスエコー特性を示す図。
3] In the ultrasonic probe of FIG. 1, the thickness of the stainless steel plate is about 0.001% of the wavelength determined by the fundamental resonance frequency.
The figure which shows the pulse echo characteristic in the case of.

【図4】図1の超音波プローブにおいて、ステンレス板
の厚さが基本共振周波数で決まる波長の26%の場合の
パルスエコー特性を示す図。
FIG. 4 is a diagram showing pulse echo characteristics when the thickness of the stainless steel plate is 26% of the wavelength determined by the fundamental resonance frequency in the ultrasonic probe of FIG.

【図5】従来のマッチング層を備えた超音波プローブの
構造を示す図。
FIG. 5 is a view showing a structure of an ultrasonic probe including a conventional matching layer.

【図6】図5の超音波プローブのパルスエコー特性を示
す図。
6 is a diagram showing pulse echo characteristics of the ultrasonic probe of FIG.

【図7】本発明が適用されたアレイプローブの構造を示
す斜視図。
FIG. 7 is a perspective view showing the structure of an array probe to which the present invention is applied.

【図8】本発明の他の実施例に係る超音波プローブの構
造を示す図。
FIG. 8 is a view showing the structure of an ultrasonic probe according to another embodiment of the present invention.

【図9】本発明が適用されたアレイプローブの構造を示
す斜視図。
FIG. 9 is a perspective view showing the structure of an array probe to which the present invention is applied.

【図10】図8の超音波プローブのパルスエコー特性を
示す図。
10 is a diagram showing pulse echo characteristics of the ultrasonic probe of FIG.

【図11】図8の超音波プローブにおいて、ステンレス
板の厚さが基本共振周波数で決まる波長の1/12倍の
場合のパルスエコー特性を示す図。
11 is a diagram showing pulse echo characteristics when the thickness of the stainless steel plate is 1/12 times the wavelength determined by the fundamental resonance frequency in the ultrasonic probe of FIG.

【図12】図8の超音波プローブにおいて、ステンレス
板の厚さが基本共振周波数で決まる波長の1/4倍の場
合のパルスエコー特性を示す図。
FIG. 12 is a diagram showing pulse echo characteristics when the thickness of the stainless steel plate is 1/4 times the wavelength determined by the fundamental resonance frequency in the ultrasonic probe of FIG.

【符号の説明】[Explanation of symbols]

1…圧電体 2,2a…銀電極 3…バッキング部材 4…ステンレス板(保護部材) 5,5a…銀ろう 6…ケーブル 7…筐体 8…マッチング層 11…圧電体 12,12a…銀電極 13…バッキング部材 14…ステンレス板(保護部材) 15,15a…銀ろう 16…ケーブル 17…筐体 18…マッチング層 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 2,2a ... Silver electrode 3 ... Backing member 4 ... Stainless plate (protective member) 5,5a ... Silver braze 6 ... Cable 7 ... Case 8 ... Matching layer 11 ... Piezoelectric body 12,12a ... Silver electrode 13 ... backing member 14 ... stainless steel plate (protective member) 15, 15a ... silver brazing 16 ... cable 17 ... housing 18 ... matching layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液体ナトリウム中で使用される超音波プロ
ーブであって、超音波の送受を行なう圧電素子の送受波
面側に、厚さが前記圧電素子の基本共振周波数で決まる
波長の10%以下である耐液体ナトリウム用の保護部材
が設けられていることを特徴とする超音波プローブ。
1. An ultrasonic probe used in liquid sodium, the thickness of which is 10% or less of a wavelength determined by a fundamental resonance frequency of the piezoelectric element on the wave transmitting / receiving surface side of the piezoelectric element for transmitting / receiving ultrasonic waves. 2. An ultrasonic probe, characterized in that a protective member for liquid sodium resistance is provided.
【請求項2】液体ナトリウム中で使用される超音波プロ
ーブであって、超音波の送受を行なう圧電素子の送受波
面側に、厚さが前記圧電素子の基本共振周波数で決まる
波長の略(2m−1)/4倍(mは自然数)であるマッ
チング層が設けられ、このマッチング層の前面に、厚さ
が前記圧電素子の基本共振周波数で決まる波長の略n/
2倍(nは自然数)である耐液体ナトリウム用の保護部
材が設けられていることを特徴とする超音波プローブ。
2. An ultrasonic probe used in liquid sodium, wherein a thickness of a piezoelectric element for transmitting and receiving ultrasonic waves is approximately 2 m at a wavelength determined by a fundamental resonance frequency of the piezoelectric element. -1) / 4 times (m is a natural number) matching layer is provided, and the thickness of the matching layer is approximately n / n of the wavelength determined by the fundamental resonance frequency of the piezoelectric element.
An ultrasonic probe, which is provided with a protection member for liquid sodium resistance that is twice (n is a natural number).
JP5102694A 1993-04-28 1993-04-28 Ultrasonic probe Pending JPH06308104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5102694A JPH06308104A (en) 1993-04-28 1993-04-28 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5102694A JPH06308104A (en) 1993-04-28 1993-04-28 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH06308104A true JPH06308104A (en) 1994-11-04

