JPH06308000A - Deterioration diagnostic method for dielectric material - Google Patents

Deterioration diagnostic method for dielectric material

Info

Publication number
JPH06308000A
JPH06308000A JP10204093A JP10204093A JPH06308000A JP H06308000 A JPH06308000 A JP H06308000A JP 10204093 A JP10204093 A JP 10204093A JP 10204093 A JP10204093 A JP 10204093A JP H06308000 A JPH06308000 A JP H06308000A
Authority
JP
Japan
Prior art keywords
deterioration
insulating material
value
tensile strength
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10204093A
Other languages
Japanese (ja)
Inventor
Susumu Kinoshita
晋 木下
Toshio Shimizu
敏夫 清水
Masahiko Oishi
正彦 大石
Isao Jinnai
功 陣内
Kenichi Sato
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10204093A priority Critical patent/JPH06308000A/en
Publication of JPH06308000A publication Critical patent/JPH06308000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To diagnose the deterioration of a dielectric material easily and positively by comparing the tensile strength of the dielectric material under initial condition and that after deterioration for a predetermined, time or comparing the water content under initial condition with that after deterioration for a predetermined time. CONSTITUTION:The tensile strength of a dielectric material, especially of a laminated dielectric material, lowers as the material deteriorates wherein the fluctuation is constant up to some value and thereby the maximum and minimum value, as well as the average value, can be estimated. But the fluctuation increases abruptly at some value. In particular, exfoliation takes place in a laminated material at some value and a decision is made that the service life is close to the end while taking account of the worst case. When the some value is recognized as the end of service life and the time thereof is estimated, deterioration of material can be diagnosed positively. A definite correlation exists between the tensile strength and the water absorbing capacity, and the deterioration of dielectric material is diagnosed by setting the time when the fluctuation of tensile force increases at the time when the water absorbing capacity decreases below some value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁材料の劣化診断方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing deterioration of insulating material.

【0002】[0002]

【従来の技術】フェノール樹脂積層板などの絶縁材料
は、受配電盤を始めとして電気導電部の絶縁材料として
広く用いられている。これらの絶縁材料は、長年使用す
るうちに電気絶縁特性が低下して絶縁不良となり、最終
的には事故につながるおそれがある。この絶縁特性の低
下は絶縁材料の経年劣化によるもので、稼働状況を使用
環境としての温度、湿度、ガスなどが影響し、特に温度
が経年劣化の進行を加速する。
2. Description of the Related Art Insulating materials such as phenol resin laminates are widely used as insulating materials for electric conductive parts such as power receiving and distribution boards. These insulating materials may have poor electrical insulation characteristics over a long period of use, resulting in poor insulation, which may eventually lead to an accident. This deterioration of the insulation characteristics is due to the deterioration of the insulating material over time, and the operating conditions are affected by the temperature, humidity, gas, etc. as the usage environment, and particularly the temperature accelerates the progress of deterioration over time.

【0003】一般に絶縁材料の劣化診断は、外観検査に
よるクラック発生の有無、寸法変化、変色状態から判断
したり、またサンプル調査による機械特性試験や電気特
性試験など多くの試験を実施して判断している。ここで
得られたデータの多くは、温度を加味した使用年数との
関わりについてまとめている。
Generally, the deterioration diagnosis of the insulating material is judged by the presence / absence of cracks, dimensional change and discoloration state by visual inspection, and by conducting many tests such as mechanical property test and electrical property test by sample investigation. ing. Most of the data obtained here summarizes the relationship with the number of years of use, including temperature.

【0004】絶縁材料の電気絶縁特性は長年使用するこ
とによって低下し、物理的特性が低下して構造材料とし
て耐え得なくなったとき、あるいは耐電圧特性が基準値
以下となったときに、絶縁材料としては使用し得ない、
すなわち絶縁不良と判断される。絶縁不良となる時期
は、劣化条件としての使用環境によって左右され、高
温、高湿度雰囲気等の劣化の進行速度の早い雰囲気で
は、早い時期に絶縁不良となる。絶縁不良は最終的に事
故につながるおそれがあるため、事故にいたる前に絶縁
不良を推定することは重要である。
The electrical insulation characteristics of the insulating material are deteriorated due to long-term use, and when the physical characteristics are deteriorated and the structural material cannot withstand, or the withstand voltage characteristics are below a reference value, the insulating material is Cannot be used as
That is, it is determined that the insulation is defective. The time when the insulation failure occurs depends on the use environment as the deterioration condition, and the insulation failure occurs early in an atmosphere such as a high temperature and high humidity atmosphere where the deterioration progresses at a high speed. Since poor insulation may eventually lead to an accident, it is important to estimate poor insulation before an accident.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の絶
縁材料の劣化診断は、数多くの特性を測定することによ
り総合的に判断する必要がある。さらに、測定した特性
値はばらつきの多い項目も多く、確実に診断することは
簡単なことではない。また経過年数が同じであっても、
電力負荷の高いによる履歴が異なるために劣化の程度が
違う場合は、劣化診断や絶縁不良となるまでの余寿命を
推定することが困難であった。このように使用環境の異
なる雰囲気で使用された絶縁材料の種々の特性を測定
し、データのばらつきをも含めて総合的に劣化の程度を
判断することは多くの経験的知識が必要である。本発明
の目的は、確実に且つ容易に絶縁材料の劣化を診断でき
る絶縁材料の診断方法を提供することにある。
However, it is necessary to comprehensively judge deterioration diagnosis of the conventional insulating material by measuring many characteristics. Furthermore, the measured characteristic values often have many variations, and it is not easy to make a reliable diagnosis. Also, even if the number of years elapsed is the same,
When the degree of deterioration is different due to different history due to high power load, it is difficult to diagnose deterioration and estimate the remaining life until insulation failure. As described above, it is necessary to have a lot of empirical knowledge to measure various characteristics of insulating materials used in different atmospheres and to comprehensively judge the degree of deterioration including variations in data. An object of the present invention is to provide a method of diagnosing an insulating material, which can reliably and easily diagnose deterioration of the insulating material.

【0006】[0006]

【課題を解決するための手段および作用】上記目的を達
成するために第1の発明は、絶縁材料の初期状態の引張
強さを設定する過程と、絶縁材料の所定時間劣化後の引
張強さを設定する過程と、これらの引張強さを比較して
絶縁材料の劣化を診断する過程とを有することを要旨と
しているので、種々の特性を測定する必要がなくなる。
In order to achieve the above object, a first aspect of the present invention relates to a process of setting a tensile strength of an insulating material in an initial state and a tensile strength of the insulating material after deterioration for a predetermined time. Since the point is to have a process of setting and a process of diagnosing the deterioration of the insulating material by comparing these tensile strengths, it is not necessary to measure various characteristics.

【0007】また第2の発明では、絶縁材料の初期状態
の吸水率を設定する過程と、絶縁材料の所定時間劣化後
の吸水率を設定する過程と、これらの吸水率を比較して
絶縁材料の劣化を診断する過程とを有することを要旨と
しているので、第1の発明と同様に種々の特性を測定す
る必要がなくなる。
In the second aspect of the invention, the process of setting the water absorption rate of the insulating material in the initial state, the process of setting the water absorption rate of the insulating material after deterioration for a predetermined time, and comparing these water absorption rates, the insulating material is compared. Therefore, it is not necessary to measure various characteristics as in the first aspect of the invention, since it has a process of diagnosing the deterioration of.

【0008】[0008]

【実施例】以下、本発明の一実施例を詳細に説明する。
絶縁材料、特に積層絶縁材料における引張強さは、劣化
が促進することにより低下が認められ、ある値まではそ
のばらつきが一定であるので、劣化に対する引張強さを
推定することができる。すなわち、平均的な値はもとよ
り最高値、最低値をも推定でき、これは実験によって確
認している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below.
The tensile strength of an insulating material, particularly a laminated insulating material, is recognized to decrease due to accelerated deterioration, and the variation is constant up to a certain value, so that the tensile strength against deterioration can be estimated. That is, not only the average value but also the maximum value and the minimum value can be estimated, which is confirmed by experiments.

【0009】しかしある値以下になると、ばらつきは急
激に大きくなり、劣化に対する平均的な値を推定するこ
とはできても、その最低値を推定することは困難にな
る。絶縁材料、特に積層材料においては、実際に使用さ
れる状況にもよるが、引張強さが急激に低下することは
万一を考慮し寿命に近いと判断するのが妥当である。そ
こで、絶縁材料、特に積層材料においては、ここで言う
ある値を寿命としこの値になる時期を推定することによ
り、確実に絶縁材料の劣化を診断できる。
However, when the value is less than a certain value, the variation rapidly increases, and although it is possible to estimate the average value for deterioration, it is difficult to estimate the minimum value. In the case of an insulating material, especially a laminated material, it is appropriate to judge that the tensile strength will be drastically decreased, but it will be judged that the tensile strength is close to the life, although it depends on the actual use conditions. Therefore, in the case of an insulating material, particularly a laminated material, the deterioration of the insulating material can be reliably diagnosed by assuming a certain value here as the life and estimating the time when this value is reached.

【0010】ここで、引張強さのばらつきが大きくなっ
た時期を寿命としたが、この理由について説明する。絶
縁材料、特に積層絶縁材料の場合、積層材料間に剥離が
生じた時にその剥離の程度によって引張強さの変わるこ
とを実験により確認している。
Here, the time when the variation in tensile strength becomes large is defined as the life, and the reason will be described. In the case of insulating materials, especially laminated insulating materials, it has been confirmed by experiments that when peeling occurs between laminated materials, the tensile strength changes depending on the degree of peeling.

【0011】絶縁材料、特に積層絶縁材料においては、
積層間内部に剥離が生じたということはこの剥離部分を
起点としてわずかの応力でも剥離が進行することを意味
しており、わずかの剥でも寿命にいたる起点になると考
えたからである。
In insulating materials, especially laminated insulating materials,
The fact that peeling occurred inside the layers means that peeling proceeds from this peeled portion even with a slight stress, and it is considered that even a slight peeling will be the starting point for the life.

【0012】引張試験はこの剥離を検出するのに有効で
あり、引張試験では試験試料を保持する試験治具間に均
一な力が加わるため、この治具間に挟まれた試験試料に
も均一な力が加わる。従って、剥離が生じれば引張強さ
は低下する。
The tensile test is effective for detecting this peeling, and since a uniform force is applied between the test jigs holding the test sample in the tensile test, the test sample sandwiched between the jigs is also uniformly applied. Power is added. Therefore, if peeling occurs, the tensile strength will decrease.

【0013】また、曲げ試験等でこの剥離を検出するこ
とも考えられる。曲げ試験においては、例えばJISに
基づく3点曲げ試験の場合、曲げ試験における中央の治
具のちょうど反対側に剥離を有する試験試料を配しなけ
れば剥離を検出することは不可能である。これは、中央
の治具のちょうど反対側に最大の力が加わるためで、こ
れ以外の場所に剥離があったとしても曲げ強さは変わら
ない。
It is also possible to detect this peeling by a bending test or the like. In the bending test, for example, in the case of a three-point bending test based on JIS, it is impossible to detect the peeling unless a test sample having the peeling is arranged on the opposite side of the central jig in the bending test. This is because the maximum force is applied to the opposite side of the central jig, and the bending strength does not change even if peeling occurs in other places.

【0014】また絶縁材料、特に積層材料においては、
吸水率と引張強さとの間には明確な相関性のあることが
本発明者等の実験により判明し、吸水率を測定すること
により引張強さを推定することができると考えた。つま
り、吸水率がある値以下になった時期を引張強さのばら
つきが大きくなる時期とし、吸水率と引張り強さとの関
係を予め求めておくことにより絶縁材料、特に積層絶縁
材料の劣化を診断することができる。
In the case of insulating materials, especially laminated materials,
It was found by experiments by the present inventors that there is a clear correlation between the water absorption rate and the tensile strength, and it was considered that the tensile strength can be estimated by measuring the water absorption rate. In other words, when the water absorption rate is below a certain value, the variation in tensile strength becomes large, and the relationship between water absorption rate and tensile strength is obtained in advance to diagnose deterioration of insulating materials, especially laminated insulating materials. can do.

【0015】一方、絶縁材料の絶縁不良となる時期、す
なわち引張強さのばらつきが広がる時期を予め吸水率に
換算し設定しておけば、吸水率を測定することにより絶
縁材料の劣化の診断および余寿命が推定できる。
On the other hand, if the time when insulation of the insulating material becomes poor, that is, the time when the variation in tensile strength spreads is converted and set in advance to the water absorption rate, the deterioration of the insulating material can be diagnosed by measuring the water absorption rate. The remaining life can be estimated.

【0016】以上のようにすれば、初期及び種々の電力
負荷条件による経年変化した後の絶縁材料の吸水率およ
び引張強さを測定することにより、種々の特性を測定す
ることなく絶縁材料の劣化程度および寿命を診断するこ
とができる。さらに、予め劣化要因、例えば温度等を加
速して加えた試験試料で評価し、劣化要因と劣化程度を
マトリクスにして埋めたデータベースを用いるようにす
れば寿命に至る過程を明確にすることも可能であり、寿
命に至るまでの時間、つまり余寿命も推定することが可
能となる。
[0016] According to the above, by measuring the water absorption rate and the tensile strength of the insulating material in the initial stage and after aging under various power load conditions, deterioration of the insulating material can be achieved without measuring various characteristics. The degree and life span can be diagnosed. In addition, it is possible to clarify the process that reaches the end of life by using a test sample that has been deteriorated in advance, for example, by accelerating temperature etc. and added and using a database in which deterioration factors and degree of deterioration are filled in as a matrix. Therefore, it is possible to estimate the time to reach the end of life, that is, the remaining life.

【0017】次に、図面を参照してより具体的に説明す
る。図1は、ある電力負荷条件で運用した試験用配電盤
の導体を支持する積層絶縁材料から約30年の長期にわた
って規定時間毎に試験試料を切出し、引張強さおよび吸
水率を測定してプロットしたグラフである。なお、引張
強さおよび吸水率は、JIS K 6911に準拠して
行った。
Next, a more specific description will be given with reference to the drawings. Fig. 1 shows a test sample cut out from a laminated insulating material that supports a conductor of a test switchboard operated under a certain power load condition at regular intervals over a long period of about 30 years, and the tensile strength and water absorption are measured and plotted. It is a graph. The tensile strength and water absorption were measured according to JIS K6911.

【0018】まず(a)のグラフは、横軸に時間の対数
をとり縦軸に引張強さをとっている。時間をt(時
間)、引張強さをy(MPa)とすると、次のような回
帰直線式が得られる。
In the graph (a), the horizontal axis represents the logarithm of time and the vertical axis represents the tensile strength. When the time is t (hour) and the tensile strength is y (MPa), the following regression linear equation is obtained.

【0019】[0019]

【数1】y=112.17−0.146 ×log(t) ここで点線5は、同様な評価を行い同様な解析を行った
として得られる回帰直線の99.9%入る信頼限界をあらわ
す。
## EQU1 ## y = 112.17-0.146 × log (t) Here, the dotted line 5 represents the confidence limit of entering 99.9% of the regression line obtained by performing the same evaluation and the same analysis.

【0020】この図でも明らかなように、回帰直線の信
頼限界は非常に狭く、劣化時間に対し引張り強さはほぼ
直線で回帰できる。またプロットした実測データを見る
と、ある時間まではほとんどばらつきの無い値が得られ
ているが、ある時間を境にしてデータのばらつきが極端
に大きくなる。なお、ここでのばらつきはワイブル分布
6を用いたが、正規分布で整理してもほぼ同じようなば
らつきであった。このような観点から、ワイブル分布6
のばらつきと関わる形状パラメータが大きく変化する点
をもって今回評価した積層絶縁物を見ると、25年相当の
時間が得られた。
As is apparent from this figure, the confidence limit of the regression line is very narrow, and the tensile strength can be linearly regressed with respect to the deterioration time. Also, when looking at the actually measured data plotted, values with almost no variation are obtained up to a certain time, but the variation of the data becomes extremely large after a certain time. In addition, although the Weibull distribution 6 is used as the variation here, the variation is almost the same even when arranged by the normal distribution. From such a viewpoint, the Weibull distribution 6
Looking at the laminated insulators evaluated this time in terms of the fact that the shape parameters that are related to the dispersion of the values greatly change, it was possible to obtain time equivalent to 25 years.

【0021】一方、(b)のグラフは、横軸に時間の対
数をとり縦軸に吸水率をとっている。時間をt(時
間)、吸水率をy(%)とすると、次のような回帰直線
式が得られる。
On the other hand, in the graph (b), the horizontal axis represents the logarithm of time and the vertical axis represents the water absorption rate. When the time is t (hour) and the water absorption rate is y (%), the following regression linear equation is obtained.

【0022】[0022]

【数2】y=0.501 −0.106 ×log(t) また点線5は、回帰直線式の99.9%信頼限界を示した
が、回帰直線式とほぼ並行でその間隔も狭く、劣化時間
と吸水率とは直線で回帰できる。また、実際にプロット
したデータを正規分布7で整理したが、ばらつきの範囲
はほぼ一定で、信頼性は高い。このような関係が明確に
できると、例えば前記引張強さで25年と判断しており、
これを吸水率の計算式で25年を代入すると吸水率は0.35
%が得られた。従って、例えば本試験試料と同じ条件で
使用されている絶縁材料は、吸水率を測定するだけで劣
化程度、余寿命を推定できる。
[Formula 2] y = 0.501 −0.106 × log (t) Also, the dotted line 5 shows the 99.9% confidence limit of the regression linear equation, but the interval is narrow in parallel with the regression linear equation, and the deterioration time and water absorption rate Can regress with a straight line. Moreover, although the actually plotted data are arranged by the normal distribution 7, the range of variation is almost constant and the reliability is high. If such a relationship can be clarified, for example, we have determined that the tensile strength is 25 years,
Substituting this for 25 years in the formula for water absorption yields a water absorption of 0.35
%was gotten. Therefore, for example, in the insulating material used under the same conditions as the test sample, the deterioration degree and the remaining life can be estimated only by measuring the water absorption.

【0023】ところで、絶縁材料の使用履歴が異なると
グラフの傾き(劣化速度)も異なるが、電力負荷条件は
記録により調べることができるので、電力負荷条件に応
じた様々な引張強さおよび吸水率の経年変化を想定した
データベースを試験試料により構築し、定期的に吸水率
を測定することでも絶縁材料の寿命が推定できる。
By the way, although the slope (deterioration rate) of the graph varies depending on the history of use of the insulating material, the power load condition can be examined by recording. Therefore, various tensile strengths and water absorption rates according to the power load condition can be obtained. It is also possible to estimate the life of the insulating material by constructing a database that assumes the secular change of, using test samples, and measuring the water absorption rate regularly.

【0024】以上は実際のプラントで使用した積層絶縁
材料の引張強さおよび吸水率であるが、これとは別に試
験試料を作り故意に劣化を加速させて行った実験結果を
図1に対応させて図2に示す。加速要因は多々有るが、
実際の使用状況を模擬した場合、最大の劣化要因は熱的
要因である。ここではIEC Publ 216の温度テーブル
に準拠し、220 ℃、200 ℃の温度で劣化を加速した。
The above is the tensile strength and water absorption of the laminated insulating material used in the actual plant. Separately from this, the test results were prepared by intentionally accelerating the deterioration by making a test sample. Shown in FIG. There are many acceleration factors,
When simulating the actual usage situation, the largest deterioration factor is the thermal factor. Here, according to the temperature table of IEC Publ 216, deterioration was accelerated at temperatures of 220 ° C and 200 ° C.

【0025】規定時間毎に試験試料を取り出し、吸水率
および引張強さを測定した。劣化の条件が試験用配電盤
とでは異なるが、プロットしたデータの傾向は同じであ
り、吸水率の場合は劣化によって低下するもののそのば
らつきはほとんど変わらない。また、加速の程度で回帰
直線の傾きは変わる。
The test sample was taken out at regular intervals and the water absorption rate and the tensile strength were measured. Although the deterioration condition is different in the test switchboard, the tendency of the plotted data is the same, and in the case of the water absorption rate, although it decreases due to deterioration, its variation is almost unchanged. Also, the slope of the regression line changes depending on the degree of acceleration.

【0026】一方、引張強さも劣化によって低下の傾向
にあり、平均的な値は回帰直線式から推定することがで
きる。しかし、そのばらつきの程度はある時間を境にし
て極端に大きくなり、ある時間以降の最低値を推定する
ことは不可能となった。
On the other hand, the tensile strength also tends to decrease due to deterioration, and the average value can be estimated from the regression linear equation. However, the degree of the variation became extremely large after a certain time, and it became impossible to estimate the lowest value after a certain time.

【0027】[0027]

【発明の効果】以上のように第1の発明によれば、絶縁
材料の初期状態と所定時間劣化後の引張強さを比較して
絶縁材料の劣化を診断するので、確実に且つ容易に絶縁
材料の劣化を診断できる。
As described above, according to the first aspect of the present invention, the deterioration of the insulating material is diagnosed by comparing the initial state of the insulating material with the tensile strength after deterioration for a predetermined time. The deterioration of material can be diagnosed.

【0028】また第2の発明によっても、絶縁材料の初
期状態と所定時間劣化後の吸水率を比較して絶縁材料の
劣化を診断するので、確実に且つ容易に絶縁材料の劣化
を診断できる。
Also according to the second aspect of the invention, since the deterioration of the insulating material is diagnosed by comparing the initial state of the insulating material with the water absorption after deterioration for a predetermined time, the deterioration of the insulating material can be reliably and easily diagnosed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す特性図。FIG. 1 is a characteristic diagram showing an embodiment of the present invention.

【図2】本発明に関する劣化を加速させた場合の特性
図。
FIG. 2 is a characteristic diagram when the deterioration according to the present invention is accelerated.

【符号の説明】[Explanation of symbols]

1…時間に対する吸水率の変化を示す線。 2…電気絶縁劣化を起こす吸条率の閾値。 3…電気絶縁劣化を起こす時間。 4…経過時間に対する引張強さの変化を示す線。 5…回帰直線信頼限界。 6…ワイブル分布。 7…正規分布。 1 ... A line showing a change in water absorption rate with respect to time. 2 ... A threshold value of the absorption rate that causes electrical insulation deterioration. 3 ... Time to cause electrical insulation deterioration. 4 ... A line showing a change in tensile strength with respect to elapsed time. 5 ... Regression line confidence limit. 6 ... Weibull distribution. 7 ... Normal distribution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 陣内 功 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 佐藤 健一 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Jinchi 1st in Toshiba Fuchu, Tokyo Fuchu-shi, Toshiba Fuchu factory (72) Inventor Kenichi Sato 1st in Toshiba Fuchu, Tokyo, Fuchu factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁材料の初期状態の引張強さを設定す
る過程と、前記絶縁材料の所定時間劣化後の引張強さを
設定する過程と、これらの引張強さを比較して前記絶縁
材料の劣化を診断する過程とを有する絶縁材料の劣化診
断方法。
1. A method of setting a tensile strength of an insulating material in an initial state, a step of setting a tensile strength of the insulating material after deterioration for a predetermined time, and comparing the tensile strengths of the insulating material with each other. And a method of diagnosing deterioration of an insulating material, the method comprising:
【請求項2】 絶縁材料の初期状態の吸水率を設定する
過程と、前記絶縁材料の所定時間劣化後の吸水率を設定
する過程と、これらの吸水率を比較して前記絶縁材料の
劣化を診断する過程とを有する絶縁材料の劣化診断方
法。
2. A process of setting a water absorption rate of an insulating material in an initial state, a process of setting a water absorption rate of the insulating material after deterioration for a predetermined time, and comparing these water absorption rates with each other to prevent deterioration of the insulating material. A method of diagnosing deterioration of an insulating material, the method comprising: diagnosing.
【請求項3】 前記絶縁材料の引張強さの変化と吸水率
の変化との関係を予め設定しておき、この関係から前記
絶縁材料の劣化を診断するようにしたことを特徴とする
請求項2記載の絶縁材料の劣化診断方法。
3. A relationship between a change in tensile strength of the insulating material and a change in water absorption rate is set in advance, and deterioration of the insulating material is diagnosed from this relationship. 2. A method of diagnosing deterioration of an insulating material according to 2.
JP10204093A 1993-04-28 1993-04-28 Deterioration diagnostic method for dielectric material Pending JPH06308000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10204093A JPH06308000A (en) 1993-04-28 1993-04-28 Deterioration diagnostic method for dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10204093A JPH06308000A (en) 1993-04-28 1993-04-28 Deterioration diagnostic method for dielectric material

Publications (1)

Publication Number Publication Date
JPH06308000A true JPH06308000A (en) 1994-11-04

Family

ID=14316664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10204093A Pending JPH06308000A (en) 1993-04-28 1993-04-28 Deterioration diagnostic method for dielectric material

Country Status (1)

Country Link
JP (1) JPH06308000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036219A (en) * 2016-09-02 2018-03-08 東京電力ホールディングス株式会社 Residual life estimation method of laminated structure
CN113432972A (en) * 2020-03-23 2021-09-24 西安高压电器研究院有限责任公司 Method and system for detecting interface strength of insulating pull rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036219A (en) * 2016-09-02 2018-03-08 東京電力ホールディングス株式会社 Residual life estimation method of laminated structure
CN113432972A (en) * 2020-03-23 2021-09-24 西安高压电器研究院有限责任公司 Method and system for detecting interface strength of insulating pull rod
CN113432972B (en) * 2020-03-23 2024-02-09 西安高压电器研究院股份有限公司 Method and system for detecting interface strength of insulating pull rod

Similar Documents

Publication Publication Date Title
Montanari et al. Progressively-censored aging tests on XLPE-insulated cable models
Simoni A new approach to the voltage-endurance test on electrical insulation
CN111289863A (en) Power cable middle joint insulation detection method based on dielectric spectrum method
CN112285513B (en) Method for defining oil paper insulation rapid development type discharge under alternating current voltage based on voltage tolerance index
Arvind et al. Condition monitoring of power transformer: A review
CN101738554A (en) Cross-linked polyethylene insulated cable and method for testing cable insulation and sheath aging
CN114779021A (en) Method for detecting insulation level of generator stator of gas turbine unit
Berberich et al. Guiding Principles in the Thermal Evaluation of Electrical Insulation [includes discussion]
Crine The compensation law revisited-Application to dielectric aging
JPH06308000A (en) Deterioration diagnostic method for dielectric material
Bruning et al. Aging in wire insulation under multifactor stress
CN112255478A (en) Automatic detection and service life evaluation system for aging state of generator stator bar
CN111025103A (en) Aging performance evaluation system for intelligent silicon rubber composite insulator
JPH0619323B2 (en) Insulation deterioration diagnosis method
Domun Condition monitoring of power transformers by oil analysis techniques
CN112485617B (en) Method and device for evaluating insulation aging state of cable
CN115327267A (en) High-low temperature cycle test method, system, terminal and storage medium
Afia et al. Condition Assessment of XLPO Insulated Photovoltaic Cables Based on Polarisation/Depolarisation Current
CN113721111A (en) Method and device for testing aging degree of cable insulating layer
Ritamäki et al. Effects of thermal aging on the characteristic breakdown behavior of Nano-SiO 2-BOPP and BOPP films
Reinhard et al. Energy handling capability of high-voltage metal-oxide surge arresters Part 2: Results of a research test program
Qerkini et al. Lifetime characterization of partial discharge properties of insulation material exposed to voltage pulse stress
CN114895154A (en) Composite insulator interface aging degree evaluation method
Afia et al. Evaluation of thermally aged nuclear power plant power cables based on electrical condition monitoring and regression analysis
Afia et al. Non-destructive condition monitoring of nuclear power plant power cables