Family

ID=14334369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5102694A Pending JPH06308104A (en) 1993-04-28 1993-04-28 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH06308104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749398A (en) * 1993-08-06 1995-02-21 Toshiba Corp Ultrasonic imaging system
JPH09126844A (en) * 1995-10-18 1997-05-16 Endress & Hauser Frohtec Ag Galvanic electrode of electromagnetic flowmeter
JPH09245993A (en) * 1996-03-04 1997-09-19 Anelva Corp Plasma processing device, and manufacture of antenna
WO2006135067A1 (en) * 2005-06-16 2006-12-21 National University Corporation Okayama University Transducer and measuring instrument comprising the same
JP2008085413A (en) * 2006-09-26 2008-04-10 Nippon Dempa Kogyo Co Ltd Ultrasonic probe and manufacturing method thereof
KR20170139698A (en) * 2015-05-11 2017-12-19 메저먼트 스페셜티스, 인크. An impedance matching layer for ultrasonic transducers having a metallic protective structure
JP2018512743A (en) * 2015-02-05 2018-05-17 イオニクス アドバンスト テクノロジーズ リミテッドIonix Advanced Technologies Ltd Piezoelectric transducer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749398A (en) * 1993-08-06 1995-02-21 Toshiba Corp Ultrasonic imaging system
JPH09126844A (en) * 1995-10-18 1997-05-16 Endress & Hauser Frohtec Ag Galvanic electrode of electromagnetic flowmeter
JPH09245993A (en) * 1996-03-04 1997-09-19 Anelva Corp Plasma processing device, and manufacture of antenna
WO2006135067A1 (en) * 2005-06-16 2006-12-21 National University Corporation Okayama University Transducer and measuring instrument comprising the same
JP4734657B2 (en) * 2005-06-16 2011-07-27 国立大学法人 岡山大学 Transducer and measuring device provided with the transducer
JP2008085413A (en) * 2006-09-26 2008-04-10 Nippon Dempa Kogyo Co Ltd Ultrasonic probe and manufacturing method thereof
JP2018512743A (en) * 2015-02-05 2018-05-17 イオニクス アドバンスト テクノロジーズ リミテッドIonix Advanced Technologies Ltd Piezoelectric transducer
US10730074B2 (en) 2015-02-05 2020-08-04 Ionix Advanced Technologies Ltd Piezoelectric transducers
KR20170139698A (en) * 2015-05-11 2017-12-19 메저먼트 스페셜티스, 인크. An impedance matching layer for ultrasonic transducers having a metallic protective structure
JP2018520547A (en) * 2015-05-11 2018-07-26 メジャメント スペシャリティーズ, インコーポレイテッド Impedance matching layer for ultrasonic transducer with metallic protective structure
EP3295494A4 (en) * 2015-05-11 2019-03-20 Measurement Specialties, Inc. Impedance matching layer for ultrasonic transducers with metallic protection structure
US10326072B2 (en) 2015-05-11 2019-06-18 Measurement Specialties, Inc. Impedance matching layer for ultrasonic transducers with metallic protection structure
CN107580721A (en) * 2015-05-11 2018-01-12 测量专业股份有限公司 Impedance matching layer for the ultrasonic transducer with metal coating structure

Similar Documents

Publication Publication Date Title
EP0602949A2 (en) Curvilinear interleaved longitudinal-mode ultrasound transducers
Hutchins et al. Air-coupled piezoelectric detection of laser-generated ultrasound
JPH06308104A (en) Ultrasonic probe
US5446333A (en) Ultrasonic transducers
US4509153A (en) Resolution transducers, systems and methods for the transmission and/or reception of waves propagated by vibration
US5302878A (en) High-frequency acoustic rheometer and device to measure the viscosity of a fluid using this rheometer
EP0750469B1 (en) Low profile intravascular ultrasound imaging transducer
US4995260A (en) Nondestructive material characterization
Fay et al. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration
Draeger et al. Acoustic time reversal with mode conversion at a solid-fluid interface
JP2004524536A (en) High Frequency Ultrasonic Measurement of Partial Layer Thickness of Thin-Walled Tube by Contact Method
Saito et al. Selective detection of second harmonic sound generated at the focal region in a finite amplitude focusing field
Foster et al. Cylindrical transducer scatter scanner
Maslov et al. A new focusing ultrasonic transducer and two foci acoustic lens for acoustic microscopy
JPH0783621A (en) Method for measuring growth layer thcikness of pearl
Redwood Problems in the propagation of ultrasonic pulses in solids
Duquennoy et al. Observation of V (z) curves with multiple echoes
Saito Nonlinearly generated second harmonic sound in a focused beam reflected from free surface
Khimunin On the ultrasound diffraction losses for circular transducers of different radii
JPH0534880B2 (en)
Kittinger et al. Improvement of echo shape in low impedance materials
Lee et al. Measurement of elastic constants and mass density by acoustic microscopy
Anson et al. On the problem of coupling of ultrasonic receivers to layered structures for process control
JPS6030298A (en) Ultrasonic transceiver
Claus et al. Acoustooptic pulse-echo transducer